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Motivations & Questions



Introduction: random walks, Brownian

motion & animal movement

A convex hull-based estimator of home range sizes, Worton, Biometrics 51 (4) (1995)

Analyzing animal movements using Brownian bridges, Horne et al, Ecology 88 (9) (2007)

Home Range Estimates, Boyle et al., Folia Primatol. 80 (2009)

Convex hull of N Brownian motions: Exact results & an application to ecology, R-F et al, PRL 103 (2009)
The Physics of Foraging, Viswanathan et al, Cambridge University Press (2011)

Modelling animal movement as Brownian bridges with covariates, Kranstauber, Movement Ecology 7 (1) (2019)



Introduction: motivations

Context(s), problems and motivations
» Animal movement, dispersal and spatial ecology
» Transport in confined geometries, Polymer & protein conformation (biophysics)
» Extreme-value statistics (probability theory, physics, engineering, finance)

» Stochastic geometry (probability theory, imaging techniques)

Outline
» Perimeter & area via Cauchy formulae

» Number of edges/facets



Perimeter & area using Cauchy formulae



Convex hull of n Brownian paths — Perimeter & area

» Only previuously known results were for n =1
» Support function + Cauchy formulae = general method for n > 1

o Dimension n — Dimension n — 1
o For 2D: maximum of a 1D walk and time at which it is attained
¢ Exact results V n, + asympotical behaviour for large n



Support function & Cauchy formulae

Perimeter of a closed convex curve

(Xis Vi) S M'(9)

Area of a closed convex curve



Cauchy formulae for an (isotropic) Brownian path

(¥ Average perimeter
\

with M(0) = maxo<.<7 {x(7)} =

Average area

x(7), y(7) indep. 1D Brownians, 0 < 7 < T with



M’(0) = value of y when x reaches its maximum

M(0)

X(T) y('r
W M(0)

0 T* T 0 % T

(M(0)) = /Ooo dM M o(M)

(M?(0)) = /OOO dM M? o (M)



Distribution of the time of maximum for a free Brownian motion on [0, T]

Arcsine law

p(rIT) =3 £ (%)



Results for n = 1 open Brownian path

Average perimeter

Average area

x(7), y(7) indep. 1D Brownian paths, 0 < 7 < T

Takacs, Expected perimeter length, Amer. Math. Month., 87 (1980)
El Bachir, L’enveloppe convexe du mouvement brownien, Thése, Université Paul Sabatier, Toulouse (1983)



Results for n = 1 closed Brownian path

Average perimeter

|

=
—~

Average area

x(7), y(7) indep. 1D Brownian bridges, 0 < + < T

Goldman, Le spectre de certaines mosaiques poissoniennes du plan et I'enveloppe convexe du pont brownien,
Prob. Theor. Relat. Fields, 105 (1996)



For n planar Brownian paths: maximum of n linear paths

Average perimeter

Ln‘ =27 Mﬂ

with M, = max, ; {xi(7)} = x« (77")

Average area

(), y;(r) indep. linear BMs, 0 < = < T with M/ = yi= (77%)



Global maximum for n indep. Brownian walkers




Global maximum for n indep. Brownian walkers

Distribution of the time t,, at which the global maximum is attained

pn(tm) =




Convex hull of n indep. planar Brownian paths

Average perimeter (open paths)

<Ln> = anﬁ

= -
an = 4nV2m / du u e " [erf(u)]""*
J0

a1 = V8w =5.013..
o = 4/m=7.089..
x;(7), yi(r) indep. 1D Brownian motions, _q
tan 1/v2
0<r<T a3 = 24M = 8.333..

NG



Convex hull of n indep. planar Brownian paths

Average area (open paths)

<A"> = 5nT

Bn = 4n+/m / du u [erf(u)]" " (ue*“: - g(u)>

1 e7“2/t dt

g(w)= 5=l Ty

B

T

— = 1.570..
xi(7), y;(r) indep. 1D Brownian motions, 2

iy

Ba =3.141..
Bs = w+3—3=4.409.

0<+<T



Asymptotical behaviour

For n open paths:

(L)) ~ 2rV2T
n— oo

(An) ~ 27T
n— oo

For n closed paths (bridges):



Number of edges/facets



Edges & facets

Joint work with Dmitry Zaporozhets (St. Petersburg Dpt of the Steklov Institute)
Work supported by the Basis Foundation for Theoretical Physics and Mathematics

BASIS %i



Convex hull of a single random walk

» In dimension 2, for a random walk with n steps:

E[F(@)=23 ;
k=1

Baxter (1961) The Annals of Mathematical Statistics, 32(3), 901-904.
Spitzer & Widom (1961) P dings of the A i Math ical Society, 12(3), 506-509.




Convex hull of a single random walk

» In dimension 2, for a random walk with n steps:
1
BIF(@)I=23

» whatever the (symmetric, continuous) distribution of the jumps

Baxter (1961) The Annals of Mathematical Statistics, 32(3), 901-904.
Spitzer & Widom (1961) P dings of the A i Math ical Society, 12(3), 506-509.




Convex hull of a single random walk

» In dimension d, for a random walk with n steps:

ElF =2 Y —

) - B ofho ooo o/l
Atetjg—1<n J1°J Jd
Jiseendd—121

» whatever the (symmetric, continuous) distribution of the jumps
Barndorff-Nielsen & Baxter (1963) T i of the A i Mathematical Society, 108(2), 313-325.
Vysotsky & Zaporozhets (2018) Tr i of the A i Math ical Society, 370(11), 7985-8012.

Kabluchko, Vysotsky & Zaporozhets (2017) Advances in Mathematics, 320, 595-629.
R-F & Wespi (2017) Physical Review E, 95(3), 032129.



Convex hull of m random walks

» What about the global convex hull of multiple (independent) random walks?

R-F, Majumdar, & Comtet (2009) Physical Review Letters, 103(14), 140602.
R-F (2012) Journal of Physics A: Math. ical and Th ical, 46(1), 015004,
Dewenter, Claussen, Hartmann, & Majumdar (2016) Physical Review E, 94(5), 052120.




Convex hull of m random walks

» Expected number of edges on the boundary of the global convex hull?

R-F (2012) Journal of Physics A: Math ical and Th. ical, 46(1), 015004.



Convex hull of m random walks

» Expected number of edges on the boundary of the global convex hull?

» More generally, in dimension d: expected number of faces?



Convex hull of m random walks

» Expected number of edges on the boundary of the global convex hull?
» More generally, in dimension d: expected number of faces?

» Not distribution-free: eg m single-step random walks «— m iid points (with 0)



Convex hull of m random walks

» Expected number of edges on the boundary of the global convex hull?
» More generally, in dimension d: expected number of faces?

» Not distribution-free: eg m single-step random walks «— m iid points (with 0)

Efron (1965) Biometrika, 52(3/4), 331-343.
Rényi & Sulanke (1963, 1964) Probability Theory and Relared Fields, 2(1), 75-84 & 3(2), 138-147.
Kabluchko & Zap hets (2018) Tr ions of the A i M. ical Society, 372(3), 1709-1733.




Convex hull of ) an random walks

» Expected number of edges on the boundary of the global convex hull?
» More generally, in dimension d: expected number of faces?

» Not distribution-free: eg m single-step random walks <— m iid points (with 0)

Efron (1965) Biometrika, 52(3/4), 331-343.
Rényi & Sulanke (1963, 1964) Probability Theory and Relared Fields, 2(1), 75-84 & 3(2), 138-147.
Kabluchko & Zap hets (2018) Tr ions of the A i M. ical Society, 372(3), 1709-1733.




Setting




For m,ny,...,nm €N, let

xO o ox® o x X

y/¥mq » Nnm

be independent d-dimensional standard Gaussian vectors.



For m,ny,...,nm €N, let

Xl(l)ﬂ"'7Xn(11)7 M) Xl(m)ﬂ"' X(m)

Ny,

be independent d-dimensional standard Gaussian vectors.
Define the corresponding random walks

SO =xV4...4x0 1<i<m 1<i<n,

i



Define the corresponding random walks

SO =xV4...4xV 1<i<m 1<i<n,

and a degenerate random walk (Si(o))l.lzl, with 5 = 0.



Define the corresponding random walks

SH=xD ..o xP 1<i<m 1<i<n,

i

i
i=1"

and a degenerate random walk (S,.(O)) with Sfo) =0.

The global convex hull is

Ca = conv {0, sV, .. 5P, .., si7, s



» With probability one, C4 is a convex polytope with boundary of the form

0Cy = U F,

FeF(Cq)

where F(Cq4) stands for the set of (d — 1)-dimensional faces of Cq.

» Each face is a (d-1)-dimensional simplex almost surely.



» Let ko, ..., km be integerss.t. ko + -+ km =d
and let i) < ... < iﬁ:) < n; be indices, for those / € {0,...,m} s.t. k > 0.



» Let ko, ..., km be integerss.t. ko + -+ km =d
and let i) < ... < i,E,/) < n; be indices, for those / € {0,...,m} s.t. k > 0.

» write Sy for the d-tuple

— (5@ 0 6 (m) (m)
Sy = (s Sighe o2 S S(“)""’Siim’>

with the convention that {5.(/) ...,5,-(:)} := () whenever k; = 0.
|

1



» Let ko,..., km be integerss.t. ko + -+ km = d

and let i) < ... < i,EI/) < n; be indices, for those / € {0,...,m} s.t. k > 0.

» write Sy for the d-tuple

— (g0 ¢(¥) (1) (m) (m)
S = <5k° ’5,-;1>""’5,-<1>"'"ngmv""s,-w)

k1
» also write

e pp—— {sgp, W, 58,5 sm} .
1

k1 1 km



» Let ko,..., km be integerss.t. ko + -+ km = d
and let i) < ... < i;E,/) < n; be indices, for those / € {0,...,m} s.t. k > 0.

» write Sy for the d-tuple

» also write

e e, {sﬁfj), W, 58,8 sg:;} .
1

k1 i1 "km

Note that

conv Sy may be or not be a face of Cq,

every face can be represented as some conv S,.



» write Sq for the d-tuple

conv Sy may be or not be a face of Cy,
every face can be represented as some conv S,.

Hence the crucial, albeit elementary, relation:

with g : R? — R? an arbitrary, symmetric, non-negative, measurable function.



» write Sq for the d-tuple

conv Sy may be or not be a face of Cy,
every face can be represented as some conv S,.

Hence the crucial, albeit elementary, relation:

with g : R? — R? an arbitrary, symmetric, non-negative, measurable function.

relevant choices of g will yield our results



Setting — some more notations

» Unconditional and conditional Gaussian persistence probabilities:
pn(r) = P[Zf;l N <r k= 1,...,n],
an(r) =P[SK N <rk=1,...,n|3X0 Ni=r],
where Ny, ..., N, € R are independent standard Gaussian random variables.
By symmetry of the distribution:

an(r) =P[K N >0,k=1,....,n| 30, N =r].



Setting — some more notations

» Unconditional and conditional Gaussian persistence probabilities:
pa(r) =P[5 Ni <r, k=1,...,n],
gn(r) ::IP’[ZLI Ni<rk=1,...,n|>", N = r],
where Ni,..., N, € R are independent standard Gaussian random variables.
By symmetry of the distribution:
an(r) =P[F Ni>0,k=1,...,n| 37, N =r].
Note that

p1(r) =®(r) and qi(r)=1Vr >0,

pi(0) = Cosid and an(0) = 1.

where ®(r) is the cdf of the standard Gaussian law, and the 3rd & 4th points
were established by Sparre Andersen.



Setting — some more notations

» Unconditional and conditional Gaussian persistence probabilities:
pn(r) = ]P)[fo:l N <r k= L...,n],
qn(r) ::P[ZLI N <rok=1,....n|3" Ni=r],
where Ni,..., N, € R are independent standard Gaussian random variables.
By symmetry of the distribution:
an(r) =P[SK N >0,k=1,....,n| 30, N =r].

» Py is the orthogonal projection onto the first d — 1 coordinates.

d
» |- | denotes volume or cardinality. kg = r(zi1) is the volume of the
H

d-dimensional unit ball.

» QO is a matrix chosen uniformly from the orthogonal group O(d), independently
with the random walks.



Results (1)




A general formula

Theorem

For g : R — R a bounded measurable function, symmetric and invariant with
respect to translations,

I | ) S8 (0 02 (19 - 10.,)°) "]

I k=0 I k I k0
1#0
- 2n — 1)1
Varlgey JT DR ] %}
> (2n )M L
ki kj#0 "1

where Tg_1 ~ P4Sq is a (d-1)-simplex defined from the same indices as Sq.



Face probability

Applying the previous theorem to g = 1 leads to:

Theorem



Expected number of faces

» Summing the previous formula over all choices of k's and j;'s leads to:

Theorem

E|F(Cq)| = d!kqg(2m)9? z E|conv Tg_1]




Expected surface area of the boundary

» Applying the main theorem to g(S4) = |conv Sy4|, we obtain the expected
surface area (i.e. (d—1)-dimensional content) of the boundary of the convex
hull, 90Cq:

Theorem

5

E|8Cq| = d!ka(2m)"9?

<o | TLm00] [ TL o]



Expected d-dimensional volume of the convex hull

> Recalling the Cauchy surface area formula: E|Cq—1| = “= 1IE|8Cd|
leads to a formula for the expected (d-dimensional) volume of Cq

Theorem
; i+1)/2 L )
ECol = dirg (2m) @2 S ElconvTd]
ko,....km=>0 (1) 0
ko<no,....km<nm ——'1 Iy =NI
ko+-+-+km=d+1 [I= m: k>0



Expected number of facets containing the origin

With F°(-) = the set of facets containing the origin as a vertex,
one obtains a distribution-free formula

Theorem



Proofs — main ingredient(s)




Affine Blaschke-Petkantschin formula

> Let S be the unit (d — 1)—dimensional sphere, centered at the origin and
equipped with the Lebesgue measure p normalized to be probabilistic.

» For u e S9! let ut be the linear hyperplane orthogonal to u.

Then, for any non-negative measurable function h : (RY)? — R,

/ h(x1, ..., xq)dxy . ..dxq
(R)d

:d!/ﬁd/ / / h(x1,...,xq)|conv (xi,...,xdq)|
sd-1 Jo (ud+ru)d

X AL (dx1) ... AL (dxa) drdp(du)
:d!/id/ / / h(x1 + ru,...,xq + ru) [conv (X1, ..., Xd)|
sd—1 Jo (uL)d
X Ayt (dx1) ... Ay1 (dxq) drdp(du).

see eg Schneider & Weil (2008). Stochastic and integral v, Springer, Berlin.




Affine Blaschke-Petkantschin formula

We apply the B-P formula to compute:

E[g(sd)ﬂ{convsde}"(cd)}] = / o P[COI’IV Sq € ]—'(Cd) | Sqg = (X17 - ,Xd)]
(R9)

X g(x1, ..., %d)fs,(X1,...,Xq)dx1 ...dxq,

where fs, is the joint density of Sg.



Affine Blaschke-Petkantschin formula

We apply the B-P formula to compute:
E[g(sd)ﬂ{convsde}'(cd)}] = / ™ P[COHV Sd (S .F(Cd) | Sd = (Xl, e 7Xd)]
(R9)
X g(X1, ..., Xd)fsy(X1,. .., Xg)dx1 ... dxd,

where fs, is the joint density of Sg.




Affine Blaschke-Petkantschin formula

We apply the B-P formula to compute:
E[g(sd)ﬂ{convsde}'(cd)}] = / " P[COHV Sd (S .F(Cd) | Sd = (Xl, . ,Xd)]
(R9)
X g(x1, ..., Xd)fsy (X1, ..., Xg)dx1 ... dxq,

where fs, is the joint density of Sg.

(a) (b)



Results (2)




A general formula —

Theorem

For g : R — R a bounded measurable function, symmetric and invariant with
respect to translations,

E[g(Sa) convs,erciyy] = d! fa (21) "%/ x E[g(QTu—1) - |conv Ty_]

d

(/ 1/2
—ix) ) (D)) ()3 (I () 3\
T {U(/i - 0 - )
I+ kj#0 (= iy, !
I1 a0
1
ki#0

<[]

k=0 12 ky#

{Hm | IT o )HP = L

I+ kj# I k0 1

where Tg_1 ~ P4Sq is a (d-1)-simplex defined from the same indices as Sq.



Face probability — for the convex hull without the origin

» Applying the previous theorem to g = 1 leads to:
Theorem

Pconv Sy € F(CH)] = d! kg (27)~Y? x E|conv Ty_4|

G {)>>U<<><>> }



Expected number of faces — for the convex hull without the origin

» Summing the previous formula over all choices of k's and j;'s leads to:

Theorem




Expected boundary surface area — for the convex hull without the origin

» Applying the main theorem to g(Sy4) = |conv Sy, we obtain the expected

surface area (i.e. (d—1)-dimensional content) of the boundary of the convex
hull, 8C%:

Theorem

E|0C)| = d'ka(27)9? > > E|conv Ty_1|?



Expected d-dimensional volume — for the convex hull without the origin

» Recalling the Cauchy surface area formula: E|C_;| = Kj;d‘E|8C5|

leads to a formula for the expected (d-dimensional) volume of C
Theorem

E|Ci| = d! kg (2m) @172 Elconv T4|?




Examples




Single random walk in the plane

» m=1and d =2
» when Sz = (Si, Siyj), E|conv T1| = /2j/7

» one obtains:

E|F(C)| =21k (2m) 7% 3 >
ko k1 >0 1<iy <---<ig; <n
ko+k1=2
; 2 (2(n—i) -1 (2iY —1)n
=0} 5 (2(n— i))!! (i)

2 (2(n— i) — 1)1
-1 7 ( EQ(n—)il))!!)

"2 S @(n—(i+j) — DIt (2i— 1!
7 @ -G+ @)



Single random walk in higher dimension

» m=1and d >2

>

n+2—d n+3—d—ji n—(j1+-+jg—2)
EFCH =2 > > S (aedan)
=1 j2=1 Jd—1=1

n—(i+jr++jg—1)

5 @(n— (i +j1 4+ +Ja_1)) — DI (2 — 1)1
@0 —Git i) @)

n+2—d n+3—d—jz n—(jr+--+ig—2)

=2 Z Z Z (jl---jd—l)—l

=1 j2=1 Jd—1=1

1
=3 E T
. ) 1. Jd—1
Jittjg—1<n J
Jiyeedd—121

i=0



Independent Gaussian points

> Vi<m n=1



Independent Gaussian points

» Vi<m, n=1

» Without the origin: standard Gaussian polytope



Independent Gaussian points

» Vi<m, n=1
» Without the origin: standard Gaussian polytope

>

Kg m! oo —d—1 d+1
dl(m—d—1) /m L L

which is indeed Efron’s formula.

Elc)| =



Independent Gaussian points

» Vi<m, n=1
» With the origin: Gaussian polytope with 0

» Note that
Eg—1|conv T4|*> = 1/d! whereas Ey,_o|conv T4|* = (d +1)/d! (Miles, 1971)



Independent Gaussian points

> Vi<m n=1

» With the origin: Gaussian polytope with 0

>
@ [ gosny o
- n ) r r)dr,
[ 2 gr(d11)  d(m—d—1) ) ()¢ (r)

in full agreement with the formula established by Kabluchko and Zaporozhets.



Conclusion




Ongoing work. . .

» general formulae (also for Lévy processes)
» new results

» extensions?

R-F & Zaporozhets (2020 2021). Preprint available



Ongoing work. . .

» general formulae (also for Lévy processes)
» new results

» extensions?

R-F & Zaporozhets (2020 2021). Preprint available

Thank you for your attention!
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