Percolation and long-range correlations

Alexander Drewitz

2023 / 06 / 21

j.w. with A. Prévost (U Geneva) and P.-F. Rodriguez (Imperial College)

Alexander Drewitz (Universität zu Köln)

Percolation and long-range correlations

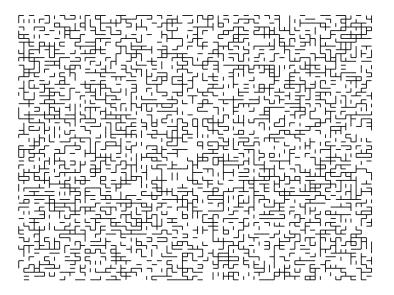
• • • • • • • • • • • • •

Bernoulli (bond) percolation

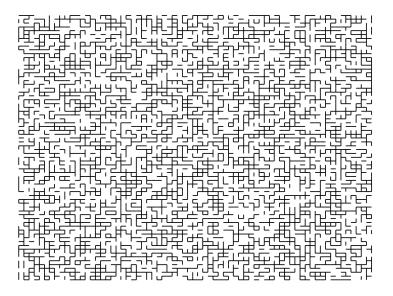
- Bernoulli percolation has first been investigated by chemists Flory and Stockmayer in the 1940s investigating the gelation of polymers, and then mathematically by Broadbent and Hammersley [BH57] in their research on gas masks;
- the model: each bond in \mathbb{Z}^d is chosen to be "open" with probability $p \in (0, 1)$, and "closed" otherwise (in an i.i.d. fashion);
- there exists p_c ∈ (0, 1) such that for p ∈ (0, p_c) there exist only bounded connected component of open bonds, whereas for p ∈ (p_c, 1) there exists a (unique) unbounded connected component;

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

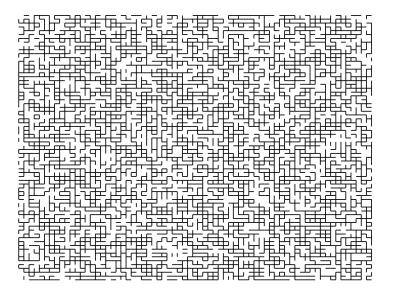
Bernoulli bond percolation (p = 0.4)



Bernoulli bond percolation (p = 0.5)



Bernoulli bond percolation (p = 0.6)



Bernoulli percolation on \mathbb{Z}^d well-understood in off-critical regime

For $p \in (0, p_c)$:

 sharp phase transition / exponential decay of radius function [Men86] (cf. also [AB87]):

$$\psi_{\mathrm{Ber}}(\boldsymbol{\rho},\boldsymbol{n}) := \mathbb{P}_{\boldsymbol{\rho}}(\mathbf{0}\leftrightarrow\partial \boldsymbol{B}(\mathbf{0},\boldsymbol{n})) \leq \boldsymbol{e}^{-\boldsymbol{c}_{\boldsymbol{\rho}}\boldsymbol{n}};$$

→ finite expected cluster size χ(p) := 𝔼_p[|𝔅₀|] < ∞, with 𝔅₀ the open cluster of the origin;

For $p \in (p_c, 1)$:

- uniqueness of infinite open cluster [AKN87] / [BK89];
- chemical distance [AP96];
- (stretched) exponential decay of radius / volume of finite open clusters [CCG⁺89] / [ADS80] ;

For further background see Stauffer & Aharony [SA18], Grimmett [Gri99].

(Near-)critical percolation

For $p \approx p_c$, understanding has been obtained in two dimensions as well as in high dimensions:

- in 2*d* planar Bernoulli (bond) percolation, one has $p_c = \frac{1}{2}$ [Kes75] and there is no percolation at p_c [Har60];
- in planar settings of hexagonal / triangular lattice, critical exponents for Bernoulli percolation have been computed in [SW01] using conformal invariance and SLE; e

e.g., for *percolation function*
$$\theta(p) := \mathbb{P}_p(0 \leftrightarrow \infty)$$
, one has

$$\theta(p) = (p - 1/2)^{\frac{5}{36} + o(1)}$$
 as $p \downarrow p_c = 1/2$,

so critical exponent for θ is $\beta = 5/36$ in this setting;

 [HS90] used lace expansion to compute critical exponents in high dimensions (mean-field, cf. behavior on trees);

Physicists know more

For *p* close to (but different from) p_c , *correlation length* $\xi = \xi(p) = |p - p_c|^{-\nu}$ describes the natural inherent length scale.

On smaller scales $L \ll \xi$, the system looks critical, while for $L \gg \xi$ its non-criticality becomes apparent. E.g., for $p \downarrow p_c$, there is D < d such that

• for $r \ll \xi$ objects are expected to be fractal like

$$|\mathcal{C}_0 \cap B(r)| \approx r^D$$

• for $r \gg \xi$,

$|\mathcal{C}_0 \cap B(r)| \approx \xi^D (L/\xi)^d$

In \mathbb{Z}^d , $3 \le d \le 10$, however, far from determining critical exponents, it is not even proven that (as expected)

$$\theta(p_c)=0.$$

< 日 > < 同 > < 回 > < 回 > < 回 > <

Physicists know more

For *p* close to (but different from) p_c , *correlation length* $\xi = \xi(p) = |p - p_c|^{-\nu}$ describes the natural inherent length scale.

On smaller scales $L \ll \xi$, the system looks critical, while for $L \gg \xi$ its non-criticality becomes apparent. E.g., for $p \downarrow p_c$, there is D < d such that

• for $r \ll \xi$ objects are expected to be fractal like

$$|\mathcal{C}_0 \cap B(r)| \approx r^D$$

• for $r \gg \xi$,

$$|\mathcal{C}_0 \cap B(r)| \approx \xi^D (L/\xi)^d$$

In \mathbb{Z}^d , $3 \le d \le 10$, however, far from determining critical exponents, it is not even proven that (as expected)

$$\theta(p_c)=0.$$

Gaussian free field

- G vertex set of a *transient* countably infinite graph with symmetric weights λ_{x,y};
- SRW on G is the MC X with transition matrix

$$P(x,y) = \frac{\lambda_{x,y}}{\lambda_x},$$

where
$$\lambda_{x} = \sum_{z \sim x} \lambda_{x,z}$$
.

Definition 1

The GFF is the centered Gaussian process (φ_x), $x \in G$, with

$$\operatorname{Cov}(\varphi_x,\varphi_y) = g(x,y) = \frac{1}{\lambda_y} \sum_{n \ge 0} P^n(x,y), \quad \forall x,y \in G.$$
 (1)

< ロ > < 同 > < 回 > < 回 >

Gaussian free field

 on finite subset of Z^d with edge set E, density with respect to product Lebesgue measure (modulo boundary conditions) is

$$\propto \prod_{(x,y)\in E} \exp\Big\{-\frac{(\varphi_x-\varphi_y)^2}{2\sigma_{x,y}^2}\Big\}.$$

 \rightsquigarrow can be interpreted as *d*-dimensional analogue of Brownian motion;

strong correlations

$$\mathsf{Cov}(arphi_{\mathtt{X}},arphi_{\mathtt{Y}}) = g(\mathtt{X},\mathtt{Y}) \sim c_d \|\mathtt{X} - \mathtt{Y}\|_2^{2-d}$$

in \mathbb{Z}^d , as $||x - y||_2 \to \infty$.

Gaussian free field

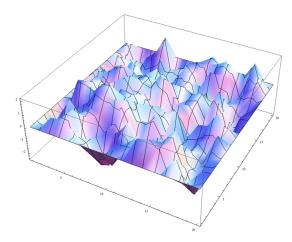


Figure: A realization of a (2d) Gaussian free field on a box with zero boundary condition

(By L. Coquille)

Percolation of GFF level sets

Introduce excursion sets

$$E^{\geq h}(G) := \{x \in G : \varphi_x \geq h\} \hspace{1em} (= arphi^{-1}([h,\infty)))$$

as percolation model with long-range correlations.

Critical parameter / level:

 $h_*(G) := \inf \{h \in \mathbb{R} : \mathbb{P}(E^{\geq h}(G) \text{ has unbounded cluster}) = 0\},\$

first introduced in [LS86] on \mathbb{Z}^d ;

Previous (off-critical) results

[BLM87]: h_{*}(Z^d) ≥ 0 for all d ≥ 3, and h_{*}(3) < ∞;
[RS13]:

 $h_*(\mathbb{Z}^d) < \infty$ for all $d \geq 3$, $h_*(\mathbb{Z}^d) > 0$ for d large;

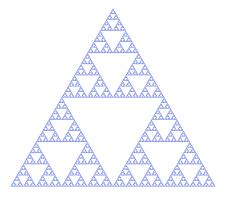
• [DPR18b]:

 $h_*(\mathbb{Z}^d) > 0$ for all $d \ge 3$;

- [DPR18a]: *h*(*G*) > 0 for "regular *G* with dimension > 2";
 → via isomorphism theorems also settles non-trivial phase transition (*u*_{*}(*G*) > 0) for vacant set percolation of Random Interlacements, confirming a conjecture of [Szn12];
- [DCGRS20]: Sharp phase transition for GFF level-set percolation in Z^d, d ≥ 3;

Previous results

 $\mathcal{S} \times \mathbb{Z}$, with \mathcal{S} the Sierpinski triangle;

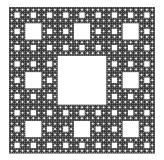


(Picture by Beojan Stanislaus, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=8862246)

Sierpinski carpet

• the *d*-dimensional Sierpinski carpet, $d \ge 3$;



(Picture by Josh Greig,

https://commons.wikimedia.org/wiki/File:Sierpinski_carpet.png)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

A continuous model

Surprisingly, for an extension of the GFF, explicit computations are possible: \rightsquigarrow "Cable system $\widetilde{\mathcal{G}}$ " (goes back to [Var85] at least)

 $\widetilde{\mathcal{G}}$ is obtained by adding line segments between neighboring vertices: for $x, y \in G$ neighboring vertices, on the line segment $I_{x,y}$ connecting xto y, conditionally on φ_x and φ_y , the GFF ($\widetilde{\varphi}_z$), $z \in I_{x,y}$, behaves like a Brownian bridge \rightsquigarrow "brings in analysis".

Then an edge $\{x, y\}$ is defined to be open iff Brownian bridge from φ_x to φ_y stays positive; have explicit formula

 $\mathbb{P}(\mathsf{BB from } \varphi_x \text{ to } \varphi_y \text{ stays above } h | \varphi_x, \varphi_y) \\= 1 - \exp\{2\lambda_{x,y}(\varphi_x \lor h)(\varphi_y \lor h)\}.$

 \rightsquigarrow alternative interpretation as bond percolation model with long-range correlations.

A continuous model

Surprisingly, for an extension of the GFF, explicit computations are possible: \rightsquigarrow "Cable system $\widetilde{\mathcal{G}}$ " (goes back to [Var85] at least)

 $\tilde{\mathcal{G}}$ is obtained by adding line segments between neighboring vertices: for $x, y \in G$ neighboring vertices, on the line segment $I_{x,y}$ connecting xto y, conditionally on φ_x and φ_y , the GFF ($\tilde{\varphi}_z$), $z \in I_{x,y}$, behaves like a Brownian bridge \rightsquigarrow "brings in analysis".

Then an edge $\{x, y\}$ is defined to be open iff Brownian bridge from φ_x to φ_y stays positive; have explicit formula

$$\mathbb{P}(\mathsf{BB} \text{ from } \varphi_x \text{ to } \varphi_y \text{ stays above } h | \varphi_x, \varphi_y) \\= 1 - \exp\{2\lambda_{x,y}(\varphi_x \lor h)(\varphi_y \lor h)\}.$$

 \rightsquigarrow alternative interpretation as bond percolation model with long-range correlations.

Objects of interest

Want to obtain near-critical information on the following objects:

- Excursion sets $\widetilde{E}^{\geq h} := \{ x \in \widetilde{\mathcal{G}} : \varphi_x \geq h \};$
- cluster of "the origin" $\widetilde{\mathcal{K}}^h := \{ x \in \widetilde{\mathcal{G}} : 0 \stackrel{\widetilde{E}^{\geq h}}{\leftrightarrow} x \};$
- (non-)percolation function $\tilde{\theta}(h) := \mathbb{P}(\tilde{\mathcal{K}}^h \text{ is bounded});$

 $\Big(\rightsquigarrow \text{ define critical parameter } \widetilde{h}_* := \inf\{h \in \mathbb{R} : \widetilde{\theta}(h) = 1\}\Big)$

- truncated radius function $\psi(h, n) := \mathbb{P}(0 \stackrel{\widetilde{E}^{\geq h}}{\leftrightarrow} \partial B(0, n), \widetilde{\mathcal{K}}^{h} \text{ is bounded});$
- truncated two-point function $\tau_h^{tr}(0, x) := \mathbb{P}(x \in \widetilde{\mathcal{K}}^h, \widetilde{\mathcal{K}}^h \text{ bounded});$

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Some previous work

 At level h = 0, the (truncated) two-point function τ^{tr}_{h=0}(0, x) admits an exact formula, first observed in [Lup16]:

$$\begin{aligned} \tau_0^{\rm tr}(0,x) &= \frac{2}{\pi} \arcsin\left(\frac{g(0,x)}{\sqrt{g(0,0)g(x,x)}}\right) \asymp d(0,x)^{-\nu} (= d(0,x)^{2-\alpha-\eta}),\\ \text{as } d(0,x) \to \infty. \end{aligned}$$

For G̃ = Z̃³, [DW18] obtain bounds for truncated radius function ψ(0, r):

$$cr^{-\frac{1}{2}} \leq \psi(0,r) \leq C \left(\frac{r}{\log r}\right)^{-\frac{1}{2}}$$

Cluster capacity law

Crucial quantity in our investigations: For $K \subset G$, its *capacity* is

$$\operatorname{cap}(\mathcal{K}) := \sum_{\mathbf{x} \in \partial \mathcal{K}} \lambda_{\mathbf{x}} \mathcal{P}_{\mathbf{x}}(\widetilde{\mathcal{H}}_{\mathcal{K}} = \infty); \quad \boldsymbol{e}.\boldsymbol{g}. \quad \operatorname{cap}(\mathcal{B}(\mathbf{0}, r)) \asymp r^{
u}.$$

Theorem 2 (D-Prévost-Rodriguez)

For all reasonably nice $\widetilde{\mathcal{G}}$, all $h \in \mathbb{R}$, and under $\mathbb{P}(\cdot, \emptyset \neq \widetilde{\mathcal{K}}^h$ bounded), the random variable $cap(\widetilde{\mathcal{K}}^h)$ has density given by

$$\varrho_h(t) = \frac{1}{2\pi t \sqrt{g(0,0)(t-g(0,0)^{-1})}} \exp\Big\{-\frac{h^2 t}{2}\Big\} \mathbb{1}_{t \ge g(0,0)^{-1}}.$$

Cluster capacity law

Crucial quantity in our investigations: For $K \subset G$, its *capacity* is

$$\operatorname{cap}(\mathcal{K}) := \sum_{\mathbf{X} \in \partial \mathcal{K}} \lambda_{\mathbf{X}} \mathcal{P}_{\mathbf{X}}(\widetilde{\mathcal{H}}_{\mathcal{K}} = \infty); \quad \boldsymbol{e}.\boldsymbol{g}. \quad \operatorname{cap}(\mathcal{B}(\mathbf{0}, r)) \asymp r^{\nu}.$$

Theorem 2 (D-Prévost-Rodriguez)

For all reasonably nice $\widetilde{\mathcal{G}}$, all $h \in \mathbb{R}$, and under $\mathbb{P}(\cdot, \emptyset \neq \widetilde{\mathcal{K}}^h$ bounded), the random variable $\operatorname{cap}(\widetilde{\mathcal{K}}^h)$ has density given by

$$\varrho_h(t) = \frac{1}{2\pi t \sqrt{g(0,0)(t-g(0,0)^{-1})}} \exp\Big\{-\frac{h^2 t}{2}\Big\} \mathbb{1}_{t \ge g(0,0)^{-1}}.$$

Alexander Drewitz (Universität zu Köln) Percolation and long-range correlations

Cluster capacity law

Crucial quantity in our investigations: For $K \subset G$, its *capacity* is

$$\operatorname{cap}(\mathcal{K}) := \sum_{\mathbf{X} \in \partial \mathcal{K}} \lambda_{\mathbf{X}} \mathcal{P}_{\mathbf{X}}(\widetilde{\mathcal{H}}_{\mathcal{K}} = \infty); \quad \boldsymbol{e}.\boldsymbol{g}. \quad \operatorname{cap}(\mathcal{B}(\mathbf{0}, r)) \asymp r^{\nu}.$$

Theorem 2 (D-Prévost-Rodriguez)

For all reasonably nice $\widetilde{\mathcal{G}}$, all $h \in \mathbb{R}$, and under $\mathbb{P}(\cdot, \emptyset \neq \widetilde{\mathcal{K}}^h$ bounded), the random variable $\operatorname{cap}(\widetilde{\mathcal{K}}^h)$ has density given by

$$\varrho_h(t) = \frac{1}{2\pi t \sqrt{g(0,0)(t-g(0,0)^{-1})}} \exp\Big\{-\frac{h^2 t}{2}\Big\} \mathbb{1}_{t \ge g(0,0)^{-1}}.$$

Alexander Drewitz (Universität zu Köln) Percolation and long-range correlations

Using (among other things) that unbounded, closed, connected sets have infinite capacity, we get the following.

Corollary 3 (D-Prévost-Rodriguez)

 $\widetilde{ heta}(h) = 2\Phi(h \wedge 0) \quad ext{ for all } h \in \mathbb{R},$

where $\Phi(t) = \mathbb{P}(\varphi_0 \leq t)$. In particular,

$$\widetilde{h}_* = 0$$
 and $\widetilde{\theta}(0) = 1$.

Furthermore, $\widetilde{\theta} : \mathbb{R} \to [0, 1]$ is continuous, and

$$\lim_{h\uparrow 0}\frac{1-\widetilde{\theta}(h)}{|h|}=\sqrt{\frac{2}{\pi g(0,0)}}; \quad \rightsquigarrow \beta=1.$$

(recall that $\beta := \lim_{h \uparrow 0} \log(1 - \tilde{\theta}(h)) / \log(|h|)$, if it exists) See Prévost [Pré21] for graphs with $h_* \neq 0$;

Alexander Drewitz (Universität zu Köln)

Using (among other things) that unbounded, closed, connected sets have infinite capacity, we get the following.

Corollary 3 (D-Prévost-Rodriguez)

 $\widetilde{ heta}(h) = 2\Phi(h \wedge 0) \quad ext{ for all } h \in \mathbb{R},$

where $\Phi(t) = \mathbb{P}(\varphi_0 \leq t)$. In particular,

$$\widetilde{h}_* = 0$$
 and $\widetilde{\theta}(0) = 1$.

Furthermore, $\widetilde{\theta} : \mathbb{R} \to [0, 1]$ is continuous, and

$$\lim_{h\uparrow 0}\frac{1-\widetilde{\theta}(h)}{|h|}=\sqrt{\frac{2}{\pi g(0,0)}}; \quad \rightsquigarrow \beta=1.$$

(recall that $\beta := \lim_{h \uparrow 0} \log(1 - \tilde{\theta}(h)) / \log(|h|)$, if it exists) See Prévost [Pré21] for graphs with $\tilde{h}_* \neq 0$;

Alexander Drewitz (Universität zu Köln)

Standing assumptions

• α -Ahlfors regular volume growth

$$cr^{lpha} \leq \lambda(B(x,r)) \leq Cr^{lpha} \quad \forall x \in G, r \geq 1;$$

regular Green function decay

 $c \leq g(x,x) \leq C, \ cd(x,y)^{u} \leq g(x,y) \leq Cd(x,y)^{u} \quad \forall x \neq y \in G;$

technical assumptions: uniform ellipticity λ_{x,y}/λ_x ≥ c and existence of a certain infinite geodesic;

Set $\xi(h) := |h|^{-2/\nu}$, which will play the role of the correlation length.

Theorem 4 (D-Prévost-Rodriguez [DPR23])

For $\nu < 1$, $h \in \mathbb{R}$ and $r \geq 1$:

 $c_3\psi(0,r)\exp\{-c_4(r/\xi(h))^{\nu}\} \le \psi(h,r) \le \psi(0,r)\exp\{-c_5(r/\xi(h))^{\nu}\}.$ For $\nu > 1$, $h \in \mathbb{R}$ and r > 1:

$$\psi(h,r) \leq \psi(0,r) \cdot \begin{cases} \exp\left\{-c_5 \frac{(r/\xi(h))}{\log(r\vee 2)}\right\}, & \text{if } \nu = 1, \\ \exp\left\{-c_5 r h^2\right\}, & \text{if } \nu > 1. \end{cases}$$

There exists $c_6 \in (0, 1)$ such that for $\nu = 1$ and all $|h| \le c$,

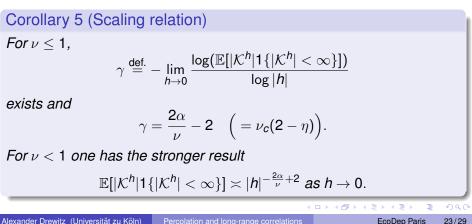
$$\psi(h,r) \geq c_3\psi(0,r) \cdot \exp\Big\{-c_4\frac{(r/\xi(h))}{\log((r/\xi(h))\vee 2)}\Big\}, \quad \text{if } \frac{r}{\xi(h)} \notin (1,(\log\xi(h))^{c_6})$$

-

イロト 不得 トイヨト イヨト

Can derive similar estimates for the truncated two-point function $\tau_h^{tr}(0, x)$

→ yields the following corollary, consistent with predictions of Weinrib & Halperin [WH83, Wei84] ("disorder relevance" (e.g. for \mathbb{Z}^{α} and $\alpha < 6$)).



→ use (hyper-)scaling theory to conjecture further critical exponents:

 $2 - \alpha_c = \gamma + 2\beta = \beta(\delta + 1), \quad \Delta = \delta\beta$ (scaling relations);

 $\alpha \rho = \delta + 1$, $\alpha \nu_c = 2 - \alpha_c$ (hyperscaling relations);

Exponent	α _c	β	γ	δ	Δ	ρ	νc	η	к
Value	$2-\frac{2\alpha}{\nu}$	1	$\frac{2\alpha}{\nu} - 2$	$\frac{2\alpha}{\nu} - 1$	$\frac{2\alpha}{\nu} - 1$	$\frac{2}{\nu}$	$\frac{2}{\nu}$	$ u - \alpha + 2 $	<u>1</u> 2
$\text{Bernoulli } \mathbb{Z}^3$	≈ -0.63	≈ 0.41	≈ 1.7	≈ 5.3	≈ 2.2	≈ 2.1	≈ 0.87	pprox -0.06	??

Cheat sheet:

- $\alpha_c \iff \text{clusters per vertex}$
 - $\beta \quad \Longleftrightarrow \quad \text{percolation probability}$
 - $\gamma \quad \iff \quad \text{truncated cluster size}$
 - $\delta \iff cluster volume$
- $\Delta \iff$ cluster moments
- $\rho \quad \Longleftrightarrow \quad \text{radius function}$
- $\nu_c \iff$ correlation length
- $\eta \quad \iff \quad \text{truncated two-point function}$
- $\kappa \iff$ cluster capacity.

N.b.:

- valid for ν ∈ (0, 1] except for β, η, κ which hold for all ν > 0;
- as conjectured, critical exponents do not depend on the microscopic structure of the underlying graph ~ universality;
- For diffusive RW, for $\alpha \uparrow 6$ (or $\nu \uparrow 4$, equivalently), exponent converge respective mean-field values for Bernoulli percolation ($\beta = \gamma = 1, \Delta = \delta = 2, \eta = 0$);

Strategy for upper bounds on radius function

Want to show: For $\nu < 1$, $h \in \mathbb{R}$ and $r \ge 1$:

$$c_3\psi(0,r)\exp\Big\{-c_4(r/\xi(h))^\nu\Big\}\leq\psi(h,r)\leq\psi(0,r)\exp\Big\{-c_5(r/\xi(h))^\nu\Big\}.$$

 $\nu < 1 \Longrightarrow$ cluster radius can be understood in terms of cluster capacity.

Use differential inequalities to infer upper bounds of the form

$$\psi(h,r) \leq \psi(0,r)e^{-ch^2f_{\nu}(r)},$$

with $f_{\nu}(r) = r^{\nu}$ for $\nu < 1$ (logarithmic corrections for $\nu = 1$) and recalling $\xi(h) = |h|^{-2/\nu}$.

Tool to obtain differential inequalities: Cameron Martin theorem allows to compare capacities of \mathcal{K}^h at different levels *h*; then use strong Markov property to derive the general formula comparing well-behaved functionals of GFF at different shifts.

Strategy for upper bounds on radius function

Want to show: For $\nu < 1$, $h \in \mathbb{R}$ and $r \ge 1$:

$$c_3\psi(0,r)\exp\Big\{-c_4(r/\xi(h))^\nu\Big\}\leq\psi(h,r)\leq\psi(0,r)\exp\Big\{-c_5(r/\xi(h))^\nu\Big\}.$$

 $\nu < 1 \implies$ cluster radius can be understood in terms of cluster capacity. Use differential inequalities to infer upper bounds of the form

$$\psi(h,r) \leq \psi(0,r)e^{-ch^2 f_{\nu}(r)},$$

with $f_{\nu}(r) = r^{\nu}$ for $\nu < 1$ (logarithmic corrections for $\nu = 1$) and recalling $\xi(h) = |h|^{-2/\nu}$.

Tool to obtain differential inequalities: Cameron Martin theorem allows to compare capacities of \mathcal{K}^h at different levels *h*; then use strong Markov property to derive the general formula comparing well-behaved functionals of GFF at different shifts.

Strategy for lower bounds on radius function ($\nu \leq 1$) Main tools:

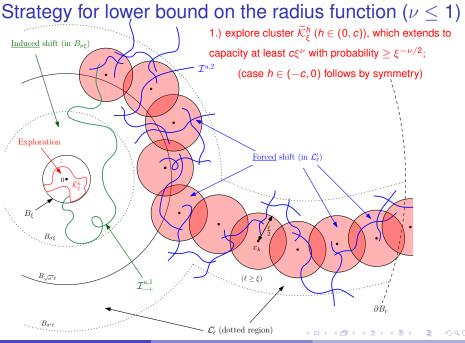
- Change of measure / entropy formula: allows for comparing original GFF with a GFF shifted on a compact set;
- isomorphism theorems: coupling two GFFs (\$\vec{\varphi}_x\$), \$x ∈ \$\vec{\varphi}\$, (\$\vec{\varphi}_x\$)_{\$x∈\vec{\varphi}\$}, and interlacement local times (\$\vec{\varepsilon}_{x,u}\$)_{\$x∈\vec{\varphi}\$}, at level \$u > 0\$,

$$\widetilde{\varphi}_{x} + \sqrt{2u} = \widetilde{\psi}_{x} \mathbf{1}_{x \notin \widetilde{\mathcal{C}}_{u}^{\infty}} + \sqrt{\widetilde{\psi}_{x}^{2} + 2\widetilde{\ell}_{x,u}} \mathbf{1}_{x \in \widetilde{\mathcal{C}}_{u}^{\infty}},$$

with $\widetilde{\mathcal{C}}_{u}^{\infty} := \{ x \in \widetilde{\mathcal{G}} : \widetilde{\ell}_{x,u} > 0 \}$, and $(\widetilde{\psi}_{x})_{x \in \widetilde{\mathcal{G}}}$ is independent from $(\widetilde{\ell}_{x,u})_{x \in \widetilde{\mathcal{G}}};$

 \rightsquigarrow connections in $E^{\geq h} = \{x \in \widetilde{\mathcal{G}} : \widetilde{\varphi}_x \geq h\}$, h < 0, can be made using random interlacements $\mathcal{I}^u = \{x \in \widetilde{\mathcal{G}} : \widetilde{\ell}_{x,u} > 0\}$;

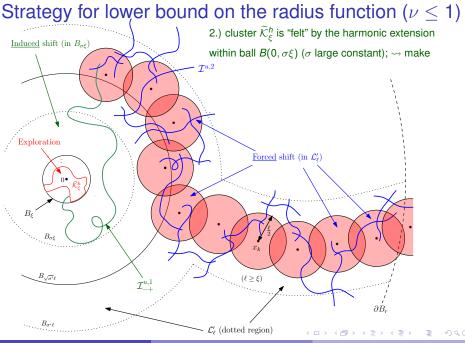
 critical local uniqueness for Random Interlacements: with asymptotically non-vanishing probability and for u ≈ R^{-ν}, there is a unique giant connected component of *T̃^u* in ball B(0, R);



Alexander Drewitz (Universität zu Köln)

Percolation and long-range correlations

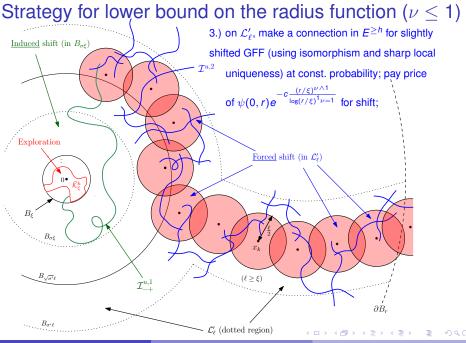
EcoDep Paris 27/29



Alexander Drewitz (Universität zu Köln)

Percolation and long-range correlations

EcoDep Paris 28/29



Alexander Drewitz (Universität zu Köln)

Percolation and long-range correlations

Michael Aizenman and David J. Barsky. Sharpness of the phase transition in percolation models. *Comm. Math. Phys.*, 108(3):489–526, 1987.

- Michael Aizenman, François Delyon, and Bernard Souillard.
 Lower bounds on the cluster size distribution.
 J. Statist. Phys., 23(3):267–280, 1980.
 - M. Aizenman, H. Kesten, and C. M. Newman. Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation. *Comm. Math. Phys.*, 111(4):505–531, 1987.
- Peter Antal and Agoston Pisztora. On the chemical distance for supercritical Bernoulli percolation. Ann. Probab., 24(2):1036–1048, 1996.
- S. R. Broadbent and J. M. Hammersley.
 Percolation processes. I. Crystals and mazes.
 Proc. Cambridge Philos. Soc., 53:629–641, 1957.

< ロ > < 同 > < 回 > < 回 >

R. M. Burton and M. Keane. Density and uniqueness in percolation. *Comm. Math. Phys.*, 121(3):501–505, 1989.

Jean Bricmont, Joel L. Lebowitz, and Christian Maes.

Percolation in strongly correlated systems: the massless Gaussian field.

J. Statist. Phys., 48(5-6):1249–1268, 1987.

J. T. Chayes, L. Chayes, G. R. Grimmett, H. Kesten, and R. H. Schonmann.

The correlation length for the high-density phase of Bernoulli percolation.

Ann. Probab., 17(4):1277-1302, 1989.

Hugo Duminil-Copin, Subhajit Goswami, Pierre-François Rodriguez, and Franco Severo. Equality of critical parameters for percolation of Gaussian free field level-sets.

・ロト ・ 四ト ・ ヨト ・ ヨト

Preprint available at arXiv:2002.07735, to appear in Duke Math. J., 2020.

- Alexander Drewitz, Alexis Prévost, and Pierre-François Rodriguez. Geometry of Gaussian free field sign clusters and random interlacements, 2018.
 - Alexander Drewitz, Alexis Prévost, and Pierre-François Rodriguez. The sign clusters of the massless Gaussian free field percolate on \mathbb{Z}^d , $d \ge 3$ (and more). *Comm. Math. Phys.*, 362(2):513–546, 2018.
- Alexander Drewitz, Alexis Prévost, and Pierre-François Rodriguez. Critical exponents for a percolation model on transient graphs. *Invent. Math.*, 232(1):229–299, 2023.
- Jian Ding and Mateo Wirth.

Percolation for level-sets of gaussian free fields on metric graphs, 2018.

Geoffrey Grimmett.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Percolation, volume 321 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].

Springer-Verlag, Berlin, second edition, 1999.

T. E. Harris.

A lower bound for the critical probability in a certain percolation process.

Proc. Cambridge Philos. Soc., 56:13–20, 1960.

Takashi Hara and Gordon Slade. Mean-field critical behaviour for percolation in high dimensions. *Comm. Math. Phys.*, 128(2):333–391, 1990.

Harry Kesten.

Sums of stationary sequences cannot grow slower than linearly. *Proc. Amer. Math. Soc.*, 49:205–211, 1975.

Joel L. Lebowitz and H. Saleur. Percolation in strongly correlated systems. *Phys. A*, 138(1-2):194–205, 1986.

Titus Lupu.

From loop clusters and random interlacements to the free field. *Ann. Probab.*, 44(3):2117–2146, 2016.

M. V. Men'shikov.

Coincidence of critical points in percolation problems. *Dokl. Akad. Nauk SSSR*, 288(6):1308–1311, 1986.

Alexis Prévost.

Percolation for the Gaussian free field on the cable system: counterexamples.

Preprint, available at arXiv:2102.07763, 2021.

Pierre-François Rodriguez and Alain-Sol Sznitman. Phase transition and level-set percolation for the Gaussian free field.

Comm. Math. Phys., 320(2):571-601, 2013.

D. Stauffer and A. Aharony. Introduction To Percolation Theory: Second Edition. CRC Press, 2018.

Alexander Drewitz (Universität zu Köln)

Percolation and long-range correlations

Stanislay Smirnov and Wendelin Werner. Critical exponents for two-dimensional percolation. Math. Res. Lett., 8(5-6):729-744, 2001.

Alain-Sol Sznitman.

Decoupling inequalities and interlacement percolation on $G \times \mathbb{Z}$. Invent. Math., 187(3):645–706, 2012.

Nicholas Th. Varopoulos.

Long range estimates for Markov chains. Bull. Sci. Math. (2), 109(3):225–252, 1985.

Abel Weinrib.

Long-range correlated percolation. *Phys. Rev. B.* 29:387–395. Jan 1984.

Abel Weinrib and B. I. Halperin.

Critical phenomena in systems with long-range-correlated auenched disorder.

Phys. Rev. B, 27:413–427, Jan 1983.

A B F A B F