Detection of breaks in weak location time series models with quasi-Fisher scores

Christian Francq, Lorenzo Trapani and Jean-Michel Zakoïan

ECODEP Conference

IHP, Sept. 30 - Oct. 1, 2024

[Detection of breaks in location time series models](#page-55-0)

イロン イ押ン イヨン イヨン

Estimating Function (EF) approach

- Originally proposed in two seminal papers by Godambe (1960), for fully parametric estimation, and by Durbin (1960), for estimating a simple AR. *
- Has been applied to estimate particular time series models^t
- **•** Based on estimating a finite dimensional parameter θ , by solving the equation $h_n(\theta) = 0$, where $h_n(\cdot)$ is a function of the observations.

* see the book by Heyde (2008) a series of papers by Godambe, review papers by Bera, Bilias, Simlai (2006), Jacod and Sørensen (2018).

[†]in particular Li and Turtle (2000), Chandra and Taniguchi (2001) and Kanai, Ogata and Taniguchi (2010) for ARCH, RCA [an](#page-0-0)[d](#page-2-0) [C](#page-0-0)[HA](#page-1-0)[R](#page-2-0)[N](#page-0-0) [m](#page-6-0)[o](#page-7-0)[del](#page-0-0)[s](#page-6-0)

Fisher and quasi-Fisher scores

If y_1, \ldots, y_n iid with distribution $f(y; \theta)$, Fisher's score is

$$
\boldsymbol{h}_n(\boldsymbol{\theta}) = \sum_{i=1}^n \frac{\partial}{\partial \boldsymbol{\theta}} \log f(y_i; \boldsymbol{\theta}).
$$

If the conditional distribution of y_t depends on a time-varying parameter $m_t(\boldsymbol{\theta})$, Fisher's score is

$$
\boldsymbol{h}_n(\boldsymbol{\theta}) = \sum_{t=1}^n \frac{\partial}{\partial \boldsymbol{\theta}} \log f(y_t; \boldsymbol{\theta}, m_t(\boldsymbol{\theta})).
$$

 \bullet If $y_t \geq 0$ and $m_t(\boldsymbol{\theta})$ is the conditional mean, the Poisson quasi-score is

$$
\boldsymbol{h}_n(\boldsymbol{\theta}) = \sum_{t=1}^n \frac{\partial m_t(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \frac{y_t - m_t(\boldsymbol{\theta})}{m_t(\boldsymbol{\theta})}.
$$

[Detection of breaks in location time series models](#page-0-0)

MLE, QMLE and QLEs

- \bullet If \bm{h}_n is the Fisher score, the MLE $\widehat{\bm{\theta}}$ solves $\bm{h}_n(\widehat{\bm{\theta}}) = \bm{0}.$
- \bullet If \bm{h}_n is a quasi-score, a solution of $\bm{h}_n(\widehat{\bm{\theta}}) = \bm{0}$ is called QMLE.
- For a more general EF h_n , a solution of the estimating equation (EE) $\mathbf{h}_n(\boldsymbol{\theta}) = \mathbf{0}$ is called Quasi-Likelihood Estimator (QLE) or Z-estimator.

 $\mathcal{A} \subseteq \mathcal{A} \rightarrow \mathcal{A} \oplus \mathcal{A} \rightarrow \mathcal{A} \oplus \mathcal{A} \rightarrow \mathcal{A}$

Parametric model for the conditional mean

Consider a real time series $(y_t)_{t\in\mathbb{Z}}$ and $\mathcal{F}_t = \sigma\{y_u : u \leq t\}$. Write $E_t(\cdot) = E(\cdot | \mathcal{F}_t)$ and assume

 $m_t = m_t(\boldsymbol{\theta}_0) := E_{t-1}(y_t)$

exists and depends on some parameter $\boldsymbol{\theta}_0\in\Theta\subset\mathbb{R}^d$.

No specific assumptions on other conditional moments.

Let $\epsilon_t = y_t - m_t$. This location model is said to be

weak when (ϵ_t) may not be an iid sequence.

A strong time series model is driven by a strong white noise.

KED KAD KED KED E YAN

Objective

- The EF approach can be used to estimate weak location scale models (FZ, 2023).
- Aim: use the EF approach to detect breaks in the conditional mean when the demeaned process may not be iid.
	- Procedure based on a CUSUM process depending on a sequence of weights. Properties of tests based on optimal QLE.
	- Data driven selection of the weights.
	- Estimation of the breakdate.
	- \bullet Case where the conditional mean is misspecified.
- Main related references:
	- Horváth and Parzen (1994) CUSUM of Fisher's score.
	- Aue and Horváth (2013) CUSUM of QMLE quasi-score for detecting breaks in conditional mean and variance.
	- Horváth and Rice (2023) Change point detection in time series.

イロト イ押 トイヨ トイヨ トー

Intuition for CUSUM of quasi-scores

We use cumulative sums (CUSUM) of quasi-scores: if

$$
\boldsymbol{h}_n(\boldsymbol{\theta}) = \sum_{t=1}^n \boldsymbol{\Upsilon}_t(\boldsymbol{\theta}),
$$

the QLE is such that $\sum_{t=1}^{n} \Upsilon_{t}(\widehat{\boldsymbol{\theta}}) = 0.$

If $\left\{\mathbf{\Upsilon}_{t}(\boldsymbol{\theta}_0)\right\}_{t}$ is stationary (no break) then a statistic like

$$
\max_{k=1,\dots,n} \left|\sum_{t=1}^k \Upsilon_t(\widehat{\boldsymbol{\theta}})\right|
$$

should not be too large (note that θ is estimated once).

- Which statistic has a nondegenerate asymptotic distribution?
- \bullet \bullet \bullet Is [th](#page-5-0)ere an optimal choice of the EF (of the Υ_t Υ_t Υ_t s[\)](#page-7-0)[?](#page-0-0)

[Detection of breaks in location time series models](#page-0-0)

A class of EF for the weak location model

Durbin and Godambe's theory of optimal unbiased EFs:

- extends the theory of unbiased estimation (BLUE) to EF;
- \bullet leads to a finite sample optimality concept. \bullet [more on that theory](#page-48-0)

Godambe (1985) (see also Chandra and Taniguchi, 2001) showed that, within the class of the unbiased EFs of the form $\sum_{t=1}^n \bm{a}_{t-1}(\bm{\theta})\left\{y_t - m_t(\bm{\theta})\right\}$, an optimal EF in Godambe's sense is

$$
\sum_{t=1}^{n} \frac{\partial m_t(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \frac{1}{\sigma_t^2(\boldsymbol{\theta})} \left\{ y_t - m_t(\boldsymbol{\theta}) \right\}
$$

where $\sigma_t^2(\bm{\theta})$ is the conditional variance (which is generally unknown and depends on nuisance parameters).

 $\mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{B} \otimes \mathcal{B}$

A class of EF for the weak location model

• Notation convention: $X_t \in \mathcal{F}_t = \sigma(y_u, u < t)$ and $X_t \in \mathcal{I}_t$ where $\mathcal{I}_t = \sigma(y_u, 1 \le u \le t)$ is the information available at t.

The parameter θ_0 is estimated by solving

$$
\sum_{t=1}^n \frac{\partial \widetilde{m}_t(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \frac{\widetilde{\epsilon}_t(\boldsymbol{\theta})}{\widetilde{\kappa}_{2t}} = 0, \quad \widetilde{\epsilon}_t(\boldsymbol{\theta}) = y_t - \widetilde{m}_t(\boldsymbol{\theta}),
$$

where $\widetilde{\kappa}_{2t} = \widetilde{\kappa}_{2t}(\theta, \widehat{\gamma}_n)$ is an *assumed* \mathcal{I}_n -measurable proxy of $\widetilde{\kappa}_{2t}^2(\theta) = \widetilde{\kappa}_{2t}^2(\theta)$ with $\kappa(\theta) = u - m(\theta)$ and $\widehat{\kappa}_{2t}$ a nuise $\sigma_t^2(\theta) := E_{t-1} \epsilon_t^2(\theta)$, with $\epsilon_t(\theta) = y_t - m_t(\theta)$ and $\widehat{\boldsymbol{\gamma}}_n$ a nuisance parameter estimate.

[Detection of breaks in location time series models](#page-0-0)

イロト イ押 トイヨ トイヨ トー

[Estimating function approach](#page-7-0) [Change-point tests](#page-15-0)

Optimal EF in the strong case

If we assume a strong location model or σ_t^2 constant, the optimal EF is

$$
\sum_{t=1}^n \frac{\partial \widetilde{m}_t(\pmb{\theta})}{\partial \pmb{\theta}} \epsilon_t(\pmb{\theta})
$$

and the LS estimator is optimal among the QLEs.

[Detection of breaks in location time series models](#page-0-0)

イロメ イ押メ イヨメ イヨメー

[Estimating function approach](#page-7-0) [Change-point tests](#page-15-0)

Examples of QLEs that are QMLEs

• If we assume
$$
\widetilde{\kappa}_{2t} \propto m_t
$$
 (with $m_t(\cdot) > 0$), the EE is

$$
\sum_{t=1}^{n} \frac{\partial \widetilde{m}_t(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \frac{1}{\widetilde{m}_t(\boldsymbol{\theta})} \epsilon_t(\boldsymbol{\theta}) = 0.
$$

The solution is the Poisson QMLE (even when $y_t \notin \mathbb{N}$):

$$
\widehat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \sum_{t=1}^n y_t \log \widetilde{m}_t(\boldsymbol{\theta}) - \widetilde{m}_t(\boldsymbol{\theta}).
$$

If $\widetilde{\kappa}_{2t} \propto m_t^2$, then we end up with the EE

$$
\sum_{t=1}^{n} \frac{\partial \widetilde{m}_t(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \frac{1}{\widetilde{m}_t^2(\boldsymbol{\theta})} \epsilon_t(\boldsymbol{\theta}) = 0,
$$

and, when $\widetilde{m}_t(\boldsymbol{\theta}) > 0$, the solution is the exponential QMLE:

$$
\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \sum_{t=1}^n y_t / \widetilde{m}_t(\boldsymbol{\theta}) + \log \widetilde{m}_t(\boldsymbol{\theta}).
$$

[Detection of breaks in location time series models](#page-0-0)

Example where the QLE is a new estimator

We can also consider the EE

$$
\sum_{t=1}^n \frac{\partial \widetilde{m}_t(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \widetilde{m}_t(\boldsymbol{\theta}) \epsilon_t(\boldsymbol{\theta}) = \mathbf{0}.
$$

Solving this equation amounts to optimizing the objective function

$$
\sum_{t=1}^n \widetilde m_t^2(\pmb{\theta}) \left(\frac{\widetilde m_t(\pmb{\theta})}{3} - \frac{y_t}{2} \right),
$$

which does not seem to correspond to any standard criterion.

[Detection of breaks in location time series models](#page-0-0)

イロメ イ押 トイヨ トイヨメート

Case where the QLE is the MLE

Assume that the distribution of y_t given \mathcal{F}_{t-1} belongs to the one-parameter exponential family: the conditional distribution admits a density of the form

$$
g_{m_t}(y) = k(y) \exp \left\{ \eta(m_t) y - a(m_t) \right\},\,
$$

for some positive function k and twice differentiable functions $\eta(\cdot)$ and $a(\cdot)$. It is known that $\eta'(m_t)=a'(m_t)/m_t=1/\sigma_t^2$. It follows that

$$
\frac{\partial \log g_{m_t(\boldsymbol{\theta})}(y_t)}{\partial \boldsymbol{\theta}} = \frac{\partial m_t(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \frac{\epsilon_t(\boldsymbol{\theta})}{\sigma_t^2(\boldsymbol{\theta})}.
$$

The QLE is thus the MLE (only approximately when $m_t \neq \widetilde{m}_t$).

イロト イ押 トイヨ トイヨ トーヨ

[Estimating function approach](#page-7-0) [Change-point tests](#page-15-0)

Consistency and Asymptotic Normality (CAN)

CAN of the QLEs (FZ, 2023)

Under \bullet [regularity conditions](#page-46-0) A1-A8), for n large enough there exists a QLE θ of θ_0 solving

$$
\sum_{t=1}^n \widetilde{\Upsilon}_t(\widehat{\boldsymbol{\theta}}) = \mathbf{0}, \quad \widetilde{\Upsilon}_t(\boldsymbol{\theta}) = \frac{\partial \widetilde{m}_t(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \frac{\widetilde{\epsilon}_t(\boldsymbol{\theta})}{\widetilde{\kappa}_{2t}(\boldsymbol{\theta})}.
$$

Moreover, $\widehat{\boldsymbol{\theta}}\to \boldsymbol{\theta}_0$ a.s. as $n\to \infty$, and

$$
\sqrt{n}\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}_0\right)\stackrel{o_P(1)}{=}-\boldsymbol{J}^{-1}\frac{1}{\sqrt{n}}\sum_{t=1}^n\boldsymbol{\Upsilon}_t(\boldsymbol{\theta}_0)\stackrel{d}{\to}\mathcal{N}\left(\boldsymbol{0},\boldsymbol{\Sigma}\right).
$$

[Detection of breaks in location time series models](#page-0-0)

イロン イ押ン イヨン イヨン

Ξ

.

Asymptotic variance of the QLEs Optimal QLEs in the asymptotic sense

The asymptotic variance is $\boldsymbol{\Sigma} = \boldsymbol{J}^{-1}\boldsymbol{I}\boldsymbol{J}^{-1}$ with

$$
\boldsymbol{J} = E\left(\frac{-1}{\kappa_{2t}(\boldsymbol{\theta}_0)}\frac{\partial m_t(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}}\frac{\partial m_t(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}^\top}\right), \ \boldsymbol{I} = E\left(\frac{\sigma_t^2(\boldsymbol{\theta}_0)}{\kappa_{2t}^2(\boldsymbol{\theta}_0)}\frac{\partial m_t(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}}\frac{\partial m_t(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}^\top}\right)
$$

If $\kappa_{2t}(\bm{\theta}_0) \propto \sigma_t^2(\bm{\theta}_0)$, then the asymptotic variance of the QLE

$$
\boldsymbol{\Sigma}_{op} = \left\{ E \frac{1}{\sigma_t^2(\boldsymbol{\theta}_0)} \frac{\partial m_t(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}} \frac{\partial m_t(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}^\top} \right\}^{-1},
$$

is optimal in the sense that $\Sigma - \Sigma_{op}$ is positive definite.

[‡] Godambe's sense of optimality is non-asymptoti[c](#page-13-0) $\Box \rightarrow \Box \rightarrow \Box \rightarrow \Box$ [Detection of breaks in location time series models](#page-0-0) Test for breaks in the conditional mean

Assuming y_1, \ldots, y_n satisfy $E_{t-1}(y_t) = m_t(\theta_t)$, where $\theta_t \in \Theta$, we consider testing

$$
\mathbf{H_0}: \ \ \boldsymbol{\theta}_1 = \boldsymbol{\theta}_2 = \cdots = \boldsymbol{\theta}_n
$$

against the alternative of at least one unknown breakpoint. Inspired by CUSUM statistics used in changepoint problems, we consider the quasi-score process, defined for $u \in [0, 1]$ by

$$
\widetilde{\boldsymbol{T}}_n(u) = \frac{1}{\sqrt{n}} \sum_{t=1}^{[nu]} \widetilde{\mathbf{\Upsilon}}_t(\widehat{\boldsymbol{\theta}}).
$$

Note that $\tilde{T}_n(0) = 0$ and $\widetilde{T}_n(1) = 0$.

イロメ イ押メ イヨメ イヨメー

Test for breaks in the conditional mean

A natural statistic for testing H_0 is

$$
\widetilde{S}_n = \sup_{u \in (0,1)} \widetilde{S}_n(u) = \max_{k \in \{1, \dots, n-1\}} \widetilde{S}_n(k/n),
$$

where

$$
\widetilde{S}_n(u) = \widetilde{\boldsymbol{T}}_n^\top(u) \boldsymbol{I}_n^{-1} \widetilde{\boldsymbol{T}}_n(u)
$$

and I_n denotes a consistent estimator of

$$
\boldsymbol{I} = E \boldsymbol{\Upsilon}_t(\boldsymbol{\theta}_0) \boldsymbol{\Upsilon}_t^\top(\boldsymbol{\theta}_0), \qquad \boldsymbol{\Upsilon}_t(\boldsymbol{\theta}) = \frac{\partial m_t(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \frac{\epsilon_t(\boldsymbol{\theta})}{\kappa_{2t}(\boldsymbol{\theta})}.
$$

[Detection of breaks in location time series models](#page-0-0)

イロト イ押 トイヨ トイヨ トー

目

Asymptotic behavior of the test statistic under the null

Under the previous assumptions, including \mathbf{H}_{0} , we have

$$
\widetilde{S}_n \stackrel{d}{\to} S = \sup_{u \in (0,1)} \sum_{j=1}^d \{B_j(u)\}^2,
$$

where $B(u)=(B_1(u),\ldots,B_d(u))^\top$ is a d -dimensional standard Brownian bridge.

At the nominal level $\alpha \in (0,1)$, rejection region of \mathbf{H}_{0} of the form:

$$
\left\{\max_{1\leq k\leq n}\widetilde{S}_n(k/n)>S_{1-\alpha}\right\}.
$$

[Detection of breaks in location time series models](#page-0-0)

イロメ イ押メ イヨメ イヨメー

Alternative Nyblom test

The Nyblom-type test (based on Nyblom (1989)) rejects the parameter constancy for large values of

$$
\widetilde{S}_n^N:=\frac{1}{n}\sum_{k=1}^n\widetilde{S}_n(k/n)
$$

which, by the continuous mapping theorem, has the asymptotic distribution $\int_0^1 \sum_{j=1}^d \{B_j(u)\}^2 du$ under $\mathbf{H_0}$.

- Enjoys some optimality properties under the alternative that the parameter process follows a martingale.
- The CUSUM test also has optimality properties, but for different types of alternatives (see Horváth and Rice, 2023).

 $A \equiv \mathbf{1} \times \mathbf{1} \oplus \mathbf{1} \times \mathbf{1$

Optimality of the QLE for testing?

The QLE with $\kappa_{2t}(\bm{\theta}_0)$ proportional to $\sigma_t^2(\bm{\theta}_0)$ is optimal within the class of EF estimators solving

$$
\sum_{t=1}^n \boldsymbol{a}_{t-1}(\boldsymbol{\theta}) \widetilde{\epsilon}_t(\boldsymbol{\theta}) = 0,
$$

where $a_{t-1}(\theta)$ is a $d \times 1$ vector belonging to \mathcal{F}_{t-1} .

Does this Godambe's optimal QLE lead to optimal tests?

We consider local asymptotic powers.

イロト イ押 トイヨ トイヨ トーヨ

[Optimal QLE and optimal tests](#page-19-0) [Data driven detection of the optimal QLE](#page-26-0) Testing with a misspecified conditional mean

Example of "local breaks"

Let $u_0 \in (0,1)$. Assume y_1, \ldots, y_n are independent and Gaussian with variance σ^2 , and that $y_t = y_{t,n}$ has mean

 $\theta_0 + \delta_1/\surd$ when $t < [nu_0]$; $\theta_0 + \delta_2/\sqrt{n - [nu_0]}$ when $t > [nu_0]$.

We then have

$$
\frac{1}{\sqrt{[nu_0]}}\sum_{t=1}^{[nu_0]}(y_t - \theta_0) \sim \mathcal{N}(\delta_1, \sigma^2),
$$

$$
\frac{1}{\sqrt{n - [nu_0]}}\sum_{t=[nu_0]+1}^{n}(y_t - \theta_0) \sim \mathcal{N}(\delta_2, \sigma^2).
$$

[Detection of breaks in location time series models](#page-0-0)

イロト イ押 トイヨ トイヨ トーヨ

[Optimal QLE and optimal tests](#page-19-0) [Data driven detection of the optimal QLE](#page-26-0) Testing with a misspecified conditional mean

Example of "local breaks" (continued)

In this simple example, $\overline{y} = n^{-1} \sum_{t=1}^{n} y_t$ is the Q(M)LE of θ_0 (under the null $\delta_1 = \delta_2 = 0$ of no local break),

$$
\widetilde{T}_n(u) = n^{-1/2} \sum_{t=1}^{\lfloor nu \rfloor} (y_t - \overline{y})
$$

is the usual CUSUM process, and

$$
\widetilde{S}_n = \sup_{u \in (0,1)} \frac{1}{n \widehat{\sigma}_y^2} \left\{ \sum_{t=1}^{[nu]} (y_t - \overline{y}) \right\}^2, \quad \widehat{\sigma}_y^2 = \frac{1}{n} \sum_{t=1}^n (y_t - \overline{y})^2,
$$

is nothing else than the Kolmogorov-Smirnov test statistic.

イロメ イ押メ イヨメ イヨメー

General situation

Let a single break located at a fixed proportion u_0 of the observations, and

- $\boldsymbol{\theta}_{(1)}$ the QLE estimator computed on $y_1, \dots, y_{[u_0n]}$
- $\boldsymbol{\theta}_{(2)}$ the QLE estimator computed on $y_{[u_0n]+1}, \ldots, y_n$
- \bullet $\widehat{\boldsymbol{\theta}}$ the QLE estimator computed on y_1, \ldots, y_n .

Let the local alternatives $H_{1,n}(\boldsymbol{\delta}_1,\boldsymbol{\delta}_2)$ such that

$$
\frac{\sqrt{n u_0} \left(\widehat{\boldsymbol{\theta}}_{(1)} - \boldsymbol{\theta}_0 \right) \stackrel{d}{\rightarrow} \mathcal{N} \left(\boldsymbol{\delta}_1 , \boldsymbol{J}^{-1} \boldsymbol{I} \boldsymbol{J}^{-1} \right),}{\sqrt{n (1 - u_0)} \left(\widehat{\boldsymbol{\theta}}_{(2)} - \boldsymbol{\theta}_0 \right) \stackrel{d}{\rightarrow} \mathcal{N} \left(\boldsymbol{\delta}_2 , \boldsymbol{J}^{-1} \boldsymbol{I} \boldsymbol{J}^{-1} \right) .}
$$

[Detection of breaks in location time series models](#page-0-0)

イロト イ部 トイをトイをトーを

[Optimal QLE and optimal tests](#page-19-0) [Data driven detection of the optimal QLE](#page-26-0) Testing with a misspecified conditional mean

Local Asymptotic Power (LAP) of the tests

Under $H_{1,n}(\delta_1, \delta_2)$ and regularity conditions, for all $u \in (0,1)$

$$
\frac{\widetilde{S}_n(u)}{u(1-u)} \xrightarrow{d} \chi^2(d,\lambda)
$$

where

$$
\lambda = \frac{1}{u(1-u)} \delta_{u_0}^{\top}(u) \mathbf{J} \mathbf{I}^{-1} \mathbf{J} \delta_{u_0}(u),
$$

When $\sqrt{1-u_0}\boldsymbol{\delta}_1\neq\sqrt{u_0}\boldsymbol{\delta}_2$, we have $\lambda\neq0$ and the best LAP is obtained for the optimal QLE.

[Detection of breaks in location time series models](#page-0-0)

イロン イ押ン イヨン イヨン

Comparing LAPs of alternative tests

Let us test for the existence of a local break in the mean of a sequence of independent Gaussian variables.

Consider 3 tests which reject for large values of S_n \tilde{S}_n^N and \tilde{S}_n^W defined by

$$
\widetilde{S}_n = \max_{1 \leq k < n} \widetilde{S}_n\left(\frac{k}{n}\right), \quad \widetilde{S}_n^N = \frac{1}{n} \sum_{k=1}^n \widetilde{S}_n\left(\frac{k}{n}\right)
$$

and

$$
\widetilde{S}_n^W = \max_{1 \le k < n} \frac{n^2}{k(n-k)} \widetilde{S}_n \left(\frac{k}{n}\right)
$$
\nwith
$$
\widetilde{S}_n(k/n) = \left\{ \sum_{t=1}^k (y_t - \overline{y}) \right\}^2 / (n \widehat{\sigma}_y^2).
$$

[Detection of breaks in location time series models](#page-0-0)

イロメ イ母メ イヨメ イヨメー

[Optimal QLE and optimal tests](#page-19-0) [Data driven detection of the optimal QLE](#page-26-0) Testing with a misspecified conditional mean

Numerical illustration

50,000 independent replications with $n = 1,000$; nominal level $\alpha = 1\%$, $\delta_1 = -\delta_2 = 3$

Figure: Powers of the CUSUM, Nyblom, and Weighted CUSUM tests as a function of the break date u_0 . イロメ イ何 メイヨメ イヨメ

[Detection of breaks in location time series models](#page-0-0)

つくい

Searching for the optimal QLE (and thus for an optimal test)

There are as many QLEs as there are choices of the weighting sequence $\widetilde{\kappa}_{2t}$. Under regularity conditions, all these QLEs are
consistent, but their performance depends on the chosen wei consistent, but their performance depends on the chosen weights.

In practice, two situations:

- **1** The model at hand suggests several possible values of $\widetilde{\kappa}_{2t}$,
which must be shosen from the data which must be chosen from the data.
- **2** The statistician has no idea of a reasonable $\widetilde{\kappa}_{2t}$.

In case 1, we suggest minimizing an empirical QLIK loss. In case 2, we suggest using GARCH-type estimators.

イロト イ押 トイヨ トイヨ トーヨ

Examples with "natural" weights

- For count time series—the benchmark model being the Poisson INGARCH-it seems natural to consider the weights $\kappa_{2t}(\boldsymbol{\theta}) = m_t(\boldsymbol{\theta}).$
- If one believes in a standard additive model, such as an ARMA, it is natural to consider constant weights $\kappa_{2t}(\cdot) = 1$.
- For positive data, such as durations or volumes, Multiplicative Error Models (MEM) being often used, it is natural to consider the weights $\kappa_{2t}(\bm{\theta}) = m_t^2(\bm{\theta})$.

In practice, the DGP is obviously unknown:

 \implies data driven procedure for choosing between several weighting schemes.

 $A \equiv \mathbf{1} \times \mathbf{1} \oplus \mathbf{1} \times \mathbf{1$

[Optimal QLE and optimal tests](#page-19-0) [Data driven detection of the optimal QLE](#page-26-0) Testing with a misspecified conditional mean

Optimal theoretical QLIK

For a stationary weighting sequence $\{\kappa_{2t}(\theta)\}\,$ let the theoretical QLIK

$$
\text{QLIK}(\kappa_{2t}(\boldsymbol{\theta})) = \min_{c>0} E\left\{ \frac{\left\{ y_t - m_t(\boldsymbol{\theta}) \right\}^2}{c\kappa_{2t}(\boldsymbol{\theta})} + \log\left(c\kappa_{2t}(\boldsymbol{\theta})\right) \right\}.
$$

Note that

$$
\sigma_t^2(\boldsymbol{\theta}_0) = \argmin_{\kappa_2 \in \mathcal{F}_{t-1}} \text{QLIK}(\kappa_2).
$$

Weights can be selected by minimizing the empirical QLIK over a finite set of potential weighting sequences.

 $\mathcal{A} \subseteq \mathcal{A} \rightarrow \mathcal{A} \oplus \mathcal{A} \rightarrow \mathcal{A} \oplus \mathcal{A} \rightarrow \mathcal{A}$

Minimizing the empirical QLIK "loss"

For a set of weighting sequences, $\left\{\begin{matrix} \widetilde{\kappa}_{2t}^{(i)} \end{matrix}\right\}$ $_{2t}^{(i)}(\boldsymbol{\theta}), i\in\{1,\ldots, I\}\Big\}$, weights are selected by minimizing over i the empirical QLIK loss function

$$
\mathsf{QLIK}_n\left(\widetilde{\kappa}_2^{(i)}(\widehat{\boldsymbol{\theta}})\right) = \frac{1}{n} \sum_{t=1}^n \left\{ \frac{\widetilde{\epsilon}_t^2(\widehat{\boldsymbol{\theta}})}{\widehat{c}_n^{(i)} \widetilde{\kappa}_{2t}^{(i)}(\widehat{\boldsymbol{\theta}})} + \log \left(\widehat{c}_n^{(i)} \widetilde{\kappa}_{2t}^{(i)}(\widehat{\boldsymbol{\theta}})\right) \right\},\
$$

$$
\widehat{c}_n^{(i)} = \frac{1}{n} \sum_{t=1}^n \frac{\widetilde{\epsilon}_t^2(\widehat{\boldsymbol{\theta}})}{\widetilde{\kappa}_{2t}^{(i)}(\widehat{\boldsymbol{\theta}})},
$$

where $\widehat{\boldsymbol{\theta}}$ is a first step estimator of $\boldsymbol{\theta}_0$.

the [consistency of the method](#page-54-0)

[Detection of breaks in location time series models](#page-0-0)

イロン イ押ン イヨン イヨン

GARCH estimation of the optimal weights

If there is no natural set of candidate weights, a simple solution consists in estimating the conditional variance

$$
\sigma_t^2(\boldsymbol{\theta}_0) = E\left(\epsilon_t^2(\boldsymbol{\theta}_0) \mid \mathcal{F}_{t-1}\right)
$$

by fitting a GARCH-type model on the sequence $\{\widetilde{\epsilon}_1(\widehat{\boldsymbol{\theta}}), \ldots, \widetilde{\epsilon}_n(\widehat{\boldsymbol{\theta}})\}$, where $\widehat{\boldsymbol{\theta}}$ is a first step (in general non optimal) estimator of θ_0 .

For instance, fitting a simple $GARCH(1,1)$ by $QMLE$ leads to a weighting sequence of the form

$$
\widetilde{\kappa}_{2t} = \widehat{\omega} + \widehat{\alpha} \widetilde{\epsilon}_{t-1}^2(\widehat{\boldsymbol{\theta}}) + \widehat{\beta} \widetilde{\kappa}_{2,t-1}.
$$

イロト イ部 トイをトイをトーを

Other GARCH-type estimation of the optimal weights

In order to allow weights proportional to the conditional mean, its square or its inverse, as suggested previously, we can also fit GARCH-X models by QMLE, leading to

$$
\widetilde{\kappa}_{2t} = \widehat{\omega} + \widehat{\alpha} \widetilde{\epsilon}_{t-1}^2(\widehat{\boldsymbol{\theta}}) + \widehat{\beta} \widetilde{\kappa}_{2,t-1} + \widehat{\pi}_1 |\widetilde{m}_t(\widehat{\boldsymbol{\theta}})|
$$

or

$$
\widetilde{\kappa}_{2t} = \widehat{\omega} + \widehat{\alpha} \widetilde{\epsilon}_{t-1}^2(\widehat{\boldsymbol{\theta}}) + \widehat{\beta} \widetilde{\kappa}_{2,t-1} + \widehat{\pi}_1 |\widetilde{m}_t(\widehat{\boldsymbol{\theta}})| + \widehat{\pi}_2 \widetilde{m}_t^2(\widehat{\boldsymbol{\theta}}).
$$

[Detection of breaks in location time series models](#page-0-0)

イロン イ押ン イヨン イヨン

Change-point estimation

Assume that, for $u_0 \in (0, 1]$

$$
y_t = y_{t,n} = \begin{cases} m_t(\boldsymbol{\theta}_1) & \text{if } t \leq [nu_0] \\ m_t(\boldsymbol{\theta}_2) & \text{if } t > [nu_0] \end{cases} + \epsilon_t,
$$

where (ϵ_t) is such that $E_{t-1}(\epsilon_t) \equiv 0$.

Assume there exist stationary processes, $(y^{(1)}_t$ $\sigma_t^{(1)})_{t\in\mathbb{Z}}$ and $(y_t^{(2)})$ $\binom{z}{t}$ _t $\in \mathbb{Z}$, approximating the observed process before and after the break, respectively.

For all $\theta \in \Theta$, let

$$
m_t^{(i)}(\pmb{\theta}) = m(\pmb{\theta}; y_{t-1}^{(i)}, y_{t-2}^{(i)}, \dots), \quad \kappa_{2t}^{(i)}(\pmb{\theta}) = \kappa_2(\pmb{\theta}; y_{t-1}^{(i)}, y_{t-2}^{(i)}, \dots)
$$

be stationary approximations of the conditional mean and weight sequence before and after the break. **Andra Andra Andr**

The QLE converges to a pseudo-true value

It can be shown that, under general conditions, $\widehat{\boldsymbol{\theta}}$ converges to the unique solution $\boldsymbol{\theta}_0^{\star} = \boldsymbol{\theta}_0^{\star}(\boldsymbol{\theta}_1,\boldsymbol{\theta}_2)$ of the equation

$$
u_0 E\left\{ \mathbf{\Upsilon}_t^{(1)}(\boldsymbol{\theta}) \right\} + (1 - u_0) E\left\{ \mathbf{\Upsilon}_t^{(2)}(\boldsymbol{\theta}) \right\} = 0,
$$

where

$$
\mathbf{\Upsilon}_t^{(i)}(\boldsymbol{\theta}) = \frac{\partial m_t^{(i)}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \frac{y_t^{(i)} - m_t^{(i)}(\boldsymbol{\theta})}{\kappa_{2t}^{(i)}(\boldsymbol{\theta})}.
$$

[Detection of breaks in location time series models](#page-0-0)

イロメ イ押 トイヨ トイヨメー

The break fraction is consistently estimated

Let the change-point estimator

$$
\widetilde{k} = \underset{k \in \{1, \ldots, n-1\}}{\arg \max} \widetilde{S}_n(k/n), \qquad \widetilde{S}_n(u) = \widetilde{T}_n^{\top}(u) \mathbf{I}_n^{-1} \widetilde{\mathbf{T}}_n(u).
$$

Under regularity conditions, when $u_0 \in (0,1)$ and $\boldsymbol{\theta}_1 \neq \boldsymbol{\theta}_2$ we have

$$
\frac{\widetilde{k}}{n}\rightarrow u_0,\quad\text{in probability as }n\rightarrow\infty.
$$

[Detection of breaks in location time series models](#page-0-0)

イロン イ押ン イヨン イヨン

Case where $m_t(\cdot)$ is misspecified

The intuition is that, even if the conditional mean is not correctly specified, its estimated value should not vary too much when the DGP is stable.

Let
$$
\Upsilon_t(\theta) = \frac{\partial m_t(\theta)}{\partial \theta} \frac{y_t - m_t(\theta)}{\kappa_{2t}(\theta)}
$$
.

Assume

A3 * : If $E\{\mathbf{\hat{T}}_t(\boldsymbol{\theta})\}=0$ for some $\boldsymbol{\theta}\in\Theta,$ then $\boldsymbol{\theta}=\boldsymbol{\theta}^*_0,$ where the pseudo-true value $\boldsymbol{\theta}_0^* \in \overset{\circ}{\Theta}$.

A5*: We have
$$
\sigma_t^2(\theta_0^*) > 0
$$
, a.s. Moreover, if $\lambda^{\top} \frac{\partial m_t(\theta_0^*)}{\partial \theta} = 0$ a.s. then $\lambda = 0_d$.

[Detection of breaks in location time series models](#page-0-0)

イロト イ押 トイヨ トイヨ トーヨ

Example: conditional mean approximated by an AR(1)

Assume, perhaps wrongly, that $m_t(\theta) = a + by_{t-1}$ with $\boldsymbol{\theta} = (a, b)^\top$. We then have

$$
\mathbf{\Upsilon}_t(\boldsymbol{\theta}) = \left(\begin{array}{c}1\\y_{t-1}\end{array}\right) \frac{1}{\kappa_{2t}} (y_t - a - by_{t-1})
$$

Then $A3^*$ is satisfied with

$$
\theta_0^* = A^{-1}b, \quad b = \left(\begin{array}{c} E \frac{y_t}{\kappa_{2t}} \\ E \frac{y_t y_{t-1}}{\kappa_{2t}} \end{array}\right), \quad A = \left(\begin{array}{cc} E \frac{1}{\kappa_{2t}} & E \frac{y_{t-1}}{\kappa_{2t}} \\ E \frac{y_{t-1}}{\kappa_{2t}} & E \frac{y_{t-1}^2}{\kappa_{2t}} \end{array}\right)
$$

when \bm{b} and \bm{A} exist and \bm{A} is invertible (which is for instance the case when κ_{2t} is constant and $\mathsf{Var}(y_t)>0).$

イロト イ押 トイヨ トイヨ トーヨ

Asymptotics for CUSUM of misspecified quasi-scores

Let
$$
\Upsilon_t^* = \Upsilon_t(\theta_0^*) = \frac{\partial m_t(\theta_0^*)}{\partial \theta} \frac{\epsilon_t(\theta_0^*)}{\kappa_{2t}(\theta_0^*)}
$$
.

Under for instance mixing and moment conditions, we have the CLT

$$
\frac{1}{\sqrt{n}}\sum_{t=1}^{n}\mathbf{\Upsilon}_{t}^{*}\overset{d}{\rightarrow}\mathcal{N}\left(0,\mathbf{I}^{*}\right)
$$

for some long-run nonsingular variance matrix \boldsymbol{I}^* .

Let \boldsymbol{I}_n^* be a consistent HAC estimator of \boldsymbol{I}^* , and let the statistic

$$
\widetilde{S}_n^* = \sup_{u \in (0,1)} \widetilde{S}_n^*(u), \qquad \widetilde{S}_n^*(u) = \widetilde{T}_n^{\top}(u) \mathbf{I}_n^{*-1} \widetilde{T}_n(u).
$$

Under regularity conditions including \mathbf{H}_{0} (no break), we have \widetilde{S}_n^* $\stackrel{d}{\to} S = \sup_{u \in (0,1)} \sum_{j=1}^d \{B_j(u)\}^2.$

[Detection of breaks in location time series models](#page-0-0)

Monte Carlo design

$$
N=1,000
$$
 simulations of size $n=2,000$ of

 $y_t | \mathcal{F}_{t-1} \sim \mathsf{Gamma}_t, \quad E_{t-1}(y_t) = m_t, \quad \mathsf{Var}_{t-1}(y_t) = \sigma_t^2,$

where $m_t = c + au_{t-1} + bm_{t-1}$ and

DGP A:
$$
\sigma_t^2 = 1
$$
; DGP B: $\sigma_t^2 = m_t$; DGP C: $\sigma_t^2 = m_t^2$; DGP D: $\sigma_t^2 = m_t^{3/2}$.

We considered 8 different QLEs:

QLE A: $\widetilde{\kappa}_{2t} \propto 1$; QLE B: $\widetilde{\kappa}_{2t} \propto m_t$; QLE C: $\widetilde{\kappa}_{2t} \propto m_t^2$; QLE D: $\widetilde{\kappa}_{2t} \propto m_t^{3/2}$ $t^{3/2}$; QLIK; GARCH; X1; X2,

where the last 4 QLE are optimal QLEs estimated by the $QLIK_n$ -method or by fitting GARCH or two [di](#page-37-0)ff[er](#page-39-0)[e](#page-37-0)[nt](#page-38-0) [G](#page-39-0)[A](#page-38-0)[R](#page-41-0)[C](#page-42-0)[H](#page-37-0)[-X](#page-55-0)[.](#page-0-0)

[Detection of breaks in location time series models](#page-0-0)

Empirical size of the tests $(n = 2,000, N = 1,000)$

[Detection of breaks in location time series models](#page-0-0)

イロト イ押 トイヨ トイヨ トー

 OQ

目

Empirical powers (break at $t = 800$)

[Detection of breaks in location time series models](#page-0-0)

イロト イ押 トイヨ トイヨ トー

 OQ

目

[Monte Carlo experiments](#page-38-0) [Estimating GARCH by QLEs on exchange rates](#page-42-0) **[Conclusion](#page-44-0)**

Change point estimates $(nu_0 = 3200, n = 8000, \text{ DGP A*})$

Figure: Distributions of the change point estimes

 $A \Box B$ $A \Box B$ [Detection of breaks in location time series models](#page-0-0)

つくい

Illustration on exchange rates

- Returns series of daily exchange rates of the USD and CHF with respect to the Euro.
- 1999-01-04 to 2022-07-12 (6025 observations).
- GARCH $(1,1)$ (i.e. ARMA $(1,1)$ on the squares) estimated by QLEs.
- **•** tests for breaks performed using the statistic S_n .

イロメ イ押メ イヨメ イヨメー

[Monte Carlo experiments](#page-38-0) [Estimating GARCH by QLEs on exchange rates](#page-42-0) [Conclusion](#page-44-0)

No evidence of breaks for USD but breaks for CHF Swiss franc was pegged to the euro between Sept. 6, 2011 and Jan. 15, 2015

[Detection of breaks in location time series models](#page-0-0)

 $\leftarrow \equiv$

∍

∢ ロ ▶ - ィ 何 ▶

Summary

CUSUM of quasi-score for detecting breaks

- obviously requires less strong assumptions than CUSUM of Fisher's score (semi-parametric method);
- leads to an infinite number of break tests (as many as time-varying weights $\widetilde{\kappa}_{2t}$);
- can be more efficient than CUSUM of QMLE-score (data-driven choice of $\widehat{\boldsymbol{\theta}}$);
- can even work when m_t is misspecified (with HAC version);
- \bullet is easy to implement (just one optimization to compute $\widehat{\boldsymbol{\theta}}$);
- this work is still in progress (needs weighted versions to detect early or late breaks, more applications, ...)

イロト イ押 トイヨ トイヨ トーヨ

[Model and estimating function approach](#page-7-0) [Searching optimal or robust tests](#page-19-0) [Numerical illustrations](#page-38-0) [Monte Carlo experiments](#page-38-0) [Estimating GARCH by QLEs on exchange rates](#page-42-0) **[Conclusion](#page-44-0)**

Thank you!

[Detection of breaks in location time series models](#page-0-0)

イロメ イ部メ イモメ イモメ

目

 299

Regularity conditions

 $\mathsf{A1:}\;$ The process $\left(y_t\right)_{t\in\mathbb{Z}}$ is strictly stationary and ergodic.

A2: There exists $\rho \in [0, 1)$ such that, a.s. $\sup_{\theta \in \Theta} |m_t(\theta) - \widetilde{m}_t(\theta)| \leq K_t \rho^t$, where K_t is a generic E_{t+1} -measurable t.y. such that sup $EK^r < \infty$ for some $r > 0$ K_t is a generic \mathcal{F}_{t-1} -measurable r.v. such that $\sup_t E K_t^r<\infty$ for some $r>0.$

A3: Let
$$
\Upsilon_t(\theta) = \frac{\partial m_t(\theta)}{\partial \theta} \frac{\epsilon_t(\theta)}{\kappa_{2t}(\theta)}
$$
. If $E\{\Upsilon_t(\theta)\} = 0$ for some $\theta \in \Theta$, then $\theta = \theta_0$.
The parameter θ_0 belongs to the interior of the compact set Θ .

A4: The function $\theta \mapsto m_t(\theta)$ is continuously differentiable, and

$$
\sup_{\boldsymbol{\theta}\in\Theta}\left\|\frac{\partial m_t(\boldsymbol{\theta})}{\partial\boldsymbol{\theta}}-\frac{\partial \widetilde{m}_t(\boldsymbol{\theta})}{\partial\boldsymbol{\theta}}\right\|\leq K_t\rho^t,\qquad a.s.
$$

where K_t is as in A2, $\|\cdot\|$ denotes any norm on \mathbb{R}^d . Moreover, assume $E|y_t|^s<\infty$ and $E\sup_{\boldsymbol{\theta}\in\Theta}\Big\{|m_t(\boldsymbol{\theta})|^s+\Big\|$ $\frac{\partial m_t(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\bigg\|\bigg\|$ $\{s\} < \infty$, for some $s > 0$.

A5: We have $\sigma_t^2(\theta_0) > 0$, a.s. Moreover, if $\boldsymbol{\lambda}^\top \frac{\partial m_t(\theta_0)}{\partial \theta} = 0$ a.s. then $\boldsymbol{\lambda} = \mathbf{0}_d$.

A6: There exists a constant $\underline{\kappa} > 0$ such that $\inf_{\theta \in \Theta} \kappa_{2t}(\theta) \geq \underline{\kappa}$ a.s.

 $\langle \Box \rangle \rightarrow \langle \bar{q} \rangle \rightarrow \langle \bar{z} \rangle \rightarrow \langle \bar{z} \rangle \rightarrow \Box$

 QQ

Regularity conditions (continued)

A7: For all $\bm{\theta} \in \Theta$ the sequence $\left\{ \kappa_{2t}(\bm{\theta}) \right\}_{t \in \mathbb{Z}}$ is stationary, ergodic and \mathcal{F}_{t-1} -measurable, the function $\bm{\theta} \mapsto \tilde{\kappa_{2t}}(\bm{\theta})$ admits continuous derivatives, there exist $\rho \in [0, 1)$ and K_t as in A2 such that, a.s.,

$$
\sup_{\boldsymbol{\theta}\in\Theta}\left\{\left|\kappa_{2t}(\boldsymbol{\theta})-\widetilde{\kappa}_{2t}(\boldsymbol{\theta})\right|+\left\|\frac{\partial\kappa_{2t}(\boldsymbol{\theta})}{\partial\boldsymbol{\theta}}-\frac{\partial\widetilde{\kappa}_{2t}(\boldsymbol{\theta})}{\partial\boldsymbol{\theta}}\right\|\right\}\leq K_t\rho^t
$$

for n large enough. Moreover $E\sup_{\bm{\theta}\in\Theta}|\kappa_{2t}(\bm{\theta})|^s<\infty$ for some $s>0.$ A8: We have

$$
E \sup_{\boldsymbol{\theta} \in \Theta} \|\boldsymbol{\Upsilon}_t(\boldsymbol{\theta})\|^2 < \infty \quad \text{and} \quad E \sup_{\boldsymbol{\theta} \in \Theta} \left\|\frac{\partial \boldsymbol{\Upsilon}_t(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}^\top}\right\| < \infty.
$$

[Detection of breaks in location time series models](#page-0-0)

 $\mathcal{A} \subseteq \mathcal{A} \rightarrow \mathcal{A} \oplus \mathcal{A} \rightarrow \mathcal{A} \oplus \mathcal{A} \rightarrow \mathcal{A}$

Unbiased EF and motivating example

An EF is said to be unbiased when $E h_n(\theta_0) = 0$.

Example (Durbin (1960))

In the AR(1) model $y_t = \theta y_{t-1} + \eta_t$, η_t iid $(0,\sigma^2)$, the OLS solves the unbiased estimating equation $\sum_{t=2}^n y_ty_{t-1} - \theta \sum_{t=2}^n y_t^2_{t-1} = 0$ and has the smallest variance among the linear unbiased estimating functions of the form $\sum_{t=2}^n a_{t-1}(y_t - \theta y_{t-1})$ where a_{t-1} is a function of y_1, \ldots, y_{t-1} and satisfies some identifiability conditions (a kind of BLUE property).

イロト イ押 トイヨ トイヨ トー

A natural class of EF for the weak location model

Notation convention: $X_t \in \mathcal{F}_t = \sigma(y_u, u < t)$ and $X_t \in \mathcal{I}_t = \sigma(y_u, 1 \leq u < t)$ $(\mathcal{I}_t$ is the information available at t). Extending Durbin's EF for the AR(1), consider EFs of the form

$$
\widetilde{\boldsymbol{h}}_n(\boldsymbol{\theta}) = \sum_{t=1}^n \widetilde{\boldsymbol{a}}_{t-1}(\boldsymbol{\theta}) \widetilde{\epsilon}_t(\boldsymbol{\theta}), \quad \widetilde{\epsilon}_t(\boldsymbol{\theta}) = y_t - \widetilde{m}_t(\boldsymbol{\theta}),
$$

where, for all $\theta \in \Theta$, the variable $\widetilde{m}_t(\theta)$ denotes a \mathcal{I}_{t-1} -measurable approximation of $m_t(\bm{\theta})$ and the $d\times 1$ vector $\widetilde{\bm{a}}_t(\bm{\theta})\in \mathcal{I}_t.$

Consider QLEs obtained by solving the EE $h_n(\theta) = 0$.

イロト イ押 トイヨ トイヨ トーヨ

Optimal EF in Godambe's sense

Godambe (1985) introduced the notion of optimal estimating function. Let H the class of unbiased EFs satisfying some regularity conditions. An estimating function \bm{h}_n^* is said to be optimal in $\mathcal H$ if

$$
\left\{ E\left[\frac{\partial \boldsymbol{h}_{n}(\boldsymbol{\theta}_{0})}{\partial \boldsymbol{\theta}'}\right]\right\}^{-1} E\{\boldsymbol{h}_{n}(\boldsymbol{\theta}_{0})\boldsymbol{h}_{n}'(\boldsymbol{\theta}_{0})\} \left\{ E\left[\frac{\partial \boldsymbol{h}_{n}'(\boldsymbol{\theta}_{0})}{\partial \boldsymbol{\theta}}\right]\right\}^{-1}
$$

is minimized at $\bm{h}_n(\bm{\theta}_0) = \bm{h}_n^*(\bm{\theta}_0)$ in the sense of semi-positive definite matrices.

- Intuition: small variance at θ_0 (numerator) and high sensitivity to parameter change (denominator).
- Godambe's justification: \bm{h}^* is the score when $\mathcal H$ allows it.

イロメ イ押 トイヨ トイヨメート

Optimal unbiased EF for the weak location model

Godambe (1985) (see also Chandra and Taniguchi, 2001) showed that, within the class ${\cal H}$ of the unbiased EFs of the form $\sum_{t=1}^n \bm{a}_{t-1}(\bm{\theta}) \epsilon_t(\bm{\theta})$, an optimal EF in Godambe's sense is

$$
\sum_{t=1}^{n} \frac{\partial m_t(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \frac{1}{\sigma_t^2(\boldsymbol{\theta})} \left\{ y_t - m_t(\boldsymbol{\theta}) \right\}
$$

where $\sigma_t^2(\bm{\theta})$ is the conditional variance (which is generally unknown and depends on nuisance parameters).

Require that $m_t(\bm{\theta})$ and $\sigma_t^2(\bm{\theta})$ be \mathcal{I}_{t-1} -measurable (which is generally not the case). **C[return](#page-7-1)**

イロト イ押 トイヨ トイヨ トーヨ

GMM

We have moment restrictions of the form $E\bm{g}_t(\bm{\theta})=\bm{0}$ iff $\bm{\theta}=\bm{\theta}_0,$ where $\boldsymbol{g}_t(\boldsymbol{\theta}) = \boldsymbol{z}_t \epsilon_t(\boldsymbol{\theta})$ with a vector of instruments $\boldsymbol{z}_t \in \mathcal{F}_{t-1}$ valued in \mathbb{R}^m , $m \geq d$.

Let $\overline{g}_n(\theta) = n^{-1} \sum_{t=1}^n \widetilde{g}_t(\theta)$, where $\widetilde{g}_t(\theta)$ is an \mathcal{I}_t -measurable approximation of $\boldsymbol{g}_t(\boldsymbol{\theta})$.

The GMM estimators minimize

 $\overline{g}_{n}'(\boldsymbol{\theta})\widehat{\boldsymbol{S}}^{-1}\overline{g}_{n}(\boldsymbol{\theta}),$

where \hat{S} is a positive definite weight matrix.

イロト イ押 トイヨ トイヨ トーヨ

QL and GMM estimators

The first order conditions yield the EF

$$
\widehat{\boldsymbol{h}}_n(\boldsymbol{\theta}) = \sum_{t=1}^n \widehat{\boldsymbol{\Omega}}_t(\boldsymbol{\theta}) \widehat{\boldsymbol{S}}^{-1} \overline{\boldsymbol{g}}_n(\boldsymbol{\theta}) = \sum_{t=1}^n \widehat{\boldsymbol{\Omega}}(\boldsymbol{\theta}) \widehat{\boldsymbol{S}}^{-1} \widetilde{\boldsymbol{z}}_t \widetilde{\epsilon}_t(\boldsymbol{\theta})
$$

where $\widehat{\mathbf{\Omega}}_t(\boldsymbol{\theta}) = \frac{\partial}{\partial \boldsymbol{\theta}} \widetilde{\boldsymbol{g}}_t'(\boldsymbol{\theta})$ and $\widehat{\mathbf{\Omega}}(\boldsymbol{\theta}) = n^{-1} \sum_{t=1}^n \widehat{\mathbf{\Omega}}_t(\boldsymbol{\theta}).$
Therefore the GMM estimators are OI Eq. and Therefore the GMM estimators are QLEs, and

the optimal $QLE \succ$ the optimal GMM

(in the Godambe's sense and asymptotically). Christensen, Posch and van der Wel (JoE, 2016) showed that in general

the optimal $QLE \succ$ the optimal GMM.

[Detection of breaks in location time series models](#page-0-0)

←ロト (母) (ヨ) (ヨ)

Justication of the selection method

Consistency of the weights selected by QLIK

Let two sequences $\left\{\kappa_{2t}^{(1)}\right\}$ $\widetilde{c}_{2t}^{(1)}(\boldsymbol{\theta}), \widetilde{\kappa}_{2t}^{(1)}$ $_{2t}^{\left(1\right) }\left(\boldsymbol{\theta}\right) \Big\}$ and $\left\{\kappa^{(2)}_{2t}\right\}$ $\widetilde{c}_{2t}^{(2)}(\boldsymbol{\theta}), \widetilde{\kappa}_{2t}^{(2)}$ $_{2t}^{(2)}(\boldsymbol{\theta})\Big\}$ t such that the regularity conditions of the CAN of the QLEs are satisfied. For $\theta \in \Theta_{\vartheta}$, if

$$
\mathsf{QLIK}(\kappa_{2t}^{(1)}(\pmb\theta))<\mathsf{QLIK}(\kappa_{2t}^{(2)}(\pmb\theta)),
$$

then, almost surely

$$
\mathsf{QLIK}_n\left(\widetilde{\kappa}^{(1)}_2(\pmb\theta)\right)=\min\left\{\mathsf{QLIK}_n\left(\widetilde{\kappa}^{(1)}_2(\pmb\theta)\right),\mathsf{QLIK}_n\left(\widetilde{\kappa}^{(2)}_2(\pmb\theta)\right)\right\}
$$

for n large enough.

イロン イ押ン イヨン イヨン

Related literature

- Horváth and Parzen (1994) CUSUM of Fisher's score.
- Lee *et al.* (2003) CUSUM of $\widehat{\boldsymbol{\theta}}_k \widehat{\boldsymbol{\theta}}_n$.
- Berkes, Horváth and Kokoszka (2004) for GARCH models.
- Shao and Zhang (2010) self-normalized K-S test.
- Aue and Horváth (2013) CUSUM of unconditional and conditional mean and variance.
- Kutoyants (2016) CUSUM of Fisher's score.
- Negri and Nishiyama (2017) with applications to diffusions.
- Truong et al. (2020) overview of change point detection.

... [return](#page-0-1)

イロト イ押 トイヨ トイヨ トーヨ