Testing equality of spectral density operators for functional linear processes

Anne Leucht Otto-Friedrich-Universität Bamberg

joint work with

E. Paparoditis (U Cyprus), D. Rademacher (U Heidelberg), T. Sapatinas (U Cyprus)

Ecodep Seminary

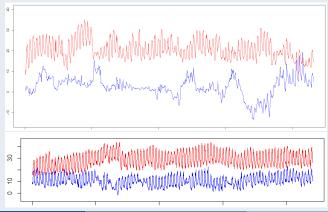
Contents

Motivating Example

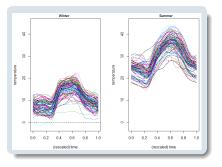
- 2 Some spectral theory for functional time series
- 3 Test statistics & asymptotics
- 4 Bootstrapping the test statistic
- 5 Numerical examples & conclusion

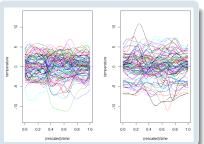
Analysis of temperature data - comparison of seasons

- **top:** temperature data Dresden (Germany) 2020/21 90 summer days, 90 winter days
- **bottom:** temperature data Nicosia (Cyprus) 2006/07 96 summer days, 96 winter days



Anne Leucht (U Bamberg)





- daily temperature curves in Nicosia: (measurements every 15 minutes)
 - left: winter (01.12.2006-02.03.2007)
 - right: summer (01.06.2007-31.08.2007)
- → winter & summer differ in intra-day pattern

- ightarrow centering around averages
 - ? difference in variability of summer and winter

• framework: functional time series

- X_t centered temperature curve at day t in winter
- Y_t centered temperature curve at day t in summer

Assumption (A1)

(i) $(X_t)_t$ and $(Y_t)_t$ are independent functional linear processes,

$$X_t = \sum_{j \in \mathbb{Z}} A_j(arepsilon_{t-j}) \quad ext{and} \quad Y_t = \sum_{j \in \mathbb{Z}} B_j(e_{t-j}), \quad t \in \mathbb{Z},$$

with values in $L^2_{\mathbb{R}}([0,1],\mu)$

(ii) $(\varepsilon_t)_{t\in\mathbb{Z}}$ and $(e_t)_{t\in\mathbb{Z}}$: two independent i.i.d. mean zero Gaussian processes

(iii) $(A_j)_{j \in \mathbb{Z}}$ and $(B_j)_{j \in \mathbb{Z}}$ bounded linear operators with $A_0 = B_0$ being identity operator and, satisfy $\sum_{j \in \mathbb{Z}} |j| (||A_j||_{\mathcal{L}} + ||B_j||_{\mathcal{L}}) < \infty$ ($|| \cdot ||_{\mathcal{L}}$ operator norm)

• next: mathematical formulation of variability

 $\rightarrow\,$ using autocovariance operators $\mathcal{R}_{X,h}$ induced by right-integration of

$$r_h^X \colon [0,1] \times [0,1] o \mathbb{R}, \qquad r_h^X(au_1, au_2) = \operatorname{cov}(X_h(au_1),X_0(au_2)),$$

that is

$$\mathcal{R}_{X,h}(v(\tau_1)) = \int_{[0,1]} r_h^X(\tau_1,\tau_2) \, v(\tau_2) \, d\tau_2, \quad v \in L^2_{\mathbb{R}}([0,1],\mu)$$

• test problem:

 $\mathcal{H}_0 \colon \mathcal{R}_{X,h} = \mathcal{R}_{Y,h} \quad \forall h \quad \text{against} \quad \mathcal{H}_1 \colon \exists \ h \in \mathbb{N}_0 \colon \ \mathcal{R}_{X,h} \neq \mathcal{R}_{Y,h}$

Contents

1 Motivating Example

2 Some spectral theory for functional time series

3 Test statistics & asymptotics

4 Bootstrapping the test statistic

5 Numerical examples & conclusion

• recall the test problem

 $\mathcal{H}_0: \mathcal{R}_{X,h} = \mathcal{R}_{Y,h} \quad \forall h \text{ against } \mathcal{H}_1: \exists h \in \mathbb{N}_0: \ \mathcal{R}_{X,h} \neq \mathcal{R}_{Y,h}$

- expectation for many problems: if null does not hold, then deviation of autocovariance operators in many lags
- $\rightarrow\,$ hard to interpret
 - idea: spectral approach
 - autocovariance (kernel): superposition of periodic functions with different frequencies λ and different magnitudes
 - if H₀ is rejected, then further analysis if main difference is due to large or small frequencies (equiv. short or long periods)
 - well-known from univariate times series analysis: benefit from one-to-one correspondence between second order structure and spectral density (also from mathematical perspective)

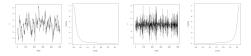
• if autocovariances $(r_h^Z)_h$ of a univariate time series $(Z_t)_t$ are absolutely summable then the **spectral density** is defined as

$$f_Z(\lambda) := rac{1}{2\pi} \sum_{h \in \mathbb{Z}} r_h^Z e^{-ih\lambda}, \quad \lambda \in (-\pi,\pi]$$

• and inversion formula holds

$$r_h^Z = \int_{-\pi}^{\pi} e^{ih\lambda} f_Z(\lambda) \, d\lambda, \quad h \in \mathbb{Z}$$

 $\rightarrow\,$ equality of second order structure equivalent to equality of spectral densities



- ! spectral approach to corresponding test problem for multivariate time series successfully applied e.g. by Eichler (2008), Dette & Paparoditis (2009)
- $\rightarrow\,$ in this talk: generalization to functional linear processes

Definition 2.1 (Spectral density kernels & \sim operators).

For a functional linear process satisfying (A1) the **spectral density kernel** at frequency $\lambda \in (-\pi, \pi]$ is given by

$$\mathbf{f}_{\mathbf{X},\lambda}(\sigma, au) = rac{1}{2\pi}\sum_{\mathbf{h}\in\mathbb{Z}}\mathbf{e}^{-\mathbf{i}\lambda\mathbf{h}}\,\mathbf{r}_{\mathbf{X},\mathbf{h}}(\sigma, au),\quad\sigma,\, au\in[0,1].$$

The operator $\mathcal{F}_{\chi,\lambda}$ induced by right-integration is called **spectral density operator**.

- \checkmark $f_{X,\lambda}$ converges absolutely in L^2 , the inversion formula holds
- $\checkmark \mathcal{F}_{X,\lambda}$ is a self-adjoint, nonnegative definite operator
 - ! overview in more general context: see e.g. Panaretos & Tavakoli (2013)
- test problem: spectral reformulation

 $\begin{array}{ll} \mathcal{H}_0\colon \ \mathcal{F}_{X,\lambda}=\mathcal{F}_{Y,\lambda} & \text{ for } \mu\text{-almost all } \lambda\in(-\pi,\pi], & \text{ versus} \\ \mathcal{H}_1\colon \ \mathcal{F}_{X,\lambda}\neq \mathcal{F}_{Y,\lambda} & \forall \lambda\in A \text{ for some } A\subset[0,\pi] \text{ with } \mu(A)>0. \end{array}$

• 1st step: generalization of periodogram from multivariate time series to periodogram kernel

$$\widehat{p}_{X,\lambda}(\sigma,\tau) = \frac{1}{2\pi T} \sum_{s_1, s_2=1}^T X_{s_1}(\sigma) X_{s_2}(\tau) e^{-i\lambda(s_1-s_2)}, \quad \sigma,\tau \in [0,1],$$

- well-known from multivariate time series: periodogram not consistent
- 2nd step: kernel-type smoothing of periodogram: $\lambda_t = 2\pi \frac{t}{T}$, $N = \lfloor \frac{T-1}{2} \rfloor$ spectral density estimator

$$\hat{f}_{X,\lambda}(\sigma,\tau) = \frac{1}{bT} \sum_{t=-N}^{N} W\left(\frac{\lambda - \lambda_t}{b}\right) \, \hat{p}_{X,\lambda_t}(\sigma,\tau), \quad \sigma,\tau \in [0,1],$$

• 3rd step: estimated spectral density operator

$$\widehat{\mathcal{F}}_{X,\lambda}(\boldsymbol{v}(\sigma)) = \int_{(-\pi,\pi]} \widehat{f}_{X,\lambda}(\sigma,\tau) \, \boldsymbol{v}(\tau) \, d\tau, \quad \boldsymbol{v} \in L^2_{\mathbb{R}}([0,1],\mu)$$

(non-)asymptotic properties: IMSE, CLT,...
 e.g. in Panaretos & Tavakoli (2013), Cerovecki, Hörmann (2017)

Anne Leucht (U Bamberg)

Contents

1 Motivating Example

2 Some spectral theory for functional time series

Test statistics & asymptotics

4 Bootstrapping the test statistic

5 Numerical examples & conclusion

3 Test statistic and its asymptotics

• recall test problem:

 $\begin{array}{ll} \mathcal{H}_0\colon \ \mathcal{F}_{X,\lambda}=\mathcal{F}_{Y,\lambda} & \text{ for } \mu\text{-almost all } \lambda\in(-\pi,\pi], & \text{ versus} \\ \mathcal{H}_1\colon \ \mathcal{F}_{X,\lambda}\neq\mathcal{F}_{Y,\lambda} & \forall \lambda\in A \text{ for some } A\subset[0,\pi] \text{ with } \mu(A)>0. \end{array}$

- projection-based approach for fixed frequencies (+ multiple testing): Tavakoli & Panaretos (2016)
- here: evaluation of all frequencies
- \rightarrow test statistic:

$$\begin{aligned} \mathcal{U}_{T} &= \int_{(-\pi,\pi]} \|\widehat{\mathcal{F}}_{X,\lambda} - \widehat{\mathcal{F}}_{Y,\lambda}\|_{HS}^{2} d\lambda \\ &= \int_{(-\pi,\pi]} \iint_{[0,1]^{2}} |\widehat{f}_{X,\lambda}(\sigma,\tau) - \widehat{f}_{Y,\lambda}(\sigma,\tau)|^{2} d\sigma d\tau d\lambda \end{aligned}$$

• related work for corresponding "relevant hypotheses": van Delft & Dette (2020)

Anne Leucht (U Bamberg)

13/29

3 Test problem and asymptotics of the test statistic

Theorem 3.1 (Asymptotics under \mathcal{H}_0 and \mathcal{H}_1).

Assume that (A1) holds and that

(i)
$$b \sim T^{-\nu}$$
 for some $\nu \in (1/4, 1/2)$,

(ii) *W* is bounded, symmetric, positive, Lipschitz continuous, has bounded support on $(-\pi, \pi]$ and satisfies $\int_{-\pi}^{\pi} W(x) dx = 2\pi$.

Then, under \mathcal{H}_0 ,

$$\sqrt{\mathbf{b}} \mathbf{T} \, \mathcal{U}_{\mathbf{T}} - \mathbf{b}^{-1/2} \mu_{\mathbf{0}} \stackrel{\mathbf{d}}{\longrightarrow} \mathbf{Z} \sim \mathcal{N}(\mathbf{0}, \theta_{\mathbf{0}}^2),$$

where

$$\mu_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} \{ \operatorname{trace}(\mathcal{F}_{X,\lambda}) \}^{2} d\lambda \int_{-\pi}^{\pi} W^{2}(u) du$$

$$\theta_{0}^{2} = \frac{4}{\pi^{2}} \int_{-2\pi}^{2\pi} \left\{ \int_{-\pi}^{\pi} W(u) W(u-x) du \right\}^{2} dx \int_{-\pi}^{\pi} \|\mathcal{F}_{X,\lambda}\|_{H^{5}}^{4} d\lambda$$

and, under \mathcal{H}_1 ,

$$\sqrt{\mathbf{b}} \mathbf{T} \, \mathcal{U}_{\mathbf{T}} - \mathbf{b}^{-1/2} \mu_{\mathbf{0}} \stackrel{\mathsf{P}}{\longrightarrow} \infty.$$

3 Test problem and asymptotics of the test statistic

• Comments on assumptions

- ! Assumptions (i) and (ii) equivalent to assumptions for multivariate time series in Dette and Paparoditis (2009)
- main benefit from using linear processes:
 - * periodogram operator of $(X_t)_t$ can be easily traced back to periodogram operator of $(\varepsilon_t)_t$
 - * Gaussianity only needed to prove normality, but not to derive μ_0 , θ_0^2
- \rightarrow consistent asymptotic α -test: reject \mathcal{H}_0 if

$$\mathcal{T}_{\mathcal{U}} = rac{\sqrt{b} T \, \mathcal{U}_{\mathcal{T}} - b^{-1/2} \widehat{\mu}_0}{\widehat{ heta}_0} \geq z_{1-lpha},$$

where

- $z_{1-\alpha}$ is the upper $1-\alpha$ quantile of $\mathcal{N}(0,1)$
- $\hat{\mu}_0$ and $\hat{\theta}_0$ are consistent estimators of μ_0 and θ_0 (e.g. obtained by substitution of the unknown spectral density kernel $f_{X,\lambda}$ by **pooled estimator** $\hat{f}_{\lambda}(\tau,\sigma) = \hat{f}_{X,\lambda}(\tau,\sigma)/2 + \hat{f}_{Y,\lambda}(\tau,\sigma)/2$)

Contents

1 Motivating Example

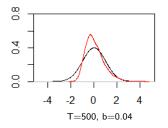
- 2 Some spectral theory for functional time series
- 3 Test statistics & asymptotics
- Bootstrapping the test statistic
- 5 Numerical examples & conclusion

4 Bootstrapping the test statistic

- known from finite-dimensional case:
 - convergence to normality is very slow
 - bootstrap approaches can improve performance of tests
- 2 main issues:
 - complicated dependence structure
 - infinite dimensionality
- towards a solution...
 - consider building blocks of periodogram

$$J_{X,\lambda} = \left(J_{X,\lambda}(s_j) = (2\pi T)^{-1/2} \sum_{t=1}^{T} X_t(s_j) e^{-it\lambda}, \ j = 1, 2, \dots, k\right),$$

- Cerovecki, Hörmann (2017):
 - $\star \ J_{X,\lambda} \stackrel{d}{\longrightarrow} J \sim \mathcal{N}_{\mathcal{C}}(0, \Sigma_{\lambda}) \text{ with } \Sigma_{\lambda} = (f_{X,\lambda}(s_{j_1}, s_{j_2}))_{j_1, j_2}$
 - * J_{X,λ_1} and J_{X,λ_2} are asymptotically independent for 0 $<\lambda_1<\lambda_2<\pi$



4 Bootstrapping the test statistic

Algorithm

• Generate $J_{X,0}^* = J_{Y,0}^* = 0$ and independent vectors

$$J^*_{X,\lambda_t} \sim \mathcal{N}_{\mathcal{C}}(0,\widehat{\Sigma}_{\lambda_t}) \ \, \text{and} \ \, J^*_{Y,\lambda_t} \sim \mathcal{N}_{\mathcal{C}}(0,\widehat{\Sigma}_{\lambda_t}),$$

independently for $\lambda_1, \ldots, \lambda_N$, where $\widehat{\Sigma}_{\lambda} = (\widehat{f}_{\lambda}(s_{j_1}, s_{j_2}))_{j_1, j_2}$ with $\widehat{f}_{\lambda} = \frac{1}{2}\widehat{f}_{X, \lambda} + \frac{1}{2}\widehat{f}_{Y, \lambda}$.

2 For
$$\sigma, \tau \in \{s_1, s_2, \dots, s_k\}$$
 and $t = 1, \dots, N$, calculate

 $p_{X,\lambda_t}^*(\sigma,\tau) = J_{X,\lambda_t}^*(\sigma) \,\overline{J}_{X,\lambda_t}^*(\tau) \text{ and } p_{Y,\lambda_t}^*(\sigma,\tau) = J_{Y,\lambda_t}^*(\sigma) \,\overline{J}_{Y,\lambda_t}^*(\tau)$

while, for $t = -1, -2, \ldots, -N$, set

$$p_{X,\lambda_t}^*(\sigma, au) = \overline{p}_{X,-\lambda_t}^*(\sigma, au) \text{ and } p_{Y,\lambda_t}^*(\sigma, au) = \overline{p}_{Y,-\lambda_t}^*(\sigma, au).$$

4 Bootstrapping the test statistic Algorithm (cont'd)

• For
$$\sigma, \tau \in \{s_1, s_2, \ldots, s_k\}$$
, let

$$\hat{f}_{X,\lambda_t}^*(\sigma,\tau) = \frac{1}{bT} \sum_{s=-N}^N W\left(\frac{\lambda_t - \lambda_s}{b}\right) p_{X,\lambda_s}^*(\sigma,\tau)$$

and

$$\hat{f}^*_{Y,\lambda_t}(\sigma,\tau) = rac{1}{bT}\sum_{s=-N}^N W\left(rac{\lambda_t-\lambda_s}{b}
ight) \, p^*_{Y,\lambda_s}(\sigma,\tau).$$

• Calculate bootstrap test statistic $\mathcal{U}_{\mathcal{T},k}^*$ given by

$$\begin{split} \mathcal{U}_{T,k}^* &= \frac{2\pi}{Tk^2} \sum_{l=-N}^N \sum_{i,j=1}^k \left| \widehat{f}_{X,\lambda_l}^*(s_i,s_j) - \widehat{f}_{Y,\lambda_l}^*(s_i,s_j) \right|^2\\ \text{and} \qquad \mathcal{T}_{\mathcal{U},k}^* &= (\sqrt{b} T \, \mathcal{U}_{T,k}^* - b^{-1/2} \widehat{\mu}_0^*) / \widehat{\theta}_0^*. \end{split}$$

• Reject \mathcal{H}_0 if $\mathcal{T}_{\mathcal{U}} > t^*_{1-\alpha}$ with $t^*_{1-\alpha}$ denoting the $(1-\alpha)$ quantile of $\mathcal{T}^*_{\mathcal{U},k}$.

4 Bootstrapping the test statistic

Brief comment on discretization

- in practice: typically X_t and Y_t are observed only at finitely many sampling points (transformation to functional objects using basis functions in L²)
- \rightarrow natural choice of $0 \le s_1 < s_2 < \cdots < s_k \le 1$: sampling points of X_t and Y_t
 - transformation of J^* -variables to functional objects possible
- $\rightarrow\,$ bootstrap approximation of the test statistic $\mathcal{U}_{\mathcal{T}}:$

$$\mathcal{U}_{T}^{*} = \frac{2\pi}{T} \sum_{I=-N}^{N} \int_{0}^{1} \int_{0}^{1} \left| \widehat{f}_{X,\lambda_{I}}^{*}(\tau,\sigma) - \widehat{f}_{Y,\lambda_{I}}^{*}(\tau,\sigma) \right|^{2} d\tau d\sigma$$

• $\mathcal{U}^*_{T,k}$ and \mathcal{U}^*_{T} will lead to the same result, provided that $k \to \infty$ as $T \to \infty$

4 Bootstrapping the test statistic

Theorem 4.1 (Bootstrap validity).

Suppose that prerequisites of Theorem 3.1 are satisfied. Then, conditional on $X_1, \ldots, X_T, Y_1, \ldots, Y_T$, as $T \to \infty$,

$$\sqrt{\mathbf{b}} \mathbf{T} \, \mathcal{U}_{\mathbf{T}}^* - \mathbf{b}^{-1/2} \widetilde{\mu}_{\mathbf{0}} \stackrel{\mathrm{d}}{\rightarrow} \widetilde{\mathbf{Z}} \sim \mathcal{N}(\mathbf{0}, \widetilde{\theta}_{\mathbf{0}}^2),$$

in probability, where

$$\widetilde{\mu}_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} \{ \operatorname{trace}(\mathcal{F}_{X,\lambda}/2 + \mathcal{F}_{Y,\lambda}/2) \}^{2} d\lambda \int_{-\pi}^{\pi} W^{2}(u) \, du,$$

$$\widetilde{\theta}_{0}^{2} = \frac{4}{\pi^{2}} \int_{-2\pi}^{2\pi} \left\{ \int_{-\pi}^{\pi} W(u) W(u-x) \, du \right\}^{2} dx \int_{-\pi}^{\pi} \|\mathcal{F}_{X,\lambda}/2 + \mathcal{F}_{Y,\lambda}/2\|_{HS}^{4} d\lambda.$$

! on bootstrap side (A1) can be relaxed to

$$\sup_{\lambda_t \in \{2\pi k/T | k=1,...,N\}} \left| \int_0^1 \int_0^1 \left(\widehat{f}_{\lambda_t}(\sigma,\tau) - f_{\lambda_t}(\sigma,\tau) \right) d\sigma d\tau \right| = o_P(\sqrt{b})$$

with $f_{\lambda} = 0.5 f_{X,\lambda} + 0.5 f_{Y,\lambda}$

Contents

1 Motivating Example

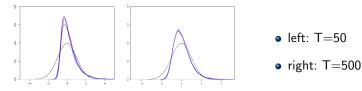
- 2 Some spectral theory for functional time series
- 3 Test statistics & asymptotics
- 4 Bootstrapping the test statistic
- 5 Numerical examples & conclusion

Simulations

• functional MA processes with Brownian bridge innovations

$$X_t = A_1(\varepsilon_{t-1}) + a_2 \varepsilon_{t-2} + \varepsilon_t, \qquad Y_t = A_1(e_{t-1}) + e_t,$$

 $a_2\in [0,1)$, A_1 kernel operator with $a_1(u,v)=rac{e^{-(u^2+v^2)/2}}{4\int_0^1e^{-t^2}dt},$



	T=50	b=0.2		T=100	b=0.2	
a_2	$\alpha = 0.01$	lpha= 0.05	lpha= 0.10	lpha= 0.01	lpha= 0.05	lpha= 0.10
0.0	0.010	0.048	0.096	0.008	0.046	0.080
0.2	0.016	0.082	0.158	0.028	0.112	0.196
0.6	0.178	0.390	0.518	0.374	0.622	0.766
1.0	0.488	0.768	0.872	0.874	0.966	0.990

Table: Empirical size and power of the bootstrap studentized test.

Anne Leucht (U Bamberg)

Choice of the bandwidth

- adapting approach of Robinson (1991) for multivariate time series
- define averaged (pooled) periodogram

$$\widehat{I}_{\mathcal{T}}(\lambda) = \frac{1}{k^2} \sum_{r=1}^{k} \sum_{s=1}^{k} \left\{ \frac{1}{2} \widehat{p}_{X,\lambda}(\sigma_r, \tau_s) + \frac{1}{2} \widehat{p}_{Y,\lambda}(\sigma_r, \tau_s) \right\}$$

 $\rightarrow\,$ periodogram at frequency λ of the pooled, real-valued univariate process

$$\left\{V_t=rac{1}{2}\int_0^1 X_t(s)ds+rac{1}{2}\int_0^1 Y_t(s)ds,\ t\in\mathbb{Z}
ight\}$$

ightarrow averaged pooled spectral density estimator of $\{V_t, t\in\mathbb{Z}\}$

$$\widehat{g}^{(b)}(\lambda_t) = rac{1}{Tb} \sum_{s=-N}^{N} W\left(rac{\lambda_t - \lambda_s}{b}
ight) \widehat{I}_T(\lambda_s)$$

Choice of the bandwidth

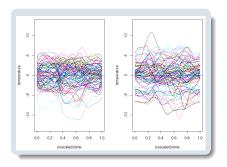
• cross validation: $\hat{b}_{CV} = \arg \min CV(b)$ with

$$CV(b) = \frac{1}{N} \sum_{t=1}^{N} \left\{ \log(\widehat{g}_{-t}^{(b)}(\lambda_t)) + \frac{\widehat{I}_{T}(\lambda_t)}{\widehat{g}_{-t}^{(b)}(\lambda_t)} \right\}$$

over a grid of values of b

• with leave-one-out kernel estimator of $g(\lambda)$

$$\widehat{g}_{-t}^{(b)}(\lambda_t) = \frac{1}{Tb} \sum_{\substack{s=-N\\s\neq\pm t}}^{N} W\left(\frac{\lambda_t - \lambda_s}{b}\right) \widehat{I}_T(\lambda_s)$$

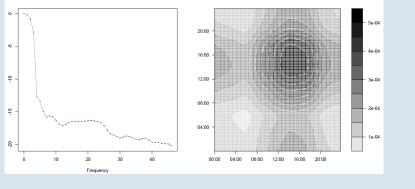


- $\mathcal{H}_0: \ \mathcal{F}_{winter,\lambda} = \mathcal{F}_{summer,\lambda}$ for μ -almost all $\lambda \in (-\pi, \pi]$,
- bandwidth obtained by CV
- \rightarrow Nicosia: *p*-value 0.03
- $\rightarrow\,$ rejection of \mathcal{H}_0 at most of the classical levels
- \rightarrow Dresden: *p*-value 0.0011
- $\rightarrow\,$ rejection of \mathcal{H}_0 at essentially all classical levels
- further analysis: identification of main contributions to test statistic in terms of frequencies and time of day
- $\rightarrow\,$ split up test statistic accordingly

Data Example

Further analysis for Nicosia

$$Q_{\mathcal{T},\lambda_I} = 2\pi \sqrt{b} \|\widehat{\mathcal{F}}^*_{X,\lambda_I} - \widehat{\mathcal{F}}^*_{Y,\lambda_I}\|_{HS}^2 / \widehat{ heta}_0, \quad D_{\mathcal{T}}(\sigma, au) = rac{2\pi}{\mathcal{T}} \sum_{l=-N}^N \left|\widehat{f}^*_{X,\lambda_I}(\sigma, au) - \widehat{f}^*_{Y,\lambda_I}(\sigma, au)
ight|^2.$$



(log-scale)

Anne Leucht (U Bamberg)

5 Numerical examples & conclusion Conclusion

- $\checkmark\,$ test for whole second order structure of independent functional linear processes in frequency domain
 - ! bootstrap performs better than asymptotics alone
 - ! (A1) can be strongly relaxed when proving
 - consistency of the test
 - bootstrap validity
- composition of the test statistic allows further analysis w.r.t. specific frequencies and certain time points (within a day) in applications
- propose a bandwidth selection algorithm
- extension to two samples with different sample size possible

Thank you for your attention!

References:

- Cerovecki, Hörmann (2017). On the CLT for discrete Fourier transforms of functional time series. *Journal of Multivariate Analysis* 154, 281–295.
- Dette, Paparoditis (2009). Bootstrapping frequency domain tests in multivariate time series with an application to testing equality of spectral densities. *JRSS B* **71**. 831–857.
- Eichler (2008). Testing nonparametric and semiparametric hypotheses in vector stationary processes. *Journal of Multivariate Analysis* **99**, 968–1009.
- Leucht, Paparoditis, Rademacher, Sapatinas (2022). Testing equality of spectral density operators for functional linear processes. *Journal of Multivariate Analysis*, 104889.
- Panaretos, Tavakoli (2013). Fourier analysis of stationary time series in function space. *The Annals of Statistics* **41**, 568–603.
- Robinson (1991). Automatic frequency domain inference on semiparametric and nonparametric models. *Econometrica* **59**, 1329–1363
- Tavakoli & Panaretos (2016). Detecting and localizing differences in functional time series dynamics: a case study in molecular biophysics. JASA 111, 1020–1035.
- van Delft, Dette (2020). Pivotal tests for relevant differences in the second order dynamics of functional time series. https://arxiv.org/abs/2004.04724.