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Illustrative introduction
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We observe before and after missing ↪→ can we use the di�erence

between pdf to estimate missing probability?
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Can we use the di�erence between cdf to estimate missing cdf?
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Illustration

{
One sample with Y completely observed
One sample with Y with missing values

⇒ P(Y missing)?

Comparing pdf or cdf seems too complex if the missing mechanism

depends on other variables X1, X2, · · ·
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Several questions

Several questions arise:

▶ Understanding the missing mechanism (is it due to the

unknown value? to other variables?)

▶ Estimate the missing probability (there is little work, and only

in the parametric case)

▶ Imput missing values (many works, depending on the missing

mechanism)
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Notation

We observe continuous random variables X,Y .

X and Y can be multidimensional.

There is a missing mechanism acting on Y .

Write CY the indicator of missing value:

▶ Y missing (CY = 0)

▶ or Y observed (CY = 1).
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Mechanism of missing value

Rubin (1976)

▶ MCAR (Missing Completely At Random)

▶ MAR (Missing At Random)

▶ MNAR (Missing Not At Random)
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MCAR

The missing mechanism is not related to X or Y . CY depends

neither on X nor Y .

In this case we can remove the missing values.

But there is a loss of information!
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MAR

The missing mechanism is related to X, but not to Y . CY depends

on X (observed), but not on Y .

We can try a regression model to reconstruct Y .
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MNAR

The missing mechanism is related to both X and Y . CY depend on

both X (observed) and Y (unobserved).

A major problem, but few solutions.
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Missing probability

X and Y are continuous.

Copula transformation to get uniform distributions:

U = FX(X), V = FY (Y ), Z = CY V,

Z can be observed (CY = 1) or not (CY = 0).

Y missing ⇔ Z missing.

Assumption

We know (or we estimate) the cdf of Y .

↪→ We need to have observed Y otherwise!!
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Strong hypothesis, but realistic...

▶ We need to have information about Y through a survey,

another sample, a signal before the loss of data, etc.

↪→ We then estimate the cdf of the missing variable Y .

▶ This is the price we have to pay.

▶ We also estimate the cdf of the (fully observed) variable X.
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Missing probability

Copula transformation:

U = FX(X), V = FY (Y ), Z = CY V,

Associated missing probability:

p(u, v) = P(CY = 1|U = u, V = v) = E(CY |U = u, V = v),

Original data:

P(CY = 1|X = x, Y = y) = p(FX(x), FY (y)).
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L2([0, 1]) basis

▶ Why copula transformation?

↪→ Uniform distributions

↪→ We know an orthonormal basis of L2([0, 1]): {Lk; k ∈ N}
the set of Legendre orthonormal polynomials.

▶ Why orthonormal polynomials?

E((CY V )ℓ) = E(Cℓ
Y V

ℓ) = E(CY V
ℓ) = E(p(U, V )V ℓ)
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CDF estimations

Another n′-sample F̂Y Our n-sample

Y observed X observed

Y missing

F̂X

▶ The empirical cdf of Y is based on an independent sample of

size n′ such that our sample size n satis�es n/n′ → l < ∞.

▶ The empirical cdf of X is based on our sample (since X is

observed).

In the following, we can change a cdf F with its empirical estimator

F̂ without modifying the asymptotic results.
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MAR case
CY depends on the observed variable X, and is independent of Y .

We have

U = FX(X).

In that case we simply write

p(u) = P(CY = 1|U = u).

Proposition

For all u ∈ (0, 1), we have:

p(u) = E(CY ) +
∑
k>0

{
E(Lk(U)CY )

}
Lk(u)

:=
∑
k≥0

αkLk(u).
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Approximation & Estimation

Kth order approximation

pK(u) =
∑
k≤K

αkLk(u).

Kth order estimation

p̂K(u) =
∑
k≤K

α̂kLk(u),

where

α̂k =
1

n

n∑
i=1

Lk(Ui) =
1

n

n∑
i=1

Lk(F̂X(Xi)).

↪→ We need to add a constraint to stay in ]0, 1[.
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Choosing the order: Part I

p̂K(u) =
∑
k≤K

α̂kLk(u),

To choose (automatically) the order K = K(n) we can use the

asymptotic normality of the coe�cients α̂k. A series of embedded

test can be deployed.
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Choosing the order: Part II

The choice of K(n) can be based on a LASSO technique.

Indeed:

pk(u) =
∑
k≤K

αkLk(u)

≈ E(CY = 1|u)

and the αk can be considered as regression coe�cients on

L1(u), · · · , LK(u).
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Illustration (MAR case)

We consider a logit model:

logit
(
P(CY = 1|X = x, Y = y))

)
= ax+ by + c,

with a = −1, b = −1, and c = 1.

MAR case ↪→ b = 0
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Approximation
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Errors
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Univariate MNAR case
We �rst consider one variable Y . CY depends of Y . We have

V = FY (Y ), Z = CY V,

and we simply write

p(v) := P(CY = 1|V = v).

Proposition

For all v ∈ (0, 1), we have:

p(v) = E(CY ) +
∑
k>0

{
E(Lk(Z)) + Lk(0)E(CY − 1)

}
Lk(v)

:=
∑
k≥0

βkLk(v)
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Approximation & Estimation

Kth order approximation

pK(v) =
∑
k≤K

βkLk(v).

Kth order estimation

p̂K(v) =
∑
k≤K

β̂kLk(v),

where

β̂k =
1

n

n∑
i=1

{Lk(Zi)) + Lk(0)(CYi − 1)}.

25/35



Illustration (univariate MNAR case)

We consider a logit model:

logit
(
P(CY = 1|X = x, Y = y))

)
= ax+ by + c,

with a = −1, b = −1, and c = 1.

Univariate MNAR case ↪→ a = 0
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Approximation
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Errors
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MNAR (general case)

CY depends on both X and Y . We have

U = FX(X), V = FY (Y ), Z = CY V,

Proposition

For all (u, v) ∈ [0, 1]2, we have:

p(u, v) =

E(CY ) +
∑

(k,ℓ) ̸=(0,0)

E
{
Lk(U)(Lℓ(Z) + Lℓ(0)(CY − 1))

}
Lk(u)Lℓ(v).
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Approximation & Estimation

To simplify we de�ne the Kth order approximation as:

pK(u) =
∑

k≤K;ℓ≤K

α̂k,ℓLk(u)Lℓ(v),

and its associated estimator

p̂K(u) =
∑

k≤K;ℓ≤K

α̂k,ℓLk(u)Lℓ(v).
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MISE

We consider the MISE (Mean Integrated Square Error) criterion to

evaluate the behavior of the estimators:

MISE(p̂K) := E
(
∥p− p̂K∥2

)
,

where

∥p∥2 :=

∫
[0,1]2

p(u, v)2dudv.

Corollary

Let K = K(n) = o(n1/4), such that K(n) → ∞ as n tends to

in�nity. Then

MISE(p̂K(n)) → 0, as n tends to infinity.
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Illustration

P(CY = 1|X = x, Y = y)) =
|a ∗ x+ b ∗ y|

|a ∗ x+ b ∗ y|+ c

with a = 1, b = −1, and c = 1.

We �x x or y to represents a plot of probabilities.
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Estimation
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Conclusion

In conclusion, this approach can be used to understand the

underlying non-response mechanism when the variable of interest

has been observed (independently) elsewhere. This non-response

can also be seen as presence or absence, life or death, and

ultimately as censorship. For example, in ecology, if we observe

organisms that have survived a certain environment, or species that

have migrated. We can estimate the probability of migration, or

death, as a function of individual characteristics.
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Perspective: multiple imputation

We want to apply a model to (X,Y ).

Given v (that is, X), we use the probabilities of p̂K(u, v) to run M
simulations and apply M models to obtain M intermediate results,

which we combine to obtain a �nal result.
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