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1 Motivating Example

Analysis of temperature data - comparison of seasons

top: temperature data Dresden (Germany) 2020/21
90 summer days, 90 winter days

bottom: temperature data Nicosia (Cyprus) 2006/07
96 summer days, 96 winter days
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1 Motivating Example

daily temperature curves in Nicosia:
(measurements every 15 minutes)

▶ left: winter
(01.12.2006-02.03.2007)

▶ right: summer
(01.06.2007-31.08.2007)

→ winter & summer differ in intra-day
pattern

→ centering around averages

? difference in variability of
summer and winter
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1 Motivating Example

framework: functional time series
▶ Xt centered temperature curve at day t in winter
▶ Yt centered temperature curve at day t in summer

Assumption (A1)

(i) (Xt)t and (Yt)t are independent functional linear processes,

Xt =
∑
j∈Z

Aj(εt−j) and Yt =
∑
j∈Z

Bj(et−j), t ∈ Z,

with values in L2R([0, 1], µ)

(ii) (εt)t∈Z and (et)t∈Z: two independent i.i.d. mean zero Gaussian processes

(iii) (Aj)j∈Z and (Bj)j∈Z bounded linear operators with A0 = B0 being identity
operator and, satisfy

∑
j∈Z |j | (∥Aj∥L + ∥Bj∥L) < ∞

( ∥ · ∥L operator norm)

next: mathematical formulation of variability
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1 Motivating Example

→ using autocovariance operators RX ,h induced by right-integration of

rXh : [0, 1]× [0, 1] → R, rXh (τ1, τ2) = cov(Xh(τ1),X0(τ2)),

that is

RX ,h(v(τ1)) =

∫
[0,1]

rXh (τ1, τ2) v(τ2) dτ2, v ∈ L2R([0, 1], µ)

test problem:

H0 : RX ,h = RY ,h ∀h against H1 : ∃ h ∈ N0 : RX ,h ̸= RY ,h
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2 Some spectral theory for functional time series

recall the test problem

H0 : RX ,h = RY ,h ∀h against H1 : ∃ h ∈ N0 : RX ,h ̸= RY ,h

expectation for many problems: if null does not hold, then deviation of
autocovariance operators in many lags

→ hard to interpret

idea: spectral approach

▶ autocovariance (kernel): superposition of periodic functions with different
frequencies λ and different magnitudes

▶ if H0 is rejected, then further analysis if main difference is due to large or
small frequencies (equiv. short or long periods)

well-known from univariate times series analysis: benefit from one-to-one
correspondence between second order structure and spectral density
(also from mathematical perspective)
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2 Some spectral theory for functional time series
if autocovariances (rZh )h of a univariate time series (Zt)t are absolutely
summable then the spectral density is defined as

fZ (λ) :=
1

2π

∑
h∈Z

rZh e−ihλ, λ ∈ (−π, π]

and inversion formula holds

rZh =

∫ π

−π

e ihλ fZ (λ) dλ, h ∈ Z

→ equality of second order structure equivalent to equality of spectral densities

! spectral approach to corresponding test problem for multivariate time series
successfully applied e.g. by Eichler (2008), Dette & Paparoditis (2009)

→ in this talk: generalization to functional linear processes
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2 Some spectral theory for functional time series

Definition 2.1 (Spectral density kernels & ∼ operators).

For a functional linear process satisfying (A1) the spectral density kernel at
frequency λ ∈ (−π, π] is given by

fX,λ(σ, τ) =
1

2π

∑
h∈Z

e−iλh rX,h(σ, τ), σ, τ ∈ [0, 1].

The operator FX ,λ induced by right-integration is called
spectral density operator.

✓ fX ,λ converges absolutely in L2, the inversion formula holds

✓ FX ,λ is a self-adjoint, nonnegative definite operator

! overview in more general context: see e.g. Panaretos & Tavakoli (2013)

test problem: spectral reformulation

H0 : FX ,λ = FY ,λ for µ-almost all λ ∈ (−π, π], versus

H1 : FX ,λ ̸= FY ,λ ∀λ ∈ A for some A ⊂ [0, π] with µ(A) > 0.
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2 Some spectral theory for functional time series
1st step: generalization of periodogram from multivariate time series to
periodogram kernel

p̂X ,λ(σ, τ) =
1

2πT

T∑
s1,s2=1

Xs1(σ)Xs2(τ) e
−iλ(s1−s2), σ, τ ∈ [0, 1],

well-known from multivariate time series: periodogram not consistent

2nd step: kernel-type smoothing of periodogram: λt = 2π t
T , N =

⌊
T−1
2

⌋
spectral density estimator

f̂X ,λ(σ, τ) =
1

bT

N∑
t=−N

W

(
λ− λt

b

)
p̂X ,λt (σ, τ), σ, τ ∈ [0, 1],

3rd step: estimated spectral density operator

F̂X ,λ(v(σ)) =

∫
(−π,π]

f̂X ,λ(σ, τ) v(τ) dτ , v ∈ L2R([0, 1], µ)

(non-)asymptotic properties: IMSE, CLT,...
e.g. in Panaretos & Tavakoli (2013), Cerovecki, Hörmann (2017)
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3 Test statistic and its asymptotics
recall test problem:

H0 : FX ,λ = FY ,λ for µ-almost all λ ∈ (−π, π], versus

H1 : FX ,λ ̸= FY ,λ ∀λ ∈ A for some A ⊂ [0, π] with µ(A) > 0.

projection-based approach for fixed frequencies (+ multiple testing):
Tavakoli & Panaretos (2016)

here: evaluation of all frequencies

→ test statistic:

UT=

∫
(−π,π]

∥F̂X ,λ − F̂Y ,λ∥2HS dλ

=

∫
(−π,π]

x

[0,1]2

|f̂X ,λ(σ, τ) − f̂Y ,λ(σ, τ)|2 dσ dτ dλ

related work for corresponding “relevant hypotheses”:
van Delft & Dette (2020)
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3 Test problem and asymptotics of the test statistic

Theorem 3.1 (Asymptotics under H0 and H1).

Assume that (A1) holds and that

(i) b ∼ T−ν for some ν ∈ (1/4, 1/2),

(ii) W is bounded, symmetric, positive, Lipschitz continuous, has bounded
support on (−π, π] and satisfies

∫ π

−π
W (x) dx = 2π.

Then, under H0,
√
bTUT − b−1/2µ0

d−→ Z ∼ N (0, θ20),

where

µ0 =
1

π

∫ π

−π

{trace(FX ,λ) }2 dλ
∫ π

−π

W 2 (u) du

θ20 =
4

π2

∫ 2π

−2π

{∫ π

−π

W (u)W (u − x) du

}2

dx

∫ π

−π

∥FX ,λ∥4HS dλ

and, under H1, √
bTUT − b−1/2µ0

P−→ ∞.
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3 Test problem and asymptotics of the test statistic
Comments on assumptions

! Assumptions (i) and (ii) equivalent to assumptions for multivariate time series
in Dette and Paparoditis (2009)

▶ main benefit from using linear processes:

⋆ periodogram operator of (Xt)t can be easily traced back to periodogram
operator of (εt)t

⋆ Gaussianity only needed to prove normality, but not to derive µ0, θ20

→ consistent asymptotic α-test: reject H0 if

TU =

√
bT UT − b−1/2µ̂0

θ̂0
≥ z1−α,

where
▶ z1−α is the upper 1− α quantile of N (0, 1)

▶ µ̂0 and θ̂0 are consistent estimators of µ0 and θ0
(e.g. obtained by substitution of the unknown spectral density kernel fX ,λ by

pooled estimator f̂λ(τ, σ) = f̂X ,λ(τ, σ)/2 + f̂Y ,λ(τ, σ)/2)
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4 Bootstrapping the test statistic

known from finite-dimensional case:

▶ convergence to normality is very slow

▶ bootstrap approaches can improve
performance of tests

2 main issues:
▶ complicated dependence structure
▶ infinite dimensionality

T=500, b=0.04

towards a solution...
▶ consider building blocks of periodogram

JX ,λ =
(
JX ,λ(sj) = (2πT )−1/2

T∑
t=1

Xt(sj)e
−itλ, j = 1, 2, . . . , k

)
,

▶ Cerovecki, Hörmann (2017):

⋆ JX ,λ
d−→ J ∼ NC (0,Σλ) with Σλ = (fX ,λ(sj1 , sj2 ))j1,j2

⋆ JX ,λ1
and JX ,λ2

are asymptotically independent for 0 < λ1 < λ2 < π
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4 Bootstrapping the test statistic

Algorithm

1 Generate J∗X ,0 = J∗Y ,0 = 0 and independent vectors

J∗X ,λt
∼ NC (0, Σ̂λt ) and J∗Y ,λt

∼ NC (0, Σ̂λt ),

independently for λ1, . . . , λN , where Σ̂λ = (f̂λ(sj1 , sj2))j1,j2 with

f̂λ = 1
2 f̂X ,λ + 1

2 f̂Y ,λ.

2 For σ, τ ∈ {s1, s2, . . . , sk} and t = 1, . . . ,N, calculate

p∗X ,λt
(σ, τ) = J∗X ,λt

(σ) J
∗
X ,λt

(τ) and p∗Y ,λt
(σ, τ) = J∗Y ,λt

(σ) J
∗
Y ,λt

(τ)

while, for t = −1,−2, . . . ,−N, set

p∗X ,λt
(σ, τ) = p∗X ,−λt

(σ, τ) and p∗Y ,λt
(σ, τ) = p∗Y ,−λt

(σ, τ).
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4 Bootstrapping the test statistic
Algorithm (cont’d)

3 For σ, τ ∈ {s1, s2, . . . , sk}, let

f̂ ∗X ,λt
(σ, τ) =

1

bT

N∑
s=−N

W

(
λt − λs

b

)
p∗X ,λs

(σ, τ)

and

f̂ ∗Y ,λt
(σ, τ) =

1

bT

N∑
s=−N

W

(
λt − λs

b

)
p∗Y ,λs

(σ, τ).

4 Calculate bootstrap test statistic U∗
T ,k given by

U∗
T ,k =

2π

Tk2

N∑
l=−N

k∑
i,j=1

∣∣∣f̂ ∗X ,λl
(si , sj)− f̂ ∗Y ,λl

(si , sj)
∣∣∣2

and T ∗
U,k = (

√
bT U∗

T ,k − b−1/2µ̂∗
0)/θ̂

∗
0 .

5 Reject H0 if TU > t∗1−α with t∗1−α denoting the (1− α) quantile of T ∗
U,k .
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4 Bootstrapping the test statistic
Brief comment on discretization

in practice: typically Xt and Yt are observed only at finitely many sampling
points (transformation to functional objects using basis functions in L2)

→ natural choice of 0 ≤ s1 < s2 < · · · < sk ≤ 1: sampling points of Xt and Yt

transformation of J∗-variables to functional objects possible

→ bootstrap approximation of the test statistic UT :

U∗
T =

2π

T

N∑
l=−N

∫ 1

0

∫ 1

0

∣∣∣f̂ ∗X ,λl
(τ, σ)− f̂ ∗Y ,λl

(τ, σ)
∣∣∣2dτdσ

U∗
T ,k and U∗

T will lead to the same result, provided that k → ∞ as T → ∞
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4 Bootstrapping the test statistic

Theorem 4.1 (Bootstrap validity).

Suppose that prerequisites of Theorem 3.1 are satisfied. Then, conditional on
X1, . . . ,XT ,Y1, . . . ,YT , as T → ∞,

√
bTU∗

T − b−1/2µ̃0
d→ Z̃ ∼ N (0, θ̃20),

in probability, where

µ̃0 =
1

π

∫ π

−π

{trace(FX,λ/2 + FY ,λ/2)}2dλ

∫ π

−π

W 2 (u) du,

θ̃
2
0 =

4

π2

∫ 2π

−2π

{∫ π

−π

W (u)W (u − x) du

}2

dx

∫ π

−π

∥FX,λ/2 + FY ,λ/2∥4
HS dλ.

! on bootstrap side (A1) can be relaxed to

sup
λt∈{2πk/T |k=1,...,N}

∣∣∣ ∫ 1

0

∫ 1

0

(
f̂λt (σ, τ)− fλt (σ, τ)

)
dσdτ

∣∣∣ = oP(
√
b)

with fλ = 0.5 fX ,λ + 0.5 fY ,λ
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5 Numerical examples & conclusion
Simulations

functional MA processes with Brownian bridge innovations

Xt = A1(εt−1) + a2 εt−2 + εt , Yt = A1(et−1) + et ,

a2 ∈ [0, 1), A1 kernel operator with a1(u, v) =
e−(u2+v2)/2

4
∫ 1
0
e−t2dt

,

left: T=50

right: T=500

T=50 b=0.2 T=100 b=0.2
a2 α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10

0.0 0.010 0.048 0.096 0.008 0.046 0.080
0.2 0.016 0.082 0.158 0.028 0.112 0.196
0.6 0.178 0.390 0.518 0.374 0.622 0.766
1.0 0.488 0.768 0.872 0.874 0.966 0.990

Table: Empirical size and power of the bootstrap studentized test.
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5 Numerical examples & conclusion
Choice of the bandwidth

adapting approach of Robinson (1991) for multivariate time series

define averaged (pooled) periodogram

ÎT (λ) =
1

k2

k∑
r=1

k∑
s=1

{
1

2
p̂X ,λ(σr , τs) +

1

2
p̂Y ,λ(σr , τs)

}
→ periodogram at frequency λ of the pooled, real-valued univariate process{

Vt =
1

2

∫ 1

0

Xt(s)ds +
1

2

∫ 1

0

Yt(s)ds, t ∈ Z
}

→ averaged pooled spectral density estimator of {Vt , t ∈ Z}

ĝ (b)(λt) =
1

Tb

N∑
s=−N

W

(
λt − λs

b

)
ÎT (λs)
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5 Numerical examples & conclusion
Choice of the bandwidth

cross validation: b̂CV = argminCV (b) with

CV (b) =
1

N

N∑
t=1

{
log(ĝ

(b)
−t (λt)) +

ÎT (λt)

ĝ
(b)
−t (λt)

}

over a grid of values of b

with leave-one-out kernel estimator of g(λ)

ĝ
(b)
−t (λt) =

1

Tb

N∑
s=−N
s ̸=±t

W

(
λt − λs

b

)
ÎT (λs)
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5 Numerical examples & conclusion
Data Example

H0 : Fwinter,λ = Fsummer,λ

for µ−almost all λ ∈ (−π, π],

bandwidth obtained by CV

→ Nicosia: p-value 0.03

→ rejection of H0 at most of the classical
levels

→ Dresden: p-value 0.0011

→ rejection of H0 at essentially all
classical levels

further analysis: identification of main contributions to test statistic in terms
of frequencies and time of day

→ split up test statistic accordingly
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5 Numerical examples & conclusion
Data Example

Further analysis for Nicosia

QT ,λl = 2π
√
b∥F̂∗

X ,λl
− F̂∗

Y ,λl
∥2HS/θ̂0, DT (σ, τ) =

2π

T

N∑
l=−N

∣∣∣f̂ ∗X ,λl
(σ, τ)− f̂ ∗Y ,λl

(σ, τ)
∣∣∣2

(log-scale)

Anne Leucht (U Bamberg) Testing equality of spectral density operators Paris – 2023/02/15 27 / 29



5 Numerical examples & conclusion
Conclusion

✓ test for whole second order structure of independent functional linear
processes in frequency domain

! bootstrap performs better than asymptotics alone

! (A1) can be strongly relaxed when proving

▶ consistency of the test

▶ bootstrap validity

composition of the test statistic allows further analysis w.r.t. specific
frequencies and certain time points (within a day) in applications

propose a bandwidth selection algorithm

extension to two samples with different sample size possible
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Thank you for your attention!
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