ON SOME INTRIGUING PROPERTIES OF THE ABSORPTION TIME OF A CLASS OF SELF-SIMILAR PROCESSES

> PIERRE PATIE Cornell University

Joint work with A. Srapyonian, and, R. Loeffen and M. Savov

ECODEP CONFERENCE

Let B be a Brownian motion and  $\mathfrak c$  the inverse of a  $\beta\text{-stable subordinator }\chi$ 

Let B be a Brownian motion and  ${\bf c}$  the inverse of a  $\beta\text{-stable subordinator }\chi$ 

MEERSCHAERT AND SCHEFFLER showed that  $(B_{\mathfrak{c}_t})_{t\geq 0}$  is a  $\frac{2}{\beta}$ -self-similar,  $0 < \beta < 1$ , non-Markovian process which is governed by

$$\partial_t^\beta = \frac{1}{2}\partial_x^2$$

 $\partial_t^{\beta}$  is the CAPUTO fractional derivative. This time-fractional differential equation was introduced by ZASLAVSKY as a model for Hamiltonian chaos

Let B be a Brownian motion and  ${\mathfrak c}$  the inverse of a  $\beta\text{-stable subordinator }\chi$ 

MEERSCHAERT AND SCHEFFLER showed that  $(B_{\varepsilon_t})_{t\geq 0}$  is a  $\frac{2}{\beta}$ -self-similar,  $0 < \beta < 1$ , non-Markovian process which is governed by

$$\partial_t^eta = rac{1}{2} \partial_x^2$$

 $\partial_t^{\beta}$  is the CAPUTO fractional derivative. This time-fractional differential equation was introduced by ZASLAVSKY as a model for Hamiltonian chaos



Let B be a Brownian motion and  ${\mathfrak c}$  the inverse of a  $\beta\text{-stable subordinator }\chi$ 

MEERSCHAERT AND SCHEFFLER showed that  $(B_{\varepsilon_t})_{t\geq 0}$  is a  $\frac{2}{\beta}$ -self-similar,  $0 < \beta < 1$ , non-Markovian process which is governed by

$$\partial_t^eta = rac{1}{2} \partial_x^2$$

 $\partial_t^{\beta}$  is the CAPUTO fractional derivative. This time-fractional differential equation was introduced by ZASLAVSKY as a model for Hamiltonian chaos



$$\partial_t^\beta = \frac{1}{2}\partial_x^2$$

$$\partial_t^\beta = \frac{1}{2} \partial_x^2$$

There is an important literature devoted to the analysis of the extension of the delayed BM (or fractal BM)  $B_c$  by either replacing

♦ B by a LÉVY process  $(\frac{1}{2}\partial_x^2$  is replaced by the Lévy generator)

$$\partial_t^\beta = \frac{1}{2}\partial_x^2$$

- ♦ *B* by a LÉVY process  $(\frac{1}{2}\partial_x^2)$  is replaced by the Lévy generator)
- $\diamond~$  c by the inverse of a subordinator  $(\partial_t^\beta$  is replaced by a more general additive convolution operator)

$$\partial_t^\beta = \frac{1}{2}\partial_x^2$$

- ♦ *B* by a LÉVY process  $(\frac{1}{2}\partial_x^2)$  is replaced by the Lévy generator)
- $\diamond~$  c by the inverse of a subordinator  $(\partial_t^\beta$  is replaced by a more general additive convolution operator)
- $\diamond\,$  a combination of the two previous cases

$$\partial_t^\beta = \frac{1}{2}\partial_x^2$$

- ♦ *B* by a LÉVY process  $(\frac{1}{2}\partial_x^2)$  is replaced by the Lévy generator)
- $\diamond~$  c by the inverse of a subordinator  $(\partial_t^\beta$  is replaced by a more general additive convolution operator)
- $\diamond\,$  a combination of the two previous cases
- $\leadsto$  Dynamics of complex systems with memory effects

$$\partial_t^\beta = \frac{1}{2}\partial_x^2$$

There is an important literature devoted to the analysis of the extension of the delayed BM (or fractal BM)  $B_c$  by either replacing

- ♦ *B* by a LÉVY process  $(\frac{1}{2}\partial_x^2)$  is replaced by the Lévy generator)
- $\diamond~$  c by the inverse of a subordinator  $(\partial_t^\beta$  is replaced by a more general additive convolution operator)
- $\diamond\,$  a combination of the two previous cases
- $\rightsquigarrow$  Dynamics of complex systems with memory effects

 $\leadsto$  Application in physics, neurology, epidemiology, pollution dynamics, biochemical reaction, mathematical finance, ruin theory  $\ldots$ 

BAEUMER, CHEN, CONSTANTINESCU, HAIRER, ORSINGHER, OVIDIO, MEERSCHAERT, TOALDO, SCHILLING AND MANY OTHERS ...

$$\partial_t^\beta = \frac{1}{2}\partial_x^2$$

There is an important literature devoted to the analysis of the extension of the delayed BM (or fractal BM)  $B_c$  by either replacing

- ♦ *B* by a LÉVY process  $(\frac{1}{2}\partial_x^2)$  is replaced by the Lévy generator)
- $\diamond~$  c by the inverse of a subordinator  $(\partial_t^\beta$  is replaced by a more general additive convolution operator)
- $\diamond\,$  a combination of the two previous cases
- $\rightsquigarrow$  Dynamics of complex systems with memory effects

 $\leadsto$  Application in physics, neurology, epidemiology, pollution dynamics, biochemical reaction, mathematical finance, ruin theory  $\ldots$ 

BAEUMER, CHEN, CONSTANTINESCU, HAIRER, ORSINGHER, OVIDIO, MEERSCHAERT, TOALDO, SCHILLING AND MANY OTHERS ...

# $\rightsquigarrow B_{c}$ is not self-similar anymore

(except when B is a stable Lévy process and c is inverse stable)

### Definition

Let X be the stochastic process defined, for  $t \ge 0$ , by

$$\mathbb{X}_t = X_{\mathbb{C}_t} \quad \text{where } \mathbb{C}_t = \inf\{s > 0; \ \chi_s > t\}$$

where X and  $\chi$  are taken independent and are such that

- ♦ X is a  $\alpha$ -self-similar Markov process (S $_{\alpha}$ S) issued from x > 0
- ♦  $\chi$  is an increasing  $\beta$ -self-similar Markov process (S<sub> $\beta$ </sub>S) issued from 0

 $\rightsquigarrow \mathbb{C}$  is  $\frac{1}{\beta}$ -self-similar non-Markovian  $(\mathbb{S}_{\frac{1}{\beta}}\mathbb{S})$  with continuous paths  $\rightsquigarrow \mathbb{X}$  is a  $\mathbb{S}_{\frac{\alpha}{2}}\mathbb{S}$  issued from x > 0 with cadlag paths

### Definition

Let X be the stochastic process defined, for  $t \ge 0$ , by

$$\mathbb{X}_t = X_{\mathfrak{c}_t} \quad \text{where } \mathfrak{c}_t = \inf\{s > 0; \ \boldsymbol{\chi_s} > t\}$$

where X and  $\chi$  are taken independent and are such that

- ♦ X is a  $\alpha$ -self-similar Markov process (S $_{\alpha}$ S) issued from x > 0
- ♦  $\chi$  is an increasing  $\beta$ -self-similar Markov process (S<sub> $\beta$ </sub>S) issued from 0

 $\rightsquigarrow \mathbb{C}$  is  $\frac{1}{\beta}$ -self-similar non-Markovian  $(\mathbb{S}_{\frac{1}{\beta}}\mathbb{S})$  with continuous paths  $\rightsquigarrow \mathbb{X}$  is a  $\mathbb{S}_{\frac{\alpha}{\beta}}\mathbb{S}$  issued from x > 0 with cadlag paths

Our objective is to analyze the first passage time (or ruin time)

 $\mathbb{T} = \inf\{t > 0; \ \mathbb{X}_t \leq 0\}$  where  $\mathbb{X}_t = X_{\mathfrak{c}_t}$ 

### Definition

Let X be the stochastic process defined, for  $t \ge 0$ , by

$$\mathbb{X}_t = X_{\mathfrak{c}_t} \quad \text{where } \mathfrak{c}_t = \inf\{s > 0; \ \boldsymbol{\chi_s} > t\}$$

where X and  $\chi$  are taken independent and are such that

- ♦ X is a  $\alpha$ -self-similar Markov process (S $_{\alpha}$ S) issued from x > 0
- ♦  $\chi$  is an increasing  $\beta$ -self-similar Markov process (S<sub> $\beta$ </sub>S) issued from 0
- $\rightsquigarrow \mathbb{C}$  is  $\frac{1}{\beta}$ -self-similar non-Markovian  $(\mathbb{S}_{\frac{1}{\beta}}\mathbb{S})$  with continuous paths  $\rightsquigarrow \mathbb{X}$  is a  $\mathbb{S}_{\frac{\alpha}{\beta}}\mathbb{S}$  issued from x > 0 with cadlag paths

Our objective is to analyze the first passage time (or ruin time)

 $\mathbb{T} = \inf\{t > 0; \ \mathbb{X}_t \leq 0\}$  where  $\mathbb{X}_t = X_{\mathfrak{c}_t}$ 

Note that  $\mathbb{T}$  is also the absorption time of  $\mathbb{X}^+ = (\mathbb{X}_t, 0 \leq t < \mathbb{T})$  with  $\mathbb{X}^+$  being a positive  $\mathbb{S}_{\frac{\alpha}{\beta}} \mathbb{S}$  issued from x > 0

# A (SHORT) REVIEW

 $\mathbb{T} = \inf\{t > 0; \ \mathbb{X}_t \le 0\} \text{ where } \mathbb{X}_t = X_{\mathfrak{c}_t}$ 

 $\diamond \ \mathbb{C}_t = \chi_t = t$ , i.e.  $\mathbb{X} = X$  is  $S\alpha S$  and  $\mathbb{T} = T$ 

- BERTOIN AND YOR (09) for X with no negative jumps
- DALANG AND PESKIR (12), KUZNETSOV (13) for X a stable Lévy process
- P. (14) for X has no positive jumps
- P. AND SAVOV (21) for any X
- ♦  $X_t = Z_{c_t} \tau_t$ , Z a Lévy process, c the inverse of a subordinator  $\chi$ , and  $\tau$  is another subordinator: CONSTANTINESCU, LOEFFEN AND P. (23)

We set  $\alpha = \beta = 1$ , i.e.  $X, \chi \in S_1S$  and  $\mathbb{X} \in S_1S$ 

We set  $\alpha = \beta = 1$ , i.e.  $X, \chi \in S_1S$  and  $\mathbb{X} \in S_1S$ , and introduce

 $\diamond \ \mathcal{N} = \{ \Psi(z) = \Psi(0) + \frac{\sigma^2}{2} z^2 + \mathbf{a} z + \int_{\mathbb{R}} (e^{zy} - 1 - yz \mathbb{I}_{\{|y| < 1\}}) M(dy)$ where  $-\Psi(0), \sigma^2 \ge 0, \mathbf{a} \in \mathbb{R}$  and M a Lévy measure}

 $\diamond \ \mathcal{B} = \{\phi(z) = \phi(0) + \mathrm{d}z + \int_0^\infty 1 - e^{-zy} m(dy), \phi(0), \mathrm{d} \ge 0, m \text{ a Lévy measure}\}$ 

We set  $\alpha = \beta = 1$ , i.e.  $X, \chi \in S_1S$  and  $\mathbb{X} \in S_1S$ , and introduce

 $\diamond \ \mathcal{N} = \{ \Psi(z) = \Psi(0) + \frac{\sigma^2}{2} z^2 + \mathbf{a} z + \int_{\mathbb{R}} (e^{zy} - 1 - yz \mathbb{I}_{\{|y| < 1\}}) M(dy)$ where  $-\Psi(0), \sigma^2 \ge 0, \mathbf{a} \in \mathbb{R}$  and M a Lévy measure}

 $\diamond \ \mathcal{B} = \{\phi(z) = \phi(0) + \mathrm{d}z + \int_0^\infty 1 - e^{-zy} m(dy), \phi(0), \mathrm{d} \ge 0, m \text{ a Lévy measure}\}$ 

 $\rightsquigarrow~$  The Wiener-Hopf factorization

$$\Psi(z) = -\phi_{-}(z)\phi_{+}(-z) \in \mathcal{N} \text{ with } \phi_{\pm} \in \mathcal{B}$$

We set  $\alpha = \beta = 1$ , i.e.  $X, \chi \in S_1S$  and  $\mathbb{X} \in S_1S$ , and introduce

 $\diamond \ \mathcal{N} = \{\Psi(z) = \Psi(0) + \frac{\sigma^2}{2}z^2 + \mathbf{a}z + \int_{\mathbb{R}} (e^{zy} - 1 - yz\mathbb{I}_{\{|y| < 1\}})M(dy)$ where  $-\Psi(0), \sigma^2 \ge 0, \mathbf{a} \in \mathbb{R}$  and M a Lévy measure}

 $\diamond \ \mathcal{B} = \{\phi(z) = \phi(0) + \mathrm{d}z + \int_0^\infty 1 - e^{-zy} m(dy), \phi(0), \mathrm{d} \ge 0, m \text{ a Lévy measure}\}$ 

 $\rightsquigarrow~$  The Wiener-Hopf factorization

$$\Psi(z) = -\phi_{-}(z)\phi_{+}(-z) \in \mathcal{N} \text{ with } \phi_{\pm} \in \mathcal{B}$$

 $\rightsquigarrow$  From LAMPERTI, one has the bijections

$$X \in S_1 S \leftrightarrow \Psi \in \mathcal{N}$$

We set  $\alpha = \beta = 1$ , i.e.  $X, \chi \in S_1S$  and  $\mathbb{X} \in S_1S$ , and introduce

 $\diamond \ \mathcal{N} = \{\Psi(z) = \Psi(0) + \frac{\sigma^2}{2}z^2 + \mathbf{a}z + \int_{\mathbb{R}} (e^{zy} - 1 - yz\mathbb{I}_{\{|y| < 1\}})M(dy)$ where  $-\Psi(0), \sigma^2 \ge 0, \mathbf{a} \in \mathbb{R}$  and M a Lévy measure}

 $\diamond \ \mathcal{B} = \{\phi(z) = \phi(0) + \mathrm{d}z + \int_0^\infty 1 - e^{-zy} m(dy), \phi(0), \mathrm{d} \ge 0, m \text{ a Lévy measure}\}$ 

 $\rightsquigarrow~$  The Wiener-Hopf factorization

$$\Psi(z) = -\phi_{-}(z)\phi_{+}(-z) \in \mathcal{N} \text{ with } \phi_{\pm} \in \mathcal{B}$$

 $\rightsquigarrow$  From LAMPERTI, one has the bijections

$$X \in S_1 S \leftrightarrow \Psi \in \mathcal{N}$$

 $\mathbb{c} \in \mathbb{S}_1 \mathbb{S} \leftrightarrow \chi \in S_1 S$ 

We set  $\alpha = \beta = 1$ , i.e.  $X, \chi \in S_1S$  and  $\mathbb{X} \in S_1S$ , and introduce

 $\diamond \ \mathcal{N} = \{ \Psi(z) = \Psi(0) + \frac{\sigma^2}{2}z^2 + \mathbf{a}z + \int_{\mathbb{R}} (e^{zy} - 1 - yz\mathbb{I}_{\{|y| < 1\}})M(dy)$ where  $-\Psi(0), \sigma^2 \ge 0, \mathbf{a} \in \mathbb{R}$  and M a Lévy measure}

 $\diamond \ \mathcal{B} = \{\phi(z) = \phi(0) + \mathrm{d}z + \int_0^\infty 1 - e^{-zy} m(dy), \phi(0), \mathrm{d} \ge 0, m \text{ a Lévy measure}\}$ 

 $\rightsquigarrow~$  The Wiener-Hopf factorization

$$\Psi(z) = -\phi_{-}(z)\phi_{+}(-z) \in \mathcal{N} \text{ with } \phi_{\pm} \in \mathcal{B}$$

 $\rightsquigarrow$  From LAMPERTI, one has the bijections

$$X \in S_1 S \leftrightarrow \Psi \in \mathcal{N}$$

 $\mathfrak{c} \in \mathbb{S}_1 \mathbb{S} \leftrightarrow \chi \in S_1 \mathbb{S} \leftrightarrow \phi \in \mathcal{B}_{\mathfrak{c}} = \{ \phi \in \mathcal{B} \text{ with } \phi(0) = 0, \phi(\infty) = \infty, \phi'(0) < \infty \}$ 

We set  $\alpha = \beta = 1$ , i.e.  $X, \chi \in S_1S$  and  $\mathbb{X} \in S_1S$ , and introduce

 $\diamond \ \mathcal{N} = \{\Psi(z) = \Psi(0) + \frac{\sigma^2}{2}z^2 + \mathbf{a}z + \int_{\mathbb{R}} (e^{zy} - 1 - yz\mathbb{I}_{\{|y| < 1\}})M(dy)$ where  $-\Psi(0), \sigma^2 \ge 0, \mathbf{a} \in \mathbb{R}$  and M a Lévy measure}

 $\diamond \ \mathcal{B} = \{\phi(z) = \phi(0) + \mathrm{d}z + \int_0^\infty 1 - e^{-zy} m(dy), \phi(0), \mathrm{d} \ge 0, m \text{ a Lévy measure}\}$ 

 $\rightsquigarrow~$  The Wiener-Hopf factorization

$$\Psi(z) = -\phi_{-}(z)\phi_{+}(-z) \in \mathcal{N} \text{ with } \phi_{\pm} \in \mathcal{B}$$

 $\rightsquigarrow$  From LAMPERTI, one has the bijections

$$X \in S_1 S \leftrightarrow \Psi \in \mathcal{N}$$

 $\mathbb{c} \in \mathbb{S}_1 \mathbb{S} \leftrightarrow \chi \in \mathbb{S}_1 \mathbb{S} \leftrightarrow \phi \in \mathcal{B}_{\mathbb{c}} = \{ \phi \in \mathcal{B} \text{ with } \phi(0) = 0, \phi(\infty) = \infty, \phi'(0) < \infty \}$ 

#### Proposition 1

 $\mathbb{X} = X_{\varepsilon} \in \mathbb{S}_{1} \mathbb{S} \stackrel{\text{LAMPERTI}}{\leftrightarrow} (\Psi, \phi) \in \mathcal{N} \times \mathcal{B} \stackrel{\text{WH}}{\leftrightarrow} (\phi_{+}, \phi_{-}, \phi) \in \mathcal{B}^{2} \times \mathcal{B}_{\varepsilon}$ 

We set  $\alpha = \beta = 1$ , i.e.  $X, \chi \in S_1S$  and  $\mathbb{X} \in S_1S$ , and introduce

 $\diamond \ \mathcal{N} = \{\Psi(z) = \Psi(0) + \frac{\sigma^2}{2}z^2 + \mathbf{a}z + \int_{\mathbb{R}} (e^{zy} - 1 - yz\mathbb{I}_{\{|y| < 1\}})M(dy)$ where  $-\Psi(0), \sigma^2 \ge 0, \mathbf{a} \in \mathbb{R}$  and M a Lévy measure}

 $\diamond \ \mathcal{B} = \{\phi(z) = \phi(0) + \mathrm{d}z + \int_0^\infty 1 - e^{-zy} m(dy), \phi(0), \mathrm{d} \ge 0, m \text{ a Lévy measure}\}$ 

 $\rightsquigarrow~$  The Wiener-Hopf factorization

$$\Psi(z) = -\phi_{-}(z)\phi_{+}(-z) \in \mathcal{N} \text{ with } \phi_{\pm} \in \mathcal{B}$$

→ From LAMPERTI, one has the bijections

$$X \in S_1 S \leftrightarrow \Psi \in \mathcal{N}$$

 $\mathbb{c} \in \mathbb{S}_1 \mathbb{S} \leftrightarrow \chi \in \mathbb{S}_1 \mathbb{S} \leftrightarrow \phi \in \mathcal{B}_{\mathbb{c}} = \{ \phi \in \mathcal{B} \text{ with } \phi(0) = 0, \phi(\infty) = \infty, \phi'(0) < \infty \}$ 

#### Proposition 1

 $\mathbb{X} = X_{\varepsilon} \in \mathbb{S}_{1} \mathbb{S} \stackrel{\text{LAMPERTI}}{\leftrightarrow} (\Psi, \phi) \in \mathcal{N} \times \mathcal{B} \stackrel{\text{WH}}{\leftrightarrow} (\phi_{+}, \phi_{-}, \phi) \in \mathcal{B}^{2} \times \mathcal{B}_{\varepsilon}$ 

 $\mathbb{T} = \mathbb{T}_{\Psi}(\phi) = \inf\{t > 0; \ \mathbb{X}_t \le 0\} \neq \infty \Longleftrightarrow \phi_+(0) > 0$ 

For any  $\phi \in \mathcal{B}$ , the BERNSTEIN-GAMMA function  $W_{\phi}$  is the unique positive-definite function solution to

 $W_{\phi}(z+1) = \phi(z)W_{\phi}(z), \quad W_{\phi}(1) = 1$ 

When  $\phi(z) = z$  then  $W_{\phi}(z+1) = \Gamma(z+1)$ 

For any  $\phi \in \mathcal{B}$ , the BERNSTEIN-GAMMA function  $W_{\phi}$  is the unique positive-definite function solution to

 $W_{\phi}(z+1) = \phi(z)W_{\phi}(z), \quad W_{\phi}(1) = 1$ 

When  $\phi(z) = z$  then  $W_{\phi}(z+1) = \Gamma(z+1)$ 

Theorem

Let  $\Psi = -\phi_-\phi_+ \in \mathcal{N}$  and  $\phi \in \mathcal{B}_c$ 

For any  $\phi \in \mathcal{B}$ , the BERNSTEIN-GAMMA function  $W_{\phi}$  is the unique positive-definite function solution to

 $W_{\phi}(z+1) = \phi(z)W_{\phi}(z), \quad W_{\phi}(1) = 1$ 

When  $\phi(z) = z$  then  $W_{\phi}(z+1) = \Gamma(z+1)$ 

#### Theorem

Let  $\Psi = -\phi_{-}\phi_{+} \in \mathcal{N}$  and  $\phi \in \mathcal{B}_{c}$ 1) For any  $-a < \mathfrak{Re}(z) < b, a, b > 0$  explicit,  $\mathbb{E}_{x} \left[ \mathbb{T}_{\Psi}^{z}(\phi) \right] = x^{z} \frac{\phi_{+}(0)}{\phi'(0)} \frac{\Gamma(-z)}{W_{\phi}(-z)} \frac{\Gamma(z+1)W_{\phi_{+}}(-z)}{W_{\phi_{-}}(z+1)}$ 

For any  $\phi \in \mathcal{B}$ , the BERNSTEIN-GAMMA function  $W_{\phi}$  is the unique positive-definite function solution to

 $W_{\phi}(z+1) = \phi(z)W_{\phi}(z), \quad W_{\phi}(1) = 1$ 

When  $\phi(z) = z$  then  $W_{\phi}(z+1) = \Gamma(z+1)$ 

#### Theorem

Let 
$$\Psi = -\phi_{-}\phi_{+} \in \mathcal{N}$$
 and  $\phi \in \mathcal{B}_{c}$   
1) For any  $-a < \mathfrak{Re}(z) < b, a, b > 0$  explicit,  

$$\mathbb{E}_{x} \left[ \mathbb{T}_{\Psi}^{z}(\phi) \right] = x^{z} \frac{\phi_{+}(0)}{\phi'(0)} \frac{\Gamma(-z)}{W_{\phi}(-z)} \frac{\Gamma(z+1)W_{\phi_{+}}(-z)}{W_{\phi_{-}}(z+1)}$$
2)  $\mathbb{P}_{x}(\mathbb{T}_{\Psi}(\phi) \in dt) = f_{\mathbb{T}_{\Psi}(\phi)}(t)dt$  with  $f_{\mathbb{T}_{\Psi}(\phi)} \in \mathbb{C}_{0}^{\lceil N \rceil - 2}(\mathbb{R}_{+})$  where  
 $N = N_{\Psi} + N_{\phi} \in (1, \infty]$  for some explicit positive constants with  $N_{\phi} > 0$ 

1

For any  $\phi \in \mathcal{B}$ , the BERNSTEIN-GAMMA function  $W_{\phi}$  is the unique positive-definite function solution to

 $W_{\phi}(z+1) = \phi(z)W_{\phi}(z), \quad W_{\phi}(1) = 1$ 

When  $\phi(z) = z$  then  $W_{\phi}(z+1) = \Gamma(z+1)$ 

#### Theorem

Let 
$$\Psi = -\phi_{-}\phi_{+} \in \mathcal{N}$$
 and  $\phi \in \mathcal{B}_{c}$   
1) For any  $-a < \mathfrak{Re}(z) < b, a, b > 0$  explicit,  

$$\mathbb{E}_{x} \left[ \mathbb{T}_{\Psi}^{z}(\phi) \right] = x^{z} \frac{\phi_{+}(0)}{\phi'(0)} \frac{\Gamma(-z)}{W_{\phi}(-z)} \frac{\Gamma(z+1)W_{\phi_{+}}(-z)}{W_{\phi_{-}}(z+1)}$$
2)  $\mathbb{P}_{x}(\mathbb{T}_{\Psi}(\phi) \in dt) = f_{\mathbb{T}_{\Psi}(\phi)}(t)dt$  with  $f_{\mathbb{T}_{\Psi}(\phi)} \in \mathsf{C}_{0}^{\lceil \mathsf{N} \rceil - 2}(\mathbb{R}_{+})$  where  
 $\mathsf{N} = \mathsf{N}_{\Psi} + \mathsf{N}_{\phi} \in (1, \infty]$  for some explicit positive constants with  $\mathsf{N}_{\phi} > 1$ 

Let  $T_{\Psi} = \inf\{t > 0; X_t \leq 0\}$ . Then,  $f_{T_{\Psi}} \in \mathsf{C}_0^{\lceil N_{\Psi} \rceil - 2}(\mathbb{R}_+)$ , P. AND SAVOV  $f_{\mathbb{T}_{\Psi}(\phi)}$  is smoother than  $f_{T_{\Psi}}$  by  $\lceil N \rceil - \lceil N_{\Psi} \rceil > 0$  number of derivatives

From P., we have, for any  $\phi \in \mathcal{B}_{-1} = \{\phi \in \mathcal{B}; \ 0 \le \phi(u) < \infty \ u \ge -1\},\$ 

$$\mathcal{S}\phi(u) = \frac{u}{u+1}\phi(u) \in \mathcal{B}$$

From P., we have, for any  $\phi \in \mathcal{B}_{-1} = \{\phi \in \mathcal{B}; \ 0 \le \phi(u) < \infty \ u \ge -1\},\$ 

$$\mathcal{S}\phi(u) = \frac{u}{u+1}\phi(u) \in \mathcal{B}$$

#### Theorem

1) For any  $\Psi \in \mathcal{N}_{-1} = \{\Psi = -\phi_-\phi_+ \in \mathcal{N} \text{ with } \phi_+ \in \mathcal{B}_{-1}\},\$ 

 $\mathbb{T}_{\Psi}(\mathcal{S}\phi_+) \stackrel{d}{=} x\mathbb{F}(\phi_-)$ 

where  $\mathbb{P}(\mathbb{F}(\phi) \in dt) = t^{-2} \mathbf{I}_{\phi}(t^{-1}) dt$ ,  $\mathbf{I}_{\phi}(z) = \sum_{n=0}^{\infty} \frac{n+1}{\phi(n+1)} \frac{(-z)^n}{W_{\phi}(n+1)}$ 

From P., we have, for any  $\phi \in \mathcal{B}_{-1} = \{\phi \in \mathcal{B}; \ 0 \le \phi(u) < \infty \ u \ge -1\},\$ 

$$\mathcal{S}\phi(u) = rac{u}{u+1}\phi(u) \in \mathcal{B}$$

#### Theorem

1) For any 
$$\Psi \in \mathcal{N}_{-1} = \{\Psi = -\phi_-\phi_+ \in \mathcal{N} \text{ with } \phi_+ \in \mathcal{B}_{-1}\},\$$

 $\mathbb{T}_{\Psi}(\mathcal{S}\phi_+) \stackrel{d}{=} x\mathbb{F}(\phi_-)$ 

where  $\mathbb{P}(\mathbb{F}(\phi) \in dt) = t^{-2} \mathbf{I}_{\phi}(t^{-1}) dt$ ,  $\mathbf{I}_{\phi}(z) = \sum_{n=0}^{\infty} \frac{n+1}{\phi(n+1)} \frac{(-z)^n}{W_{\phi}(n+1)}$ **2)** If  $\Psi \in \mathcal{N}_{-1}^+ = \{\Psi \in \mathcal{N}_1 \text{ with } \phi_-(u) = u\}$ , i.e.  $\mathbb{X}$  has no negative jumps,

$$\mathbb{T}_{\Psi}(\mathcal{S}\phi_+) \stackrel{d}{=} x\mathbb{F}$$

where  $\mathbb{P}(\mathbb{F} \in dt) = t^{-2}e^{-t^{-1}}dt$  is the Fréchet distribution

From P., we have, for any  $\phi \in \mathcal{B}_{-1} = \{\phi \in \mathcal{B}; \ 0 \le \phi(u) < \infty \ u \ge -1\},\$ 

$$\mathcal{S}\phi(u) = rac{u}{u+1}\phi(u) \in \mathcal{B}$$

#### Theorem

1) For any 
$$\Psi \in \mathcal{N}_{-1} = \{\Psi = -\phi_-\phi_+ \in \mathcal{N} \text{ with } \phi_+ \in \mathcal{B}_{-1}\},\$$

 $\mathbb{T}_{\Psi}(\mathcal{S}\phi_+) \stackrel{d}{=} x\mathbb{F}(\phi_-)$ 

where  $\mathbb{P}(\mathbb{F}(\phi) \in dt) = t^{-2} \mathbf{I}_{\phi}(t^{-1}) dt$ ,  $\mathbf{I}_{\phi}(z) = \sum_{n=0}^{\infty} \frac{n+1}{\phi(n+1)} \frac{(-z)^n}{W_{\phi}(n+1)}$ **2)** If  $\Psi \in \mathcal{N}_{-1}^+ = \{\Psi \in \mathcal{N}_1 \text{ with } \phi_-(u) = u\}$ , i.e.  $\mathbb{X}$  has no negative jumps,

$$\mathbb{T}_{\Psi}(\mathcal{S}\phi_+) \stackrel{d}{=} x\mathbb{F}$$

where  $\mathbb{P}(\mathbb{F} \in dt) = t^{-2}e^{-t^{-1}}dt$  is the Fréchet distribution

For any  $\phi_{-} \in \mathcal{B}, (\mathbb{T}_{\phi_{+},\phi_{-}}(\mathcal{S}\phi_{+}))_{\phi_{+}\in\mathcal{B}}$  have the same distribution

Recall that, for any  $\phi \in \mathcal{B}_{-1} = \{\phi \in \mathcal{B}; 0 \le \phi(u) < \infty \text{ for all } u \ge -1\},\$ 

$$\mathcal{S}\phi(u) = \frac{u}{u+1}\phi(u) \in \mathcal{B}$$

#### Theorem

For all  $\Psi \in \mathcal{N}_{-1} = \{\Psi = -\phi_-\phi_+ \in \mathcal{N} \text{ with } \phi_+ \in \mathcal{B}_1\}$  we have

$$\mathbb{T}_{\Psi}(\mathcal{S}\phi_+) \stackrel{d}{=} \mathrm{T}_{\psi}$$

where  $T_{\psi} = \inf\{t > 0; \overline{X}_t \leq 0\}$  with  $\overline{X}$  a S<sub>1</sub>S with no positive jumps associated, via the Lamperti mapping, to  $\psi(z) = (z - 1)\phi_{-}(z) \in \mathcal{N}$ .

Recall that, for any  $\phi \in \mathcal{B}_{-1} = \{\phi \in \mathcal{B}; 0 \le \phi(u) < \infty \text{ for all } u \ge -1\},\$ 

$$\mathcal{S}\phi(u) = \frac{u}{u+1}\phi(u) \in \mathcal{B}$$

#### Theorem

For all  $\Psi \in \mathcal{N}_{-1} = \{\Psi = -\phi_-\phi_+ \in \mathcal{N} \text{ with } \phi_+ \in \mathcal{B}_1\}$  we have

 $\mathbb{T}_{\Psi}(\mathcal{S}\phi_+) \stackrel{d}{=} \mathrm{T}_{\psi}$ 

where  $T_{\psi} = \inf\{t > 0; \overline{X}_t \leq 0\}$  with  $\overline{X}$  a S<sub>1</sub>S with no positive jumps associated, via the Lamperti mapping, to  $\psi(z) = (z - 1)\phi_{-}(z) \in \mathcal{N}$ .

## Interpretation that the time-change annihilates the upward jumps of X

Recall that, for any  $\phi \in \mathcal{B}_{-1} = \{\phi \in \mathcal{B}; 0 \le \phi(u) < \infty \text{ for all } u \ge -1\},\$ 

$$\mathcal{S}\phi(u) = \frac{u}{u+1}\phi(u) \in \mathcal{B}$$

#### Theorem

For all  $\Psi \in \mathcal{N}_{-1} = \{\Psi = -\phi_-\phi_+ \in \mathcal{N} \text{ with } \phi_+ \in \mathcal{B}_1\}$  we have

 $\mathbb{T}_{\Psi}(\mathcal{S}\phi_+) \stackrel{d}{=} \mathrm{T}_{\psi}$ 

where  $T_{\psi} = \inf\{t > 0; \overline{X}_t \leq 0\}$  with  $\overline{X}$  a S<sub>1</sub>S with no positive jumps associated, via the Lamperti mapping, to  $\psi(z) = (z - 1)\phi_{-}(z) \in \mathcal{N}$ .

Interpretation that the time-change annihilates the upward jumps of  $\mathbb X$  FPT do not characterize a process