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~~ Bg is not self-similar anymore

(except when B is a stable LEVY PROCESS and ¢ is inverse stable)
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~ Xisa S%S issued from x > 0 with cadlag paths

Our objective is to analyze the first passage time (or ruin time)
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Note that T is also the absorption time of X* = (X;,0 < ¢t < T) with X"
being a positive S%S issued from = > 0



A (SHORT) REVIEW

T = inf{t > 0; X; < 0} where X; = X,

oct=xt=tie. X=XisSaSand T=T
® BERTOIN AND YOR (09) for X with no negative jumps
® DALANG AND PESKIR (12), KuzNETSOV (13) for X a stable Lévy process
® P. (14) for X has no positive jumps
® P. AND Savov (21) for any X

o X¢ = Ze, — T, Z a Lévy process, ¢ the inverse of a subordinator x, and
7 is another subordinator: CONSTANTINESCU, LOEFFEN AND P. (23)
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Let Ty = inf{t > 0; X, < 0}. Then, fr, € ¢/N*!"?(R,), P. AND Savov

fry(¢) is smoother than fr, by [N] — [Ng]| > 0 number of derivatives
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FPT do not characterize a process



