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Estimating Function (EF) approach

Originally proposed in two seminal papers by Godambe (1960),

for fully parametric estimation, and by Durbin (1960), for

estimating a simple AR. *

Has been applied to estimate particular time series models�

Based on estimating a �nite dimensional parameter θ, by
solving the equation hn (θ) = 0, where hn (·) is a function of

the observations.

*see the book by Heyde (2008) a series of papers by Godambe, review
papers by Bera, Bilias, Simlai (2006), Jacod and Sørensen (2018).

�in particular Li and Turtle (2000), Chandra and Taniguchi (2001) and
Kanai, Ogata and Taniguchi (2010) for ARCH, RCA and CHARN models
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Fisher and quasi-Fisher scores

If y1, . . . , yn iid with distribution f(y;θ), Fisher's score is

hn(θ) =

n∑
i=1

∂

∂θ
log f(yi;θ).

If the conditional distribution of yt depends on a time-varying

parameter mt(θ), Fisher's score is

hn(θ) =

n∑
t=1

∂

∂θ
log f(yt;θ,mt(θ)).

If yt ≥ 0 and mt(θ) is the conditional mean, the Poisson
quasi-score is

hn(θ) =

n∑
t=1

∂mt(θ)

∂θ

yt −mt(θ)

mt(θ)
.
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MLE, QMLE and QLEs

If hn is the Fisher score, the MLE θ̂ solves hn(θ̂) = 0.

If hn is a quasi-score, a solution of hn(θ̂) = 0 is called QMLE.

For a more general EF hn, a solution of the estimating

equation (EE) hn(θ) = 0 is called Quasi-Likelihood Estimator

(QLE) or Z-estimator.
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Parametric model for the conditional mean

Consider a real time series (yt)t∈Z and Ft = σ{yu : u ≤ t}.

Write Et(·) = E(· | Ft) and assume

mt = mt(θ0) := Et−1(yt)

exists and depends on some parameter θ0 ∈ Θ ⊂ Rd.

No speci�c assumptions on other conditional moments.

Let ϵt = yt −mt. This location model is said to be

weak when (ϵt) may not be an iid sequence.

A strong time series model is driven by a strong white noise.
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Objective

The EF approach can be used to estimate weak location scale

models (FZ, 2023).

Aim: use the EF approach to detect breaks in the conditional
mean when the demeaned process may not be iid.

Procedure based on a CUSUM process depending on a
sequence of weights. Properties of tests based on optimal QLE.
Data driven selection of the weights.
Estimation of the breakdate.
Case where the conditional mean is misspeci�ed.

Main related references:

Horváth and Parzen (1994) CUSUM of Fisher's score.
Aue and Horváth (2013) CUSUM of QMLE quasi-score for
detecting breaks in conditional mean and variance.
Horváth and Rice (2023) Change point detection in time series.
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Intuition for CUSUM of quasi-scores

We use cumulative sums (CUSUM) of quasi-scores: if

hn(θ) =

n∑
t=1

Υt(θ),

the QLE is such that
∑n

t=1Υt(θ̂) = 0.

If {Υt(θ0)}t is stationary (no break) then a statistic like

max
k=1,...,n

∣∣∣∣∣
k∑

t=1

Υt(θ̂)

∣∣∣∣∣
should not be too large (note that θ is estimated once).

Which statistic has a nondegenerate asymptotic distribution?

Is there an optimal choice of the EF (of the Υts)?
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Estimating function approach
Change-point tests

A class of EF for the weak location model

Durbin and Godambe's theory of optimal unbiased EFs:

extends the theory of unbiased estimation (BLUE) to EF;

leads to a �nite sample optimality concept. more on that theory

Godambe (1985) (see also Chandra and Taniguchi, 2001) showed

that, within the class of the unbiased EFs of the form∑n
t=1 at−1(θ) {yt −mt(θ)}, an optimal EF in Godambe's sense is

n∑
t=1

∂mt(θ)

∂θ

1

σ2
t (θ)

{yt −mt(θ)}

where σ2
t (θ) is the conditional variance (which is generally

unknown and depends on nuisance parameters).

this is better than GMM
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Estimating function approach
Change-point tests

A class of EF for the weak location model

Notation convention: Xt ∈ Ft = σ(yu, u < t) and X̃t ∈ It
where It = σ(yu, 1 ≤ u < t) is the information available at t.

The parameter θ0 is estimated by solving

n∑
t=1

∂m̃t(θ)

∂θ

ϵ̃t(θ)

κ̃2t
= 0, ϵ̃t(θ) = yt − m̃t(θ),

where κ̃2t = κ̃2t(θ, γ̂n) is an assumed In-measurable proxy of
σ2
t (θ) := Et−1ϵ

2
t (θ), with ϵt(θ) = yt −mt(θ) and γ̂n a nuisance

parameter estimate.
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Estimating function approach
Change-point tests

Optimal EF in the strong case

If we assume a strong location model or σ2
t constant, the optimal

EF is

n∑
t=1

∂m̃t(θ)

∂θ
ϵt(θ)

and the LS estimator is optimal among the QLEs.
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Change-point tests

Examples of QLEs that are QMLEs

If we assume κ̃2t ∝ mt (with mt(·) > 0), the EE is
n∑

t=1

∂m̃t(θ)

∂θ

1

m̃t(θ)
ϵt(θ) = 0.

The solution is the Poisson QMLE (even when yt ̸∈ N):

θ̂ = arg max
θ

n∑
t=1

yt log m̃t(θ)− m̃t(θ).

If κ̃2t ∝ m2
t , then we end up with the EE

n∑
t=1

∂m̃t(θ)

∂θ

1

m̃2
t (θ)

ϵt(θ) = 0,

and, when m̃t(θ) > 0, the solution is the exponential QMLE:

θ̂ = arg min
θ

n∑
t=1

yt/m̃t(θ) + log m̃t(θ).

Detection of breaks in location time series models



Model and estimating function approach
Searching optimal or robust tests

Numerical illustrations

Estimating function approach
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Example where the QLE is a new estimator

We can also consider the EE

n∑
t=1

∂m̃t(θ)

∂θ
m̃t(θ)ϵt(θ) = 0.

Solving this equation amounts to optimizing the objective function

n∑
t=1

m̃2
t (θ)

(
m̃t(θ)

3
− yt

2

)
,

which does not seem to correspond to any standard criterion.
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Case where the QLE is the MLE

Assume that the distribution of yt given Ft−1 belongs to the

one-parameter exponential family: the conditional distribution

admits a density of the form

gmt(y) = k(y) exp {η(mt)y − a(mt)} ,

for some positive function k and twice di�erentiable functions η(·)
and a(·). It is known that η′(mt) = a′(mt)/mt = 1/σ2

t . It follows

that
∂ log gmt(θ)(yt)

∂θ
=

∂mt(θ)

∂θ

ϵt(θ)

σ2
t (θ)

.

The QLE is thus the MLE (only approximately when mt ̸= m̃t).
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Consistency and Asymptotic Normality (CAN)

CAN of the QLEs (FZ, 2023)

Under regularity conditions A1-A8 , for n large enough there exists a QLE

θ̂ of θ0 solving

n∑
t=1

Υ̃t(θ̂) = 0, Υ̃t(θ) =
∂m̃t(θ)

∂θ

ϵ̃t(θ)

κ̃2t(θ)
.

Moreover, θ̂ → θ0 a.s. as n → ∞, and

√
n
(
θ̂ − θ0

)
oP (1)
= −J−1 1√

n

n∑
t=1

Υt(θ0)
d→ N (0,Σ) .
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Asymptotic variance of the QLEs
Optimal QLEs in the asymptotic sense�

The asymptotic variance is Σ = J−1IJ−1 with

J = E

(
−1

κ2t(θ0)

∂mt(θ0)

∂θ

∂mt(θ0)

∂θ⊤

)
, I = E

(
σ2
t (θ0)

κ2
2t(θ0)

∂mt(θ0)

∂θ

∂mt(θ0)

∂θ⊤

)
.

If κ2t(θ0) ∝ σ2
t (θ0), then the asymptotic variance of the QLE

Σop =

{
E

1

σ2
t (θ0)

∂mt(θ0)

∂θ

∂mt(θ0)

∂θ⊤

}−1

,

is optimal in the sense that Σ−Σop is positive de�nite.

�Godambe's sense of optimality is non-asymptotic
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Estimating function approach
Change-point tests

Test for breaks in the conditional mean

Assuming y1, . . . , yn satisfy Et−1(yt) = mt(θt), where θt ∈ Θ, we
consider testing

H0 : θ1 = θ2 = · · · = θn

against the alternative of at least one unknown breakpoint.

Inspired by CUSUM statistics used in changepoint problems, we

consider the quasi-score process, de�ned for u ∈ [0, 1] by

T̃ n(u) =
1√
n

[nu]∑
t=1

Υ̃t(θ̂).

Note that T̃ n(0) = 0 and T̃ n(1) = 0.
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Estimating function approach
Change-point tests

Test for breaks in the conditional mean

A natural statistic for testing H0 is

S̃n = sup
u∈(0,1)

S̃n(u) = max
k∈{1,...,n−1}

S̃n(k/n),

where

S̃n(u) = T̃
⊤
n (u)I

−1
n T̃ n(u)

and In denotes a consistent estimator of

I = EΥt(θ0)Υ
⊤
t (θ0), Υt(θ) =

∂mt(θ)

∂θ

ϵt(θ)

κ2t(θ)
.

Detection of breaks in location time series models



Model and estimating function approach
Searching optimal or robust tests

Numerical illustrations

Estimating function approach
Change-point tests

Asymptotic behavior of the test statistic under the null

Under the previous assumptions, including H0, we have

S̃n
d→ S = sup

u∈(0,1)

d∑
j=1

{Bj(u)}2,

where B(u) = (B1(u), . . . , Bd(u))
⊤ is a d-dimensional standard

Brownian bridge.

At the nominal level α ∈ (0, 1), rejection region of H0 of the form:{
max
1≤k≤n

S̃n(k/n) > S1−α

}
.
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Change-point tests

Alternative Nyblom test

The Nyblom-type test (based on Nyblom (1989)) rejects the

parameter constancy for large values of

S̃N
n :=

1

n

n∑
k=1

S̃n(k/n)

which, by the continuous mapping theorem, has the asymptotic

distribution
∫ 1
0

∑d
j=1{Bj(u)}2du under H0.

Enjoys some optimality properties under the alternative that

the parameter process follows a martingale.

The CUSUM test also has optimality properties, but for

di�erent types of alternatives (see Horváth and Rice, 2023).
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Optimal QLE and optimal tests
Data driven detection of the optimal QLE
Testing with a misspeci�ed conditional mean

Optimality of the QLE for testing?

The QLE with κ2t(θ0) proportional to σ2
t (θ0) is optimal within the

class of EF estimators solving

n∑
t=1

at−1(θ)ϵ̃t(θ) = 0,

where at−1(θ) is a d× 1 vector belonging to Ft−1.

Does this Godambe's optimal QLE lead to optimal tests?

We consider local asymptotic powers.
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Optimal QLE and optimal tests
Data driven detection of the optimal QLE
Testing with a misspeci�ed conditional mean

Example of "local breaks"

Let u0 ∈ (0, 1). Assume y1, . . . , yn are independent and Gaussian

with variance σ2, and that yt = yt,n has mean

θ0 + δ1/
√
[nu0] when t ≤ [nu0];

θ0 + δ2/
√
n− [nu0] when t > [nu0].

We then have

1√
[nu0]

[nu0]∑
t=1

(yt − θ0) ∼ N
(
δ1, σ

2
)
,

1√
n− [nu0]

n∑
t=[nu0]+1

(yt − θ0) ∼ N
(
δ2, σ

2
)
.
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Optimal QLE and optimal tests
Data driven detection of the optimal QLE
Testing with a misspeci�ed conditional mean

Example of "local breaks" (continued)

In this simple example, y = n−1
∑n

t=1 yt is the Q(M)LE of θ0
(under the null δ1 = δ2 = 0 of no local break),

T̃n(u) = n−1/2

[nu]∑
t=1

(yt − y)

is the usual CUSUM process, and

S̃n = sup
u∈(0,1)

1

nσ̂2
y


[nu]∑
t=1

(yt − y)


2

, σ̂2
y =

1

n

n∑
t=1

(yt − y)2,

is nothing else than the Kolmogorov-Smirnov test statistic.
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Optimal QLE and optimal tests
Data driven detection of the optimal QLE
Testing with a misspeci�ed conditional mean

General situation

Let a single break located at a �xed proportion u0 of the

observations, and

θ̂(1) the QLE estimator computed on y1, . . . , y[u0n]

θ̂(2) the QLE estimator computed on y[u0n]+1, . . . , yn

θ̂ the QLE estimator computed on y1, . . . , yn.

Let the local alternatives H1,n(δ1, δ2) such that

√
nu0

(
θ̂(1) − θ0

)
d→ N

(
δ1,J

−1IJ−1
)
,√

n(1− u0)
(
θ̂(2) − θ0

)
d→ N

(
δ2,J

−1IJ−1
)
.
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Optimal QLE and optimal tests
Data driven detection of the optimal QLE
Testing with a misspeci�ed conditional mean

Local Asymptotic Power (LAP) of the tests

Under H1,n(δ1, δ2) and regularity conditions, for all u ∈ (0, 1)

S̃n(u)

u(1− u)

d→ χ2(d, λ)

where

λ =
1

u(1− u)
δ⊤u0

(u)JI−1Jδu0(u),

When
√
1− u0δ1 ̸=

√
u0δ2, we have λ ̸= 0 and

the best LAP is obtained for the optimal QLE.
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Optimal QLE and optimal tests
Data driven detection of the optimal QLE
Testing with a misspeci�ed conditional mean

Comparing LAPs of alternative tests

Let us test for the existence of a local break in the mean of a

sequence of independent Gaussian variables.

Consider 3 tests which reject for large values of S̃n S̃N
n and S̃W

n

de�ned by

S̃n = max
1≤k<n

S̃n

(
k

n

)
, S̃N

n =
1

n

n∑
k=1

S̃n

(
k

n

)
and

S̃W
n = max

1≤k<n

n2

k(n− k)
S̃n

(
k

n

)
with S̃n(k/n) =

{∑k
t=1(yt − y)

}2
/(nσ̂2

y).
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Optimal QLE and optimal tests
Data driven detection of the optimal QLE
Testing with a misspeci�ed conditional mean

Numerical illustration
50,000 independent replications with n = 1, 000; nominal level α = 1%, δ1 = −δ2 = 3
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Figure: Powers of the CUSUM, Nyblom, and Weighted CUSUM tests as a

function of the break date u0.
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Optimal QLE and optimal tests
Data driven detection of the optimal QLE
Testing with a misspeci�ed conditional mean

Searching for the optimal QLE (and thus for an optimal test)

There are as many QLEs as there are choices of the weighting

sequence κ̃2t. Under regularity conditions, all these QLEs are
consistent, but their performance depends on the chosen weights.

In practice, two situations:

1 The model at hand suggests several possible values of κ̃2t,
which must be chosen from the data.

2 The statistician has no idea of a reasonable κ̃2t.

In case 1, we suggest minimizing an empirical QLIK loss. In case 2,

we suggest using GARCH-type estimators.
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Optimal QLE and optimal tests
Data driven detection of the optimal QLE
Testing with a misspeci�ed conditional mean

Examples with "natural" weights

For count time series�the benchmark model being the

Poisson INGARCH�it seems natural to consider the weights

κ2t(θ) = mt(θ).

If one believes in a standard additive model, such as an

ARMA, it is natural to consider constant weights κ2t(·) = 1.

For positive data, such as durations or volumes, Multiplicative

Error Models (MEM) being often used, it is natural to consider

the weights κ2t(θ) = m2
t (θ).

In practice, the DGP is obviously unknown:

=⇒ data driven procedure for choosing between several weighting

schemes.
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Optimal QLE and optimal tests
Data driven detection of the optimal QLE
Testing with a misspeci�ed conditional mean

Optimal theoretical QLIK

For a stationary weighting sequence {κ2t(θ)}, let the theoretical
QLIK

QLIK(κ2t(θ)) = min
c>0

E

{
{yt −mt(θ)}2

cκ2t(θ)
+ log (cκ2t(θ))

}
.

Note that

σ2
t (θ0) = arg min

κ2∈Ft−1

QLIK(κ2).

Weights can be selected by minimizing the empirical QLIK over a

�nite set of potential weighting sequences.
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Optimal QLE and optimal tests
Data driven detection of the optimal QLE
Testing with a misspeci�ed conditional mean

Minimizing the empirical QLIK "loss"

For a set of weighting sequences,
{
κ̃
(i)
2t (θ), i ∈ {1, . . . , I}

}
, weights

are selected by minimizing over i the empirical QLIK loss function

QLIKn

(
κ̃
(i)
2· (θ̂)

)
=

1

n

n∑
t=1

{
ϵ̃2t (θ̂)

ĉ
(i)
n κ̃

(i)
2t (θ̂)

+ log
(
ĉ(i)n κ̃

(i)
2t (θ̂)

)}
,

ĉ(i)n =
1

n

n∑
t=1

ϵ̃2t (θ̂)

κ̃
(i)
2t (θ̂)

,

where θ̂ is a �rst step estimator of θ0. consistency of the method
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Optimal QLE and optimal tests
Data driven detection of the optimal QLE
Testing with a misspeci�ed conditional mean

GARCH estimation of the optimal weights

If there is no natural set of candidate weights, a simple solution

consists in estimating the conditional variance

σ2
t (θ0) = E

(
ϵ2t (θ0) | Ft−1

)
by �tting a GARCH-type model on the sequence

{ϵ̃1(θ̂), . . . , ϵ̃n(θ̂)}, where θ̂ is a �rst step (in general non optimal)

estimator of θ0.

For instance, �tting a simple GARCH(1,1) by QMLE leads to a

weighting sequence of the form

κ̃2t = ω̂ + α̂ϵ̃2t−1(θ̂) + β̂κ̃2,t−1.
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Optimal QLE and optimal tests
Data driven detection of the optimal QLE
Testing with a misspeci�ed conditional mean

Other GARCH-type estimation of the optimal weights

In order to allow weights proportional to the conditional mean, its

square or its inverse, as suggested previously, we can also �t

GARCH-X models by QMLE, leading to

κ̃2t = ω̂ + α̂ϵ̃2t−1(θ̂) + β̂κ̃2,t−1 + π̂1|m̃t(θ̂)|

or

κ̃2t = ω̂ + α̂ϵ̃2t−1(θ̂) + β̂κ̃2,t−1 + π̂1|m̃t(θ̂)|+ π̂2m̃
2
t (θ̂).
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Optimal QLE and optimal tests
Data driven detection of the optimal QLE
Testing with a misspeci�ed conditional mean

Change-point estimation

Assume that, for u0 ∈ (0, 1]

yt = yt,n =

{
mt(θ1) if t ≤ [nu0]
mt(θ2) if t > [nu0]

+ ϵt,

where (ϵt) is such that Et−1(ϵt) ≡ 0.

Assume there exist stationary processes, (y
(1)
t )t∈Z and (y

(2)
t )t∈Z,

approximating the observed process before and after the break,

respectively.

For all θ ∈ Θ, let

m
(i)
t (θ) = m(θ; y

(i)
t−1, y

(i)
t−2, . . . ), κ

(i)
2t (θ) = κ2(θ; y

(i)
t−1, y

(i)
t−2, . . . )

be stationary approximations of the conditional mean and weight

sequence before and after the break.
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Optimal QLE and optimal tests
Data driven detection of the optimal QLE
Testing with a misspeci�ed conditional mean

The QLE converges to a pseudo-true value

It can be shown that, under general conditions, θ̂ converges to the

unique solution θ⋆
0 = θ⋆

0(θ1,θ2) of the equation

u0E
{
Υ

(1)
t (θ)

}
+ (1− u0)E

{
Υ

(2)
t (θ)

}
= 0,

where

Υ
(i)
t (θ) =

∂m
(i)
t (θ)

∂θ

y
(i)
t −m

(i)
t (θ)

κ
(i)
2t (θ)

.
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Optimal QLE and optimal tests
Data driven detection of the optimal QLE
Testing with a misspeci�ed conditional mean

The break fraction is consistently estimated

Let the change-point estimator

k̃ = arg max
k∈{1,...,n−1}

S̃n(k/n), S̃n(u) = T̃
⊤
n (u)I

−1
n T̃ n(u).

Under regularity conditions, when u0 ∈ (0, 1) and θ1 ̸= θ2 we have

k̃

n
→ u0, in probability as n → ∞.
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Case where mt(·) is misspeci�ed

The intuition is that, even if the conditional mean is not correctly

speci�ed, its estimated value should not vary too much when the

DGP is stable.

Let Υt(θ) =
∂mt(θ)

∂θ
yt−mt(θ)
κ2t(θ)

.

Assume

A3∗: If E{Υt(θ)} = 0 for some θ ∈ Θ, then θ = θ∗
0, where the

pseudo-true value θ∗
0 ∈

◦
Θ.

A5∗: We have σ2
t (θ

∗
0) > 0, a.s. Moreover, if λ⊤ ∂mt(θ

∗
0)

∂θ = 0 a.s.

then λ = 0d.
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Example: conditional mean approximated by an AR(1)

Assume, perhaps wrongly, that mt(θ) = a+ byt−1 with

θ = (a, b)⊤. We then have

Υt(θ) =

(
1

yt−1

)
1

κ2t
(yt − a− byt−1)

Then A3∗ is satis�ed with

θ∗
0 = A−1b, b =

(
E yt

κ2t

E ytyt−1

κ2t

)
, A =

(
E 1

κ2t
E yt−1

κ2t

E yt−1

κ2t
E

y2t−1

κ2t

)

when b and A exist and A is invertible (which is for instance the

case when κ2t is constant and Var(yt) > 0).

Detection of breaks in location time series models



Model and estimating function approach
Searching optimal or robust tests

Numerical illustrations

Optimal QLE and optimal tests
Data driven detection of the optimal QLE
Testing with a misspeci�ed conditional mean

Asymptotics for CUSUM of misspeci�ed quasi-scores

Let Υ∗
t = Υt(θ

∗
0) =

∂mt(θ
∗
0)

∂θ
ϵt(θ

∗
0)

κ2t(θ
∗
0)
.

Under for instance mixing and moment conditions, we have the CLT

1√
n

n∑
t=1

Υ∗
t

d→ N (0, I∗)

for some long-run nonsingular variance matrix I∗.

Let I∗
n be a consistent HAC estimator of I∗, and let the statistic

S̃∗
n = sup

u∈(0,1)
S̃∗
n(u), S̃∗

n(u) = T̃
⊤
n (u)I

∗−1
n T̃ n(u).

Under regularity conditions including H0 (no break), we have

S̃∗
n

d→ S = supu∈(0,1)
∑d

j=1{Bj(u)}2.
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Monte Carlo design

N = 1, 000 simulations of size n = 2, 000 of

yt | Ft−1 ∼ Gammat, Et−1(yt) = mt, Vart−1(yt) = σ2
t ,

where mt = c+ ayt−1 + bmt−1 and

DGP A: σ2
t = 1; DGP B: σ2

t = mt;

DGP C: σ2
t = m2

t ; DGP D: σ2
t = m

3/2
t .

We considered 8 di�erent QLEs:

QLE A: κ̃2t ∝ 1; QLE B: κ̃2t ∝ mt; QLE C: κ̃2t ∝ m2
t ;

QLE D: κ̃2t ∝ m
3/2
t ; QLIK; GARCH; X1; X2,

where the last 4 QLE are optimal QLEs estimated by the

QLIKn-method or by �tting GARCH or two di�erent GARCH-X.
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Empirical size of the tests (n = 2, 000, N = 1, 000)

A B C D QLIK GARCH X1 X2

DGP A

1% 1.300 2.500 7.200 6.600 1.200 0.900 0.700 0.700

5% 4.700 8.300 15.400 13.000 4.300 4.500 4.700 4.700

10% 10.300 14.500 22.800 20.900 9.900 9.300 9.200 9.300

DGP B

1% 1.700 0.700 1.300 1.100 0.700 0.400 0.600 0.700

5% 6.700 5.800 5.900 5.400 5.700 4.700 5.100 5.200

10% 11.700 10.100 13.600 12.000 10.100 8.500 9.300 9.300

DGP C

1% 5.300 1.000 1.000 0.600 1.000 0.600 0.500 0.800

5% 13.500 5.500 5.500 5.700 5.500 5.000 4.700 5.500

10% 19.900 10.800 10.100 10.600 10.100 9.600 10.000 9.700

DGP D

1% 2.500 1.000 1.300 0.800 0.800 0.500 0.900 0.900

5% 8.500 5.800 6.300 6.100 6.200 4.900 5.200 5.600

10% 15.800 10.600 11.100 10.700 10.800 10.900 11.300 10.900
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Empirical powers (break at t = 800)

α A B C D QLIK GARCH X1 X2

DGP A∗

1% 85.500 38.500 26.700 33.400 78.000 81.800 81.300 81.200

5% 95.700 57.700 40.700 51.400 90.500 94.800 94.000 94.000

10% 98.300 70.400 50.300 62.200 94.700 97.900 97.500 97.500

DGP B∗

1% 66.800 86.000 34.800 77.000 85.700 83.200 88.800 88.800

5% 84.100 97.700 57.800 91.600 97.600 96.300 98.300 98.200

10% 92.300 99.100 71.000 96.700 99.100 98.800 99.500 99.300

DGP C∗

1% 54.000 75.500 86.300 89.100 86.700 87.400 88.900 91.700

5% 67.000 88.900 97.300 96.800 97.400 96.800 97.200 98.800

10% 74.500 93.400 99.300 99.400 99.300 98.500 99.100 99.400

DGP D∗

1% 55.700 87.400 70.900 92.600 91.000 89.000 88.900 91.100

5% 72.400 97.400 89.600 98.500 98.100 98.300 98.000 98.300

10% 81.100 99.100 95.800 99.400 99.200 99.100 99.100 99.300
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Change point estimates (nu0 = 3200, n = 8000, DGP A∗)

A B C D Q G X1 X2
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Figure: Distributions of the change point estimes
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Illustration on exchange rates

Returns series of daily exchange rates of the USD and CHF

with respect to the Euro.

1999-01-04 to 2022-07-12 (6025 observations).

GARCH(1,1) (i.e. ARMA(1,1) on the squares) estimated by

QLEs.

tests for breaks performed using the statistic S̃n.
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No evidence of breaks for USD but breaks for CHF
Swiss franc was pegged to the euro between Sept. 6, 2011 and Jan. 15, 2015
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Summary

CUSUM of quasi-score for detecting breaks

obviously requires less strong assumptions than CUSUM of

Fisher's score (semi-parametric method);

leads to an in�nite number of break tests (as many as

time-varying weights κ̃2t);

can be more e�cient than CUSUM of QMLE-score

(data-driven choice of θ̂);

can even work when mt is misspeci�ed (with HAC version);

is easy to implement (just one optimization to compute θ̂);

this work is still in progress (needs weighted versions to detect

early or late breaks, more applications, ...)
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Thank you!
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Regularity conditions

A1: The process (yt)t∈Z is strictly stationary and ergodic.

A2: There exists ρ ∈ [0, 1) such that, a.s. supθ∈Θ |mt(θ)− m̃t(θ)| ≤ Ktρt, where
Kt is a generic Ft−1-measurable r.v. such that supt EKr

t < ∞ for some r > 0.

A3: Let Υt(θ) =
∂mt(θ)

∂θ
ϵt(θ)
κ2t(θ)

. If E{Υt(θ)} = 0 for some θ ∈ Θ, then θ = θ0.

The parameter θ0 belongs to the interior of the compact set Θ.

A4: The function θ 7→ mt(θ) is continuously di�erentiable, and

sup
θ∈Θ

∥∥∥∥∂mt(θ)

∂θ
−

∂m̃t(θ)

∂θ

∥∥∥∥ ≤ Ktρ
t, a.s.

where Kt is as in A2, ∥ · ∥ denotes any norm on Rd. Moreover, assume

E|yt|s < ∞ and E supθ∈Θ

{
|mt(θ)|s +

∥∥∥ ∂mt(θ)
∂θ

∥∥∥s} < ∞, for some s > 0.

A5: We have σ2
t (θ0) > 0, a.s. Moreover, if λ⊤ ∂mt(θ0)

∂θ
= 0 a.s. then λ = 0d.

A6: There exists a constant κ > 0 such that infθ∈Θ κ2t(θ) ≥ κ a.s.
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Regularity conditions (continued)

A7: For all θ ∈ Θ the sequence {κ2t(θ)}t∈Z is stationary, ergodic and

Ft−1-measurable, the function θ 7→ κ2t(θ) admits continuous derivatives, there

exist ρ ∈ [0, 1) and Kt as in A2 such that, a.s.,

sup
θ∈Θ

{
|κ2t(θ)− κ̃2t(θ)|+

∥∥∥∥∂κ2t(θ)

∂θ
−

∂κ̃2t(θ)

∂θ

∥∥∥∥} ≤ Ktρ
t

for n large enough. Moreover E supθ∈Θ |κ2t(θ)|s < ∞ for some s > 0.

A8: We have

E sup
θ∈Θ

∥Υt(θ)∥2 < ∞ and E sup
θ∈Θ

∥∥∥∥∂Υt(θ)

∂θ⊤

∥∥∥∥ < ∞.

return
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Unbiased EF and motivating example

An EF is said to be unbiased when Ehn(θ0) = 0.

Example (Durbin (1960))

In the AR(1) model yt = θyt−1 + ηt, ηt iid (0, σ2), the OLS solves

the unbiased estimating equation
∑n

t=2 ytyt−1 − θ
∑n

t=2 y
2
t−1 = 0

and has the smallest variance among the linear unbiased estimating

functions of the form
∑n

t=2 at−1(yt − θyt−1) where at−1 is a

function of y1, . . . , yt−1 and satis�es some identi�ability conditions

(a kind of BLUE property).
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A natural class of EF for the weak location model

Notation convention: Xt ∈ Ft = σ(yu, u < t) and
X̃t ∈ It = σ(yu, 1 ≤ u < t) (It is the information available at t).

Extending Durbin's EF for the AR(1), consider EFs of the form

h̃n(θ) =

n∑
t=1

ãt−1(θ)ϵ̃t(θ), ϵ̃t(θ) = yt − m̃t(θ),

where, for all θ ∈ Θ, the variable m̃t(θ) denotes a It−1-measurable

approximation of mt(θ) and the d× 1 vector ãt(θ) ∈ It.

Consider QLEs obtained by solving the EE h̃n(θ) = 0.
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Optimal EF in Godambe's sense

Godambe (1985) introduced the notion of optimal estimating

function. Let H the class of unbiased EFs satisfying some regularity

conditions. An estimating function h∗
n is said to be optimal in H if{

E

[
∂hn(θ0)

∂θ′

]}−1

E{hn(θ0)h
′
n(θ0)}

{
E

[
∂h′

n(θ0)

∂θ

]}−1

is minimized at hn(θ0) = h∗
n(θ0) in the sense of semi-positive

de�nite matrices.

Intuition: small variance at θ0 (numerator) and high sensitivity

to parameter change (denominator).

Godambe's justi�cation: h∗ is the score when H allows it.
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Optimal unbiased EF for the weak location model

Godambe (1985) (see also Chandra and Taniguchi, 2001) showed

that, within the class H of the unbiased EFs of the form∑n
t=1 at−1(θ)ϵt(θ), an optimal EF in Godambe's sense is

n∑
t=1

∂mt(θ)

∂θ

1

σ2
t (θ)

{yt −mt(θ)}

where σ2
t (θ) is the conditional variance (which is generally

unknown and depends on nuisance parameters).

Require that mt(θ) and σ2
t (θ) be It−1-measurable (which is

generally not the case). return
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GMM

We have moment restrictions of the form Egt(θ) = 0 i� θ = θ0,
where gt(θ) = ztϵt(θ) with a vector of instruments zt ∈ Ft−1

valued in Rm, m ≥ d.

Let gn(θ) = n−1
∑n

t=1 g̃t(θ), where g̃t(θ) is an It-measurable
approximation of gt(θ).

The GMM estimators minimize

g′
n(θ)Ŝ

−1
gn(θ),

where Ŝ is a positive de�nite weight matrix.
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QL and GMM estimators

The �rst order conditions yield the EF

ĥn(θ) =

n∑
t=1

Ω̂t(θ)Ŝ
−1

gn(θ) =

n∑
t=1

Ω̂(θ)Ŝ
−1

z̃tϵ̃t(θ)

where Ω̂t(θ) =
∂
∂θ g̃

′
t(θ) and Ω̂(θ) = n−1

∑n
t=1 Ω̂t(θ).

Therefore the GMM estimators are QLEs, and

the optimal QLE ⪰ the optimal GMM

(in the Godambe's sense and asymptotically).

Christensen, Posch and van der Wel (JoE, 2016) showed that in

general

the optimal QLE ≻ the optimal GMM. return
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Justi�cation of the selection method

Consistency of the weights selected by QLIK

Let two sequences
{
κ
(1)
2t (θ), κ̃

(1)
2t (θ)

}
t
and

{
κ
(2)
2t (θ), κ̃

(2)
2t (θ)

}
t

such that the regularity conditions of the CAN of the QLEs are

satis�ed. For θ ∈ Θϑ, if

QLIK(κ
(1)
2t (θ)) < QLIK(κ

(2)
2t (θ)),

then, almost surely

QLIKn

(
κ̃
(1)
2· (θ)

)
= min

{
QLIKn

(
κ̃
(1)
2· (θ)

)
,QLIKn

(
κ̃
(2)
2· (θ)

)}
for n large enough.

return
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