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Bernoulli (bond) percolation

@ Bernoulli percolation has first been investigated by chemists Flory
and Stockmayer in the 1940s investigating the gelation of
polymers, and then mathematically by Broadbent and
Hammersley [BH57] in their research on gas masks;

@ the model: each bond in Z9 is chosen to be “open” with probability
p € (0,1), and “closed” otherwise (in an i.i.d. fashion);

@ there exists pc € (0, 1) such that for p € (0, pc) there exist only
bounded connected component of open bonds, whereas for
p € (pc, 1) there exists a (unique) unbounded connected
component;

Alexander Drewitz (Universitat zu Kéln) Percolation and long-range correlations EcoDep Paris 2/29



Bernoulli bond percolation (p = 0.4)
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Bernoulli bond percolation (p = 0.5)
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Bernoulli bond percolation (p = 0.6)
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Bernoulli percolation on Z¢ well-understood in
off-critical regime
For p € (0, pc):
@ sharp phase transition / exponential decay of radius function
[Men86] (cf. also [AB87]):

¢Ber(p, n) = Pp(o ~ aB(O’ n)) < g %"

@ ~ finite expected cluster size x(p) := Ep[|Co|] < oo, with Cy the
open cluster of the origin;
For p € (pc, 1):
@ uniqueness of infinite open cluster [AKN87] / [BK89];
@ chemical distance [AP96];
@ (stretched) exponential decay of radius / volume of finite open
clusters [CCGT89]/[ADS80] ;
For further background see Stauffer & Aharony [SA18], Grimmett
[Gri99].
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(Near-)critical percolation

For p ~ p¢, understanding has been obtained in two dimensions as
well as in high dimensions:

@ in 2d planar Bernoulli (bond) percolation, one has p; = % [Kes75]
and there is no percolation at p; [Har60];

@ in planar settings of hexagonal / triangular lattice, critical
exponents for Bernoulli percolation have been computed in
[SWO01] using conformal invariance and SLE;

e.g., for percolation function 6(p) := Pp(0 <+ o), one has

0(p) = (p—1/2)% " asp|p.=1/2,

so critical exponent for ¢ is 5 = 5/36 in this setting;

@ [HS90] used lace expansion to compute critical exponents in high
dimensions (mean-field, cf. behavior on trees);
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Physicists know more
For p close to (but different from) p¢, correlation length
& =&(p) = |p — pc| 7" describes the natural inherent length scale.

On smaller scales L « &, the system looks critical, while for L > ¢ its

non-criticality becomes apparent. E.g., for p | p¢, there is D < d such
that

@ for r < &£ objects are expected to be fractal like

|Co N B(r)| ~ rP

@ forr> &,

Co N B(r)| ~ €P(L/€)?
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Physicists know more
For p close to (but different from) p¢, correlation length
& =&(p) = |p — pc| 7" describes the natural inherent length scale.

On smaller scales L « &, the system looks critical, while for L > ¢ its

non-criticality becomes apparent. E.g., for p | p¢, there is D < d such
that

@ for r < &£ objects are expected to be fractal like
|Co N B(r)| ~ rP
o forr> ¢,

Co N B(r)| ~ €P(L/€)?

InZ9, 3 < d < 10, however, far from determining critical exponents, it
is not even proven that (as expected)

6(pc) = 0.
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Gaussian free field

@ G vertex set of a transient countably infinite graph with symmetric
weights Ay y;

@ SRW on G is the MC X with transition matrix

Ax
P(x,y) = A;y :

Where )\X - ZZNX >\XZ
Definition 1

The GFF is the centered Gaussian process (¢x), X € G, with

Cov(ipx, py) = g(x,¥) = ZPn (x,y), Yx,yeG. (1)

n>0
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Gaussian free field

@ on finite subset of Z¢ with edge set E, density with respect to
product Lebesgue measure (modulo boundary conditions) is

« I ew{ -2l

(x.y)eE 2"”

~+ can be interpreted as d-dimensional analogue of Brownian
motion;

@ strong correlations

Cov(px, py) = g(x, y) ~ cql|x — YIIE_"’

inZ9, as ||x — yl|j2 — oo.
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Gaussian free field

Figure: A realization of a (2d) Gaussian free field on a box with zero boundary
condition

(By L. Coquille)
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Percolation of GFF level sets

Introduce excursion sets
EZN(G) = {x€G: px2h} (= '(Ihoc))
as percolation model with long-range correlations.
Critical parameter / level:
h.(G) :=inf {h € R : P(E="(G) has unbounded cluster) = 0},

first introduced in [LS86] on Z9;
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Previous (off-critical) results

@ [BLM87]: h.(z9) > 0forall d > 3, and h.(3) < oc;
e [RS13]:

h(Z%) < o foralld >3, h.(z% >0 fordlarge;

o [DPR18b]:
h.(z% >0 foralld > 3;

e [DPR18a]: h(G) > 0 for “regular G with dimension > 2”;
~ via isomorphism theorems also settles non-trivial phase
transition (u.(G) > 0) for vacant set percolation of Random
Interlacements, confirming a conjecture of [Szn12];

@ [DCGRS20]: Sharp phase transition for GFF level-set percolation
in Zd, d>3;
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Previous results

S x 7Z, with S the Sierpinski triangle
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Sierpinski carpet

@ the d-dimensional Sierpinski carpet, d > 3;

(Picture by Josh Greig,

https://commons.wikimedia.org/wiki/File:Sierpinski_carpet.png)
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A continuous model

Surprisingly, for an extension of the GFF, explicit computations are
possible: ~ “Cable system G” (goes back to [Var85] at least)

G is obtained by adding line segments between neighboring vertices:
for x, y € G neighboring vertices, on the line segment / , connecting x
to y, conditionally on ¢ and ¢y, the GFF (g;), z € Iy, behaves like a
Brownian bridge ~~ “brings in analysis”.
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A continuous model

Surprisingly, for an extension of the GFF, explicit computations are
possible: ~ “Cable system G” (goes back to [Var85] at least)

G is obtained by adding line segments between neighboring vertices:
for x, y € G neighboring vertices, on the line segment / , connecting x
to y, conditionally on ¢ and ¢y, the GFF (g;), z € Iy, behaves like a
Brownian bridge ~~ “brings in analysis”.

Then an edge {x, y} is defined to be open iff Brownian bridge from ¢y
to o, stays positive; have explicit formula

IP(BB from ¢y to ¢, stays above h| oy, ¢y)
=1—exp {2)\x,y(90x vV h)(ey vV h)}

~ alternative interpretation as bond percolation model with long-range
correlations.
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Objects of interest
Want to obtain near-critical information on the following objects:
@ Excursion sets E=N:= {x € G : ¢x > h};
. "'h = Ezh
@ cluster of “the origin” K" :={x € G : 0 & x};
@ (non-)percolation function 6(h) := P(K" is bounded);
( ~ define critical parameter h, :=inf{h € R : 6(h) = 1})

@ truncated radius function
>h ~
w(h,n) :=P(0 % 9B(0,n), K" is bounded);

e truncated two-point function (0, x) := P(x € K", K" bounded);
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Some previous work

@ Atlevel h = 0, the (truncated) two-point function 7, (0, x) admits
an exact formula, first observed in [Lup16]:

2
tr _ = : 9(0,x) - —v(_ 2—a-n
75 (0, x) — arcsin ( g(0,0)g(x,x)) = d(0,x)""(= d(0, x) )s

as d(0, x) — .

@ For G = 73, [DW18] obtain bounds for truncated radius function

»(0,r):

N

crz < ¥(0,r) < C<L>_

log r
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Cluster capacity law

Crucial quantity in our investigations: For K C G, its capacity is

cap(K Z MPx(Hk = o0); e.g. cap(B(0,r)) =< r”
x€oK
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Cluster capacity law

Crucial quantity in our investigations: For K C G, its capacity is

cap(K) = Y MPx(Hk = 0); e.g. cap(B(0,r)) =
xeoK
Theorem 2 (D-Prévost-Rodriguez)

For all reasonably nice G, all h € R, and under P( -, 0 # K"bounded),
the random variable cap(K") has density given by

1 Wt
on(t) = 27rt\/g(0,0)(t— g(O,O)*1) exp{ 2 }]lt>g(0 0)-1-
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Critical exponents
Using (among other things) that unbounded, closed, connected sets
have infinite capacity, we get the following.

Corollary 3 (D-Prévost-Rodriguez)
(h) =24(hA0) forallheR,
where ®(t) = P(po < t). In particular,

h,=0 and 6(0)=1.

Furthermore, 6 : R — [0, 1] is continuous, and

.1 -0(h) 2 3
A | ()

(recall that 3 := limpg log(1 — 0(h))/ log(|h|), if it exists)
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Critical exponents
Using (among other things) that unbounded, closed, connected sets
have infinite capacity, we get the following.

Corollary 3 (D-Prévost-Rodriguez)
(h) =24(hA0) forallheR,
where ®(t) = P(po < t). In particular,

h,=0 and 6(0)=1.

Furthermore, 6 : R — [0, 1] is continuous, and

- 1-6(h) 2 N
W a0 "

(recall that 3 := limpg log(1 — 0(h))/ log(|h|), if it exists)
See Prévost [Pré21] for graphs with h, # 0;
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Standing assumptions

@ «-Ahlfors regular volume growth
cr* < X\(B(x,r)) < Cr* Vxe G,r>1,;
@ regular Green function decay

c<g(x,x)<C,cd(x,y)" <g(x,y) <Cd(x,y)" YVx#yecG

@ technical assumptions: uniform ellipticity Ay ,/Ax > ¢ and
existence of a certain infinite geodesic;
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Critical exponents

Set £(h) := |h|~2/¥, which will play the role of the correlation length.
Theorem 4 (D-Prévost-Rodriguez [DPR23])

Forv <1, heRandr>1:

catp(0,r)exp { — ca(r/E(h))"} < v(h,r) < ¢(0,r)exp{ — cs(r/&(M)"}.

Forv>1, heRandr>1:

(h)) ,
exp{ ~ Csiggirhy o v =1,

¢(h7")<¢(07f)'{

exp{—csrhz}, ifv>1.

There exists cs € (0,1) such that forv =1 and all |h| < c,

9(h.1) > cab(0,hexp {~esiri i b i ey (1, log€(M)®)

y
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Critical exponents

Can derive similar estimates for the truncated two-point function
tr
Th (07 X)

~- yields the following corollary, consistent with predictions of Weinrib
& Halperin [WH83, Wei84] (“disorder relevance” (e.g. for Z* and
a < 6)).

Corollary 5 (Scaling relation)

Forv <1,
det. . log(E[JK"1{|K"| < o0}])
v = —lim
h—0 log |h|
exists and
2a

7:7—2 (:I/C(2—7])>.
Forv < 1 one has the stronger result

E[KCM1{|KN < 00}] =< |h|~5+2 as h— 0.

v
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Critical exponents
~+ use (hyper-)scaling theory to conjecture further critical exponents:
2—ac=v+28=p(0+1), A=463 (scalingrelations);

ap=30+1, ave=2-—ac (hyperscaling relations);

Exponent ac B % 5 A P ve n K
Value 2 2 1 2o _p | 24 20 4 2 2 v—a+2 3
Bernoulli Z3 ~ —0.63 ~ 0.41 ~ 1.7 ~ 5.3 ~ 2.2 ~ 21 ~ 0.87 ~ —0.06 77
Cheat sheet:
clusters per vertex N.b.:
percolation probability @ valid for v € (0, 1] except for 3, n, x which
truncated cluster size hold for all v > 0;
cluster volume @ as conjectured, critical exponents do not

depend on the microscopic structure of
the underlying graph ~~ universality;

@ For diffusive RW, for a 1 6 (or v 1 4,

cluster moments
radius function

22 S oD oo ws
L SN S A O

correlation length equivalently), exponent converge
truncated two-point function respective mean-field values for Bernoulli
percolation (B=~v=1,A=0 =2,

cluster capacity.

n=0);
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Strategy for upper bounds on radius function

Want to show: Forv <1, he Rand r > 1:

caw(0, r)exp { = ca(r/()” } < w(h.r) < 6(0,r)exp { — es(r/e(h))" }.

v < 1 = cluster radius can be understood in terms of cluster capacity
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Strategy for upper bounds on radius function
Want to show: Forv <1, he Rand r > 1:
caw(0, r)exp { = ca(r/()” } < w(h.r) < 6(0,r)exp { — es(r/e(h))" }.

v < 1 = cluster radius can be understood in terms of cluster capacity.

Use differential inequalities to infer upper bounds of the form
W(h, r) < (0, r)e” ),

with f,(r) = r” for v < 1 (logarithmic corrections for » = 1) and
recalling £(h) = |h|~2/".

Tool to obtain differential inequalities: Cameron Martin theorem allows
to compare capacities of K" at different levels h; then use strong
Markov property to derive the general formula comparing well-behaved
functionals of GFF at different shifts.
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Strategy for lower bounds on radius function (v < 1)
Main tools:

@ Change of measure / entropy formula: allows for comparing
original GFF with a GFF shifted on a compact set;

@ isomorphism theorems: coupling two GFFs (¢x), x € g, (JX)
at level u > 0,

Xeg?

and interlacement local times (ZX:U)xeé’

Ox +Vau= Jx1x¢c~3o + v% + 2ZXvu1xeC~3°’

with C° := {x € G : lxy > 0}, and ()
(gx U)xeg;

xcg Is independent from

~ connections in E2N = {x € G : &y > h}, h <0, can be made
using random interlacements 7 = {x € G : EX u>0}

@ critical local uniqueness for Random Interlacements: with
asymptotically non-vanishing probability and for u ~ R, there is
a unique giant connected component of 7Y in ball B(0,R);
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Strategy for

lower bound

Induced shift (in Bge)

on the radius function (v < 1)
1.) explore cluster IEQ (h € (0, c)), which extends to
capacity at least c&¥ with probability > ¢-+/2;

(case h € (—c,0) follows by symmetry)

'
'
Forced shift (in £)
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Strategy for

lower bound on the radius function (v < 1)

2.) cluster IEQ is “felt” by the harmonic extension

Induced shift (in Bye)
) within ball B(0, o€) (o large constant); ~~ make

Forced shift (in £})

L} (dotted region)
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Strategy for

3.) on L}, make a connection in E=" for slightly
Induced shift (in Bge)

shifted GFF (using isomorphism and sharp local

.2
z uniqueness) at const. probability; pay price

—c (r/s)”f‘ 3
of (0,r)e lee/&)»=" for shift;

Forced shift (in £})

L} (dotted region)
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