A Non Parametric test based on Extremal Process

Zaher KHRAIBANI

Seminar ECODEP

10 May 2023

Motivation	Mathematical description	Non parametric record test	Record counting process {	$\{N(t)\}$: Dependent case	Independent

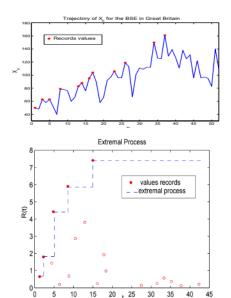
Outline

- 2 Mathematical description
- 3 Non parametric record test
- 4 Record counting process $\{N(t)\}$: Dependent case
- 5 Independent case

Fondamental of Records Theory

- Record theory began in 1952 (Chandler).
- Record theory was applied in different domains (Sports, Climate Change, Economics, Hydrology, Seismology, Emidemiology, ...).
- T denotes the current time and N_T is the number of records within the time-series $\{X_t, 1 \le t \le T\}$.
- Exact distribution for finite T versus classical Extreme Value Theory (EVT).
- The record process represented the peak of the observed outbreak pattern of the epidemic.

EVT, Records Process, Extremal Process



4 / 33

Record process: Definition

{R_n : n ≥ 1} and {L_n : n ≥ 1} are respectively the sequence of the record values and the record indices:

$$L_{1} = 1$$

$$L_{n} = \inf\{j > L_{n-1} : X_{j} > X_{L_{n-1}}\}$$

$$R_{n} = X_{L_{n}}$$

• N_n : total number of records among $\{X_1, ..., X_n\}$ with $N_1 = 1$:

$$N_n = \sum_{j=1}^n \delta_j;$$

where δ_j (indicator of record):

$$\delta_j = \begin{cases} 1, & \text{if } X_j > max(X_1, ..., X_{j-1}) \\ 0, & \text{elsewhere} \end{cases}$$

Number of records

The principal results of Record Theory for the i.i.d. case were produced over the period 1952-1983 (see Chandler (1953), Arnold (1998) and Nevzorov (2001)):

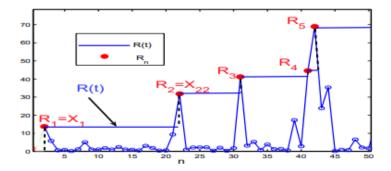
- $\{\delta_n\}_{n\geq 1}$ are independent with $\delta_n \sim \text{Bernoulli}$ (1/n)
- The exact distribution of N_n is given by (Rényi 1962):

$$\mathbb{P}[N_n=m]=\frac{s(n,m)}{n!},\,0\leq m\leq n$$

s(n, m): Stirling numbers of the first kind

Extremal process and records

- Extremal process: $R(t) = \{ \bigvee X_k : T_k \le t \} = \bigvee_{k=1}^{n(t)+1} X_k; n(t)$: number of occurrences until time t.
- $\{R(t)\} \Leftrightarrow \{\tau_n, R(\tau_n)\} = \{\tau_n, R_n\}.$ τ_n : instant of the *nth* jump of $\{R(t)\}, R_n$: *nth* record.



Design of the Extremal Process

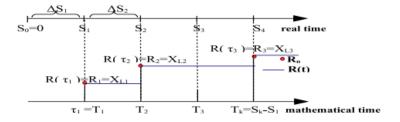


Figure 1: Extreme Process requires three steps to complete

- $\{S_n\}_{n\geq 0}$: Occurrence time of an event (renewal process).
- **Point Process**: (X_n, T_n) ; $X_n = (\Delta S_n)^{-1}$: time between two successive events.

Definition of the hypothesis test

Hypothesis test: H₀:{X_k} i.i.d, X₁ ~ F, F continue.

$$P(\Delta S_n \leq s) := E(s) = 1 - \exp(-\lambda s).$$

 H_1 : $\{X_k\}$, are independent, $X_k \sim F_k$, where $\overline{F}_k = \overline{F}^{\rho_k}$, $\{\rho_k\}_k$ positive increasing sequence.

- **2** Statistic of test: N_n (number of record).
- Solution Error (α), Power (1β) :

$$\alpha = P_{H_0}(\text{Reject } H_0) = P_{H_0}(N_n \ge N_\alpha)$$

$$1 - \beta = P_{H_1}(Accept H_1) = P_{H_1}(N_n \ge N_\alpha)$$

Distribution of N_n under H_0 et H_1

Proposition

$$P_{H_0\cup H_1}(N_n = m) = \frac{|s(n+1,m+1|\vec{u})|}{\prod_{j=1}^{n+1}(1+u_{j-1})} \text{ où } s(n+1,m+1|\vec{u}) \text{ (generalized Stirling} \\ \text{number of the first kind), } \vec{u} = (u_0,...,u_n), \ u_{j-1} = \frac{\sum_{k=1}^{j-1} \rho_k}{\rho_j}, \ j \ge 1.$$

- Particulier case: $|s(n+1, m+1|\vec{u})| = s(n+1, m+1)$, si $\rho_k = \rho, \forall k$,
- $P_{H_0}(N_n = m) = \frac{s(n+1,m+1)}{(n+1)!}, 0 \le m \le n$, avec $\{s(n+1,m+1)\}$ Stirling number of the first kind.

E(ΔT_k) = (λ_k)⁻¹, where λ_k = λ.ρ_k = λ.a^k, is the frequency of cases per unit time at time T_k, a > 1, the exponential growth of an infectious disease.

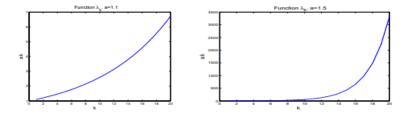


Figure 2: Fonction $\{\lambda_k\}$ where $\lambda_k = a^k$, for a = (1.1, 1.5) and $\lambda = 1$

Distribution of N_n under H_0, H_1

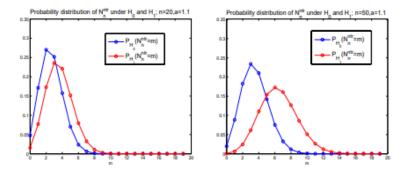
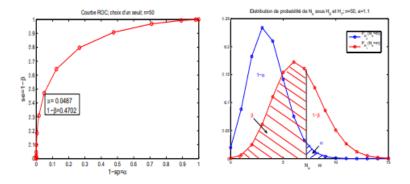


Figure 3: Distribution of N_n under H_0 and $H_1(a = 1.1)$ for n = 20, 50

Mode increases relatively more rapidly under H_1 than under $H_0 \Longrightarrow 1 - \beta \nearrow$.

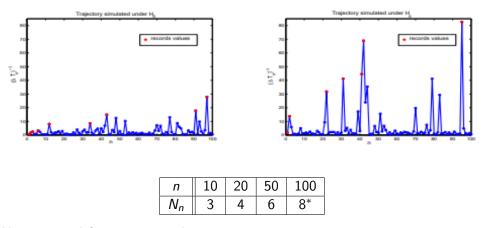
Determination of α and $1 - \beta$ (a = 1.1)



Optimize the choice of (α, 1 − β) such that they are neighbors to (0, 1).
1 − β ≯ with *n* for α given.

Test on simulated trajectories under H_0

• Under H_0 : $\{(\Delta T_k)^{-1}\}_{k \le n}$, i.i.d, $\Delta T_1 \sim exp(1)$.

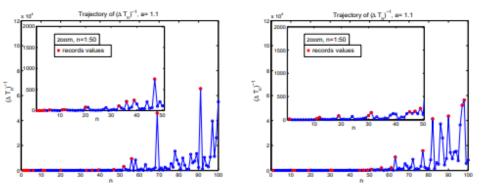


 H_0 is rejected for n = 100 with $\alpha = 0.0489$.

MotivationMathematical descriptionNon parametric record testRecord counting process $\{N(t)\}$: Dependent caseIndependent00000000000000000000000000

Test on simulated trajectories under H_1

$$\mathsf{P}_{\mathsf{H}_{0,1}}(X_k \leq x) := \mathsf{P}(\Delta T_k \geq x^{-1}) = \mathsf{exp}(-\lambda \mathsf{a}^k x^{-1}), \mathsf{a} = 1.1$$



- Traj1: H_0 is rejected for $n \ge 20$
- Traj2: H_0 is rejected for $n \ge 50$

Motivation	Mathematical description	Non parametric record test	Record counting process $\{N(t)\}$: Dependent case	Independent
		00000000000		

n	10	20	30	40	50	100
Traj1	4	7**	7**	10***	11***	15***
Traj2	0	3	4	5	8**	16***

Table 1: Number of observed records

n	20	30	40	50	100
N_{lpha}	6	7	8	8	9
α	0.0312	0.0199	0.0103	0.0162	0.0183
1-eta	0.1259	0.156	0.1725	0.3095	0.7878

H₁ is accepted at least from n = 100 because 1 − β ≯ when n ≯. (1 − β small for n ≤ 50 due to a slow emergence)

Extremal Process: Definition

The process $\mathcal{R} : [0,\infty) \longrightarrow [0,\infty)$ is a stochastic process having the two following properties:

- The trajectories of R(t) can be derived from the point process $\mathcal{N} = \{(T_k, X_k)\}_{k \ge 1}$ and its trajectories are **RCLL**.
- For $0 = t_0 < t_1 < ... < t_m$, $\exists \{U_k\}_{0 \le k \le m}$ non-negative such that :

$$(\mathcal{R}(0), \mathcal{R}(t_1), ..., \mathcal{R}(t_m)) \stackrel{\mathsf{d}}{=} (\mathcal{U}_0, \mathcal{U}_0 \vee \mathcal{U}_1, ..., \mathcal{U}_0 \vee ... \vee \mathcal{U}_m).$$

 $\mathcal{R}(t)$ is *G*-extremal if:

$$F_{t_1,...,t_n}(x_1,...,x_n) = G^{t_1}(x_1).G^{t_2-t_1}(x_2)...G^{t_n-t_{n-1}}(x_n),$$

with $G^t(x) := [G(x)]^t$ and $G(x) = P(\mathcal{R}(t) \le x)$

Motivation Mathematical description	Non parametric record test	Record counting process $\{N(t)\}$: Dependent case	Independent
	000000000000		

• Max-increments:

$$\mathcal{U}(s,t] := igvee_{k=n(s)+2}^{n(t)+1} X_k = igvee_{T_k \in (s,t]} X_k, 0 \leq s < t.$$

• Classical Approach: $\{T_k\}, \{X_k\}$ are independent:

 $X_k = \Psi_k^{-1}$, where $\{\Psi_k\}$ iid, same distribution of $\{\Delta T_k\}$ but independent of $\{\Delta T_k\} \Longrightarrow \mathcal{U}(r, s]$ and $\mathcal{U}(s, t]$ are independent, $0 \le r \le s \le t$.

New Approach: {*T_k*}, {*X_k*} are dependent:
 ⇒ U(r, s] and U(s, t] are dependent.

MotivationMathematical descriptionNon parametric record testRecord counting process $\{N(t)\}$: Dependent caseIndependent00000000000000000000000

Distribution of $\mathcal{R}(t)$

• Classical cas: $\{T_k\}$ and $\{X_k\}$ are Independent:

Proposition

 $\mathcal{R}(t)$ is a generalized *G*-extremal process; for

$$0 < x_1 < ... < x_n, 0 = t_1 < t_2 < ... < t_n$$
:

$$F_{t_1,...,t_n}(x_1,...x_n) = \Phi_1(x_1)G^{t_2-t_1}(x_2)...G^{t_n-t_{n-1}}(x_n).$$

Motivation Mathematical description	Non parametric record test	Record counting process $\{N(t)\}$: Dependent cas	e Independent
	000000000000		

• $\{T_k\}$ and $\{X_k\}$ are Dependent:

Proposition

 $\mathcal{R}(t)$ is a generalized extremal process:

$$P_t(x) := P(\bigvee_{k=2}^{n(t)+1} X_k \le x) = e^{-t} \sum_{m=0}^{[xt]} \frac{t^m}{m!} \left(1 - \frac{m}{xt}\right)^m$$

with $P_t(0) = e^{-t}$ and $P_0(x) = 1$.

Comparison Distribution

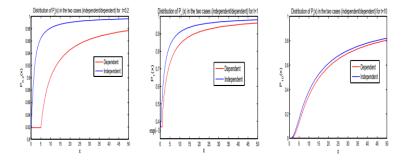


Figure 4: $\{P_t(x)\}_x$ for t = 1, t = 0.2 and t = 10 in the two cases (Dependent and Independent)

Motivation Mathematical description	Non parametric record test	Record counting process $\{N(t)\}$: Depe	endent case Independent
	00000000000		

Hypothesis Test

Consequently, let $R_{\alpha}^{indep.}$ the quantile at the level α in the independent setting, that is $P^{indep.}(\mathcal{R}(t) > R_{\alpha}^{indep.}) = \alpha)$, and similarly in the dependent setting, then $R_{\alpha}^{indep.} < R_{\alpha}^{dep.}$, so if we do not reject H_0 in the independent setting because the observed $\mathcal{R}(t)$ is less than $R_{\alpha}^{indep.}$, then we will also do not reject H_0 in the dependent setting.

	Non parametric record test	Record counting process $\{N(t)\}$: Dependent case $\bullet \circ \circ \circ \circ$	Independent 000000

Definition and Notation

- $N(t) = N(0, t] = \sum_{j=2}^{n(t)+1} \delta_j$: number of nontrivial records among $\{X_1, X_2, ..., X_{n(t)+1}\}$. Or equivalently, the number of jumps of $\mathcal{R}(.)$ in (0, t].
- $\{\delta_j\}_j$ are independent with $P(\delta_j = 1) = j^{-1}$
- $\{\delta_j = 1, n(t) = n\}_{j \le n+1}$ are not independent implying that $\{N(t)\}$ and $\{N_n\}$ depend on n(.).

•
$$N(s, t] = \sum_{j=n(s)+2}^{n(t)+1} \delta_j, 0 \le s < t$$

Motivation	Mathematical description	Non parametric record test	Record counting process $\{N(t)\}$: Dependent case	Independent
			00000	

Record indicator distribution

Recall: $\{\delta_j\}_j$ are independent (classical case), but $\{\delta_j = 1, n(t) = n\}_{j \le n+1}$ are not independent.

Proposition

For $j \geq 2$,

$$P(\delta_j = 1, n(t) \ge j - 1) = \sum_{n \ge j - 1} P(\delta_j = 1, n(t) = n)$$

$$= [-(j-1)]^{n-1} e^{-t} \sum_{n \ge j-1} \left[\sum_{l=1}^{n-1} \frac{[-t(j-1)^{-1}]^l}{l!} + \left(1 - e^{-t(j-1)^{-1}}\right) \right]$$

Lemma

$$\{N_n\}$$
 depends on $\{n(t)\}$: $P(N_n=m|n(t)=n):=P(N_n=m)$

Distribution of N(t)

Proposition

The increments of $\{N(0, t]\}$ are non-independent and non-homogenous.

Proposition

$$P(N(0,t] = 0) = \int_{x>0} P_t(x) d\Phi_1(x)$$

= $e^{-t} \Big[1 - \sum_{m \ge 1} (-m)^m \sum_{k=m+1}^{\infty} \frac{(-m^{-1}t)^k}{k!} \Big]$

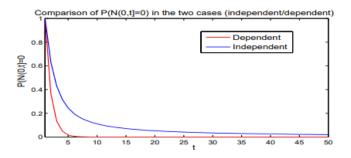


Figure 5: $\{P(N(0, t] = 0)\}_t$ in the dependent and independent cases

 $\{N(0, t]\}$ is greater in the dependent case than in the independent case. This result is coherent with Figure 2.

Motivation	Mathematical description	Non parametric record test	Record counting process $\{N(t)\}$: Dependent case	Independent
			00000	

Distribution of N(t)

Proposition

Assume that, for
$$N \ge 1$$
 and $m_0 = 0 < m_1 < ... < m_N$,
 $A(m_1, ..., m_N) = \{\{0 < x_{m_{k-1}+1} < x_{m_{k+1}}, t_{m_{k-1}+1} + (m_k - m_{k-1} - 1)x_{m_{k-1}+1}^{-1} < t_{m_k} \le t_{m_{k+1}} - x_{m_{k+1}+1}^{-1}, t_{m_{k+1}} = t_{m_k} + x_{m_{k+1}}^{-1}\}_{k=1}^N, t_1 = 0, t_{m_{N+1}} \le t\}.$ Then

$$P(N(0,t] = N) = \sum_{\substack{m_0 = 0 < m_1 < m_2 < \ldots < m_N}} \int \cdots \int_{A(m_1,\ldots,m_N)} P_{t-t_{m_N+1}}(x_{m_N+1}) \prod_{k=1}^N [d\Phi_1(x_{m_k+1}) \times dE_1^{*(m_k-m_{k-1}-1)}(t_{m_k} - t_{m_{k-1}+1}) \tilde{P}_{t_{m_k}-t_{m_{k-1}+1}|t_{m_k}-t_{m_{k-1}+1}}(x_{m_{k-1}+1})] \times d\Phi_1(x_1).$$

Distribution of $\mathcal{R}(t)$

Proposition

The increments U(0, s] and U(s, t] are independent and homogeneous.

$$P(U(s,t] \le x) := P(\vee_{k=n(s)+2}^{n(t)+1} X_k \le x)$$

= $\sum_{m \ge 0} \Phi_1^m(x) P(n(s,t] = m)$
= $\exp(-(t-s)[1-\Phi_1(x)]) := G^{t-s}(x)$

where $G(x) = \exp(-1 + \Phi_1(x))$.

Distribution of $\mathcal{R}(t)$

Proposition

{*R*(*t*)} is defined by *R*(*t*) := $\bigvee_{k=1}^{n(t)+1} X_k$, which is generated by the point process $\mathcal{N} = \{(T_k, X_k)\}$ where the components of *N* are independent is a generalized *G* – extreme process, i.e. for $0 < x_1 < x_2 \dots < x_n$ and $0 = t_1 < t_2 \dots < t_n$, $F_{t_1\dots,t_n}(x_1,\dots,x_n) = \Phi_1(x_1)G^{t_2-t_1}(x_2)\dots G^{t_n-t_{n-1}}(x_n)$.

Probability distribution of $N_{n(t)}$

Proposition

The random measure N(0, t] has non-independent and non-homogeneous increments.

Proposition

The probability distribution of $N_{n(t)}$ is equal to :

$$P(N(t) = m) := P(N_{n(t)} = m) = \sum_{n \ge m} \frac{|s(n+1,m+1)|}{(n+1)!} P(n(t) = n)$$
$$= e^{-t} \sum_{n \ge m} \frac{|s(n+1,m+1)|}{(n+1)!} \frac{t^n}{n!}$$

Motivation	Mathematical description	Non parametric record test	Record counting process	$\{N(t)\}$: Dependent case	Independent
					000000

Lema

$$\mathsf{P}(\mathsf{N}(t)=0)=\mathsf{E}(\mathsf{G}^t(X_1)),$$
 and in the case $\overline{\mathsf{E}}_1(t)=\mathsf{e}^{-t}$

$$E(G^t(X_1)) = (1 - \exp(-t))/t.$$

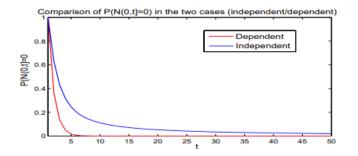


Figure 6: $\{P(N(0, t] = 0)\}_t$ in the dependent and independent cases

Motivation	Mathematical description	Non parametric record test	Record counting process $\{N(t)\}$: Dependent ca	se Independent
				000000

Statistical test

A statistical test based on the distribution of the number of observed records in an interval (0, *t*];

$$P_{H_0}(N(t) \ge N_{t,\alpha}) = \alpha$$

could be taken. Furthermore it would be feasible to compare the test statistic $P_{H_0}(\mathcal{R}(t) \ge R_{t,\alpha})$ with $P_{H_0}(R_n \ge R_{\alpha})$ and $P_{H_0}(N(t) \ge N_{t,\alpha})$ with $P_{H_0}(N_n \ge N_{\alpha})$.

Characteristics of records

- O Robustness in the case of independent radom variables .
- Exact distribution a *n* finite compared to the classical extreme value theory (EVT).Not unreasonable to model the X_n by the distributions (GEV).Gumbel,Weibull, Frechet
- Nevzorov 2014, use it to construct an test detecting the outliers in a "normal" dataset. record process represents the maximum observed trend of such a phenomena.
- Khraibani 2014, non-parametric test based on the number of observed records.