On some intriguing properties of the absorption time of a class of self-similar processes

> Pierre Patie Cornell University

Joint work with A. Srapyonian, and, R. Loeffen and M. Savov

ECODEP CONFERENCE

Let *B* be a Brownian motion and $\mathfrak c$ the inverse of a β -stable subordinator χ

Let *B* be a Brownian motion and $\mathfrak c$ the inverse of a β -stable subordinator χ

MEERSCHAERT AND SCHEFFLER showed that $(B_{\alpha t})_{t \geq 0}$ is a $\frac{2}{\beta}$ -self-similar, $0 < \beta < 1$, non-Markovian process which is governed by

$$
\partial_t^\beta = \frac{1}{2} \partial_x^2
$$

 ∂_t^{β} is the CAPUTO fractional derivative. This time-fractional differential equation was introduced by Zaslavsky as a model for Hamiltonian chaos

Let *B* be a Brownian motion and $\mathfrak c$ the inverse of a β -stable subordinator χ

MEERSCHAERT AND SCHEFFLER showed that $(B_{\alpha t})_{t \geq 0}$ is a $\frac{2}{\beta}$ -self-similar, $0 < \beta < 1$, non-Markovian process which is governed by

$$
\partial_t^\beta = \frac{1}{2} \partial_x^2
$$

 ∂_t^{β} is the CAPUTO fractional derivative. This time-fractional differential equation was introduced by Zaslavsky as a model for Hamiltonian chaos

Let *B* be a Brownian motion and $\mathfrak c$ the inverse of a β -stable subordinator χ

MEERSCHAERT AND SCHEFFLER showed that $(B_{\alpha t})_{t \geq 0}$ is a $\frac{2}{\beta}$ -self-similar, $0 < \beta < 1$, non-Markovian process which is governed by

$$
\partial_t^\beta = \frac{1}{2} \partial_x^2
$$

 ∂_t^{β} is the CAPUTO fractional derivative. This time-fractional differential equation was introduced by Zaslavsky as a model for Hamiltonian chaos

$$
\partial_t^\beta = \frac{1}{2} \partial_x^2
$$

There is an important literature devoted to the analysis of the extension of the delayed BM (or fractal BM) B_c by either replacing

$$
\partial_t^\beta = \frac{1}{2} \partial_x^2
$$

There is an important literature devoted to the analysis of the extension of the delayed BM (or fractal BM) B_c by either replacing

◇ *B* by a Lévy process $(\frac{1}{2}\partial_x^2)$ is replaced by the Lévy generator)

$$
\partial_t^\beta = \frac{1}{2} \partial_x^2
$$

There is an important literature devoted to the analysis of the extension of the delayed BM (or fractal BM) B_c by either replacing

- ◇ *B* by a Lévy process $(\frac{1}{2}\partial_x^2)$ is replaced by the Lévy generator)
- \diamond \in by the inverse of a subordinator $(\partial_t^{\beta}$ is replaced by a more general additive convolution operator)

$$
\partial_t^\beta = \frac{1}{2} \partial_x^2
$$

There is an important literature devoted to the analysis of the extension of the delayed BM (or fractal BM) B_c by either replacing

- ◇ *B* by a Lévy process $(\frac{1}{2}\partial_x^2)$ is replaced by the Lévy generator)
- \diamond \in by the inverse of a subordinator $(\partial_t^{\beta}$ is replaced by a more general additive convolution operator)
- \diamond a combination of the two previous cases

$$
\partial_t^\beta = \frac{1}{2} \partial_x^2
$$

There is an important literature devoted to the analysis of the extension of the delayed BM (or fractal BM) B_c by either replacing

- ◇ *B* by a Lévy process $(\frac{1}{2}\partial_x^2)$ is replaced by the Lévy generator)
- \diamond \in by the inverse of a subordinator $(\partial_t^{\beta}$ is replaced by a more general additive convolution operator)
- \diamond a combination of the two previous cases
- \rightarrow Dynamics of complex systems with memory effects

$$
\partial_t^\beta = \frac{1}{2} \partial_x^2
$$

There is an important literature devoted to the analysis of the extension of the delayed BM (or fractal BM) B_c by either replacing

- ◇ *B* by a Lévy process $(\frac{1}{2}\partial_x^2)$ is replaced by the Lévy generator)
- \diamond \in by the inverse of a subordinator $(\partial_t^{\beta}$ is replaced by a more general additive convolution operator)
- \diamond a combination of the two previous cases
- \rightarrow Dynamics of complex systems with memory effects

 \rightsquigarrow Application in physics, neurology, epidemiology, pollution dynamics, biochemical reaction, mathematical finance, ruin theory . . .

Baeumer, Chen, Constantinescu, Hairer, Orsingher, Ovidio, Meerschaert, Toaldo, Schilling and many others . . .

$$
\partial_t^\beta = \frac{1}{2} \partial_x^2
$$

There is an important literature devoted to the analysis of the extension of the delayed BM (or fractal BM) B_c by either replacing

- ◇ *B* by a Lévy process $(\frac{1}{2}\partial_x^2)$ is replaced by the Lévy generator)
- \diamond \in by the inverse of a subordinator $(\partial_t^{\beta}$ is replaced by a more general additive convolution operator)
- \diamond a combination of the two previous cases
- \rightarrow Dynamics of complex systems with memory effects

 \rightsquigarrow Application in physics, neurology, epidemiology, pollution dynamics, biochemical reaction, mathematical finance, ruin theory . . .

Baeumer, Chen, Constantinescu, Hairer, Orsingher, Ovidio, Meerschaert, Toaldo, Schilling and many others . . .

\rightarrow *B_c* is not self-similar anymore

(except when B is a stable LÉVY PROCESS and $\mathfrak c$ is inverse stable)

DEFINITION

Let X be the stochastic process defined, for $t \geq 0$, by

 $X_t = X_{c_t}$ where $c_t = \inf\{s > 0; \chi_s > t\}$

where \overline{X} and $\overline{\chi}$ are taken independent and are such that

- \Diamond *X* is a *α*-self-similar Markov process (S_αS) issued from $x > 0$
- ⋄ *χ* is an increasing *β*-self-similar Markov process (S*β*S) issued from 0

^{√→} **c** is $\frac{1}{\beta}$ -self-similar non-Markovian ($\frac{S_1}{\beta}$ S) with continuous paths \sim **X** is a S_⊭^{α} S issued from *x* > 0 with cadlag paths

DEFINITION

Let X be the stochastic process defined, for $t \geq 0$, by

$$
\mathbb{X}_t = X_{\mathfrak{e}_t} \quad \text{where } \mathfrak{e}_t = \inf\{s > 0; \ \chi_s > t\}
$$

where \overline{X} and $\overline{\chi}$ are taken independent and are such that

- \Diamond *X* is a *α*-self-similar Markov process (S_αS) issued from $x > 0$
- ⋄ *χ* is an increasing *β*-self-similar Markov process (S*β*S) issued from 0

^{√→} **c** is $\frac{1}{\beta}$ -self-similar non-Markovian ($\frac{S_1}{\beta}$ S) with continuous paths \sim **X** is a S_⊭^{α} S issued from *x* > 0 with cadlag paths

Our objective is to analyze the first passage time (or ruin time)

 $\mathbb{T} = \inf\{t > 0; \mathbb{X}_t \leq 0\}$ where $\mathbb{X}_t = X_{\mathfrak{c}_t}$

DEFINITION

Let X be the stochastic process defined, for $t \geq 0$, by

$$
\mathbb{X}_t = X_{\mathfrak{e}_t} \quad \text{where } \mathfrak{e}_t = \inf\{s > 0; \ \chi_s > t\}
$$

where \overline{X} and $\overline{\chi}$ are taken independent and are such that

- \Diamond *X* is a *α*-self-similar Markov process (S_αS) issued from $x > 0$
- ⋄ *χ* is an increasing *β*-self-similar Markov process (S*β*S) issued from 0

^{√→} **c** is $\frac{1}{\beta}$ -self-similar non-Markovian ($\frac{S_1}{\beta}$ S) with continuous paths \sim **X** is a S_⊭^{α} S issued from *x* > 0 with cadlag paths

Our objective is to analyze the first passage time (or ruin time)

 $\mathbb{T} = \inf\{t > 0; \mathbb{X}_t \leq 0\}$ where $\mathbb{X}_t = X_{\mathbb{C}_t}$

Note that \mathbb{T} is also the absorption time of $\mathbb{X}^+ = (\mathbb{X}_t, 0 \leq t \leq \mathbb{T})$ with \mathbb{X}^+ being a positive $\mathbb{S}_{\frac{\alpha}{\beta}}\mathbb{S}$ issued from $x > 0$

A (short) review

 $\mathbb{T} = \inf\{t > 0; \mathbb{X}_t \leq 0\}$ where $\mathbb{X}_t = X_{\epsilon_t}$

 \Diamond **c**_t = χ _t = t, i.e. $\mathbb{X} = X$ is S α S and $\mathbb{T} = T$

- BERTOIN AND YOR (09) for *X* with no negative jumps
- Dalang and Peskir (12), Kuznetsov (13) for *X* a stable Lévy process
- P. (14) for *X* has no positive jumps
- P. and Savov (21) for any *X*
- $\delta X_t = Z_{c_t} \tau_t$, *Z* a Lévy process, c the inverse of a subordinator *χ*, and τ is another subordinator: CONSTANTINESCU, LOEFFEN AND P. (23)

We set $\alpha = \beta = 1$, i.e. $X, \chi \in S_1S$ and $X \in S_1S$

We set $\alpha = \beta = 1$, i.e. $X, \chi \in S_1S$ and $X \in S_1S$, and introduce

 \diamond $\mathcal{N} = {\Psi(z) = \Psi(0) + \frac{\sigma^2}{2}}$ $\int_{\mathbb{R}}^2 (e^{zy} - 1 - yz \mathbb{I}_{\{|y| < 1\}}) M(dy)$ where $-\Psi(0), \sigma^2 > 0, a \in \mathbb{R}$ and M a Lévy measure}

 ϕ *B* = { $\phi(z) = \phi(0) + dz + \int_0^\infty 1 - e^{-zy} m(dy), \phi(0), d ≥ 0, m$ a Lévy measure}

We set $\alpha = \beta = 1$, i.e. $X, \chi \in S_1S$ and $X \in S_1S$, and introduce

 \diamond $\mathcal{N} = {\Psi(z) = \Psi(0) + \frac{\sigma^2}{2}}$ $\int_{\mathbb{R}}^2 (e^{zy} - 1 - yz \mathbb{I}_{\{|y| < 1\}}) M(dy)$ where $-\Psi(0), \sigma^2 > 0, a \in \mathbb{R}$ and M a Lévy measure}

 ϕ *B* = { $\phi(z) = \phi(0) + dz + \int_0^\infty 1 - e^{-zy} m(dy), \phi(0), d ≥ 0, m$ a Lévy measure}

 \rightarrow The WIENER-HOPF factorization

$$
\Psi(z) = -\phi_{-}(z)\phi_{+}(-z) \in \mathcal{N} \text{ with } \phi_{\pm} \in \mathcal{B}
$$

We set $\alpha = \beta = 1$, i.e. $X, \chi \in S_1S$ and $X \in S_1S$, and introduce

 \diamond $\mathcal{N} = {\Psi(z) = \Psi(0) + \frac{\sigma^2}{2}}$ $\int_{\mathbb{R}}^2 (e^{zy} - 1 - yz \mathbb{I}_{\{|y| < 1\}}) M(dy)$ where $-\Psi(0), \sigma^2 > 0, a \in \mathbb{R}$ and M a Lévy measure}

 ϕ *B* = { $\phi(z) = \phi(0) + dz + \int_0^\infty 1 - e^{-zy} m(dy), \phi(0), d ≥ 0, m$ a Lévy measure}

 \rightarrow The WIENER-HOPF factorization

$$
\Psi(z) = -\phi_{-}(z)\phi_{+}(-z) \in \mathcal{N} \text{ with } \phi_{\pm} \in \mathcal{B}
$$

 \rightsquigarrow From LAMPERTI, one has the bijections

$$
X \in \mathcal{S}_1 \mathcal{S} \leftrightarrow \Psi \in \mathcal{N}
$$

We set $\alpha = \beta = 1$, i.e. $X, \chi \in S_1S$ and $X \in S_1S$, and introduce

 \diamond $\mathcal{N} = {\Psi(z) = \Psi(0) + \frac{\sigma^2}{2}}$ $\int_{\mathbb{R}}^2 (e^{zy} - 1 - yz \mathbb{I}_{\{|y| < 1\}}) M(dy)$ where $-\Psi(0), \sigma^2 > 0, a \in \mathbb{R}$ and M a Lévy measure}

 ϕ *B* = { $\phi(z) = \phi(0) + dz + \int_0^\infty 1 - e^{-zy} m(dy), \phi(0), d ≥ 0, m$ a Lévy measure}

 \rightarrow The WIENER-HOPF factorization

$$
\Psi(z) = -\phi_{-}(z)\phi_{+}(-z) \in \mathcal{N} \text{ with } \phi_{\pm} \in \mathcal{B}
$$

 \rightsquigarrow From LAMPERTI, one has the bijections

$$
X \in \mathcal{S}_1 \mathcal{S} \leftrightarrow \Psi \in \mathcal{N}
$$

 $c \in S_1S \leftrightarrow \chi \in S_1S$

We set $\alpha = \beta = 1$, i.e. $X, \chi \in S_1S$ and $X \in S_1S$, and introduce

 \diamond $\mathcal{N} = {\Psi(z) = \Psi(0) + \frac{\sigma^2}{2}}$ $\int_{\mathbb{R}}^2 (e^{zy} - 1 - yz \mathbb{I}_{\{|y| < 1\}}) M(dy)$ where $-\Psi(0), \sigma^2 > 0, a \in \mathbb{R}$ and M a Lévy measure}

 ϕ *B* = { $\phi(z) = \phi(0) + dz + \int_0^\infty 1 - e^{-zy} m(dy), \phi(0), d ≥ 0, m$ a Lévy measure}

 \rightarrow The WIENER-HOPF factorization

$$
\Psi(z) = -\phi_{-}(z)\phi_{+}(-z) \in \mathcal{N} \text{ with } \phi_{\pm} \in \mathcal{B}
$$

 \rightsquigarrow From LAMPERTI, one has the bijections

$$
X \in \mathcal{S}_1 \mathcal{S} \leftrightarrow \Psi \in \mathcal{N}
$$

 $c \in \mathbb{S}_1\mathbb{S} \leftrightarrow \chi \in \mathbb{S}_1\mathbb{S} \leftrightarrow \phi \in \mathcal{B}_c = \{\phi \in \mathcal{B} \text{ with } \phi(0) = 0, \phi(\infty) = \infty, \phi'(0) < \infty\}$

We set $\alpha = \beta = 1$, i.e. $X, \chi \in S_1S$ and $X \in S_1S$, and introduce

 \diamond $\mathcal{N} = {\Psi(z) = \Psi(0) + \frac{\sigma^2}{2}}$ $\int_{\mathbb{R}}^2 (e^{zy} - 1 - yz \mathbb{I}_{\{|y| < 1\}}) M(dy)$ where $-\Psi(0), \sigma^2 > 0, a \in \mathbb{R}$ and M a Lévy measure}

 ϕ *B* = { $\phi(z) = \phi(0) + dz + \int_0^\infty 1 - e^{-zy} m(dy), \phi(0), d ≥ 0, m$ a Lévy measure}

 \rightarrow The WIENER-HOPF factorization

$$
\Psi(z) = -\phi_{-}(z)\phi_{+}(-z) \in \mathcal{N} \text{ with } \phi_{\pm} \in \mathcal{B}
$$

 \rightarrow From LAMPERTI, one has the bijections

 $X \in S_1S \leftrightarrow \Psi \in \mathcal{N}$

 $c \in \mathbb{S}_1\mathbb{S} \leftrightarrow \chi \in \mathbb{S}_1\mathbb{S} \leftrightarrow \phi \in \mathcal{B}_c = \{\phi \in \mathcal{B} \text{ with } \phi(0) = 0, \phi(\infty) = \infty, \phi'(0) < \infty\}$

PROPOSITION 1

 $\mathbb{X} = X_\mathbb{c} \in \mathbb{S}_1\mathbb{S} \stackrel{\text{Lamp} }{\leftrightarrow} (\Psi, \phi) \in \mathcal{N} \times \mathcal{B} \stackrel{\text{WH}}{\leftrightarrow} (\phi_+, \phi_-, \phi) \in \mathcal{B}^2 \times \mathcal{B}_\mathbb{c}$

We set $\alpha = \beta = 1$, i.e. $X, \chi \in S_1S$ and $X \in S_1S$, and introduce

 \diamond $\mathcal{N} = {\Psi(z) = \Psi(0) + \frac{\sigma^2}{2}}$ $\int_{\mathbb{R}}^2 (e^{zy} - 1 - yz \mathbb{I}_{\{|y| < 1\}}) M(dy)$ where $-\Psi(0), \sigma^2 > 0, a \in \mathbb{R}$ and M a Lévy measure}

 ϕ *B* = { $\phi(z) = \phi(0) + dz + \int_0^\infty 1 - e^{-zy} m(dy), \phi(0), d ≥ 0, m$ a Lévy measure}

 \rightarrow The WIENER-HOPF factorization

$$
\Psi(z) = -\phi_{-}(z)\phi_{+}(-z) \in \mathcal{N} \text{ with } \phi_{\pm} \in \mathcal{B}
$$

 \rightarrow From LAMPERTI, one has the bijections

$$
X \in \mathcal{S}_1 \mathcal{S} \leftrightarrow \Psi \in \mathcal{N}
$$

 $c \in \mathbb{S}_1\mathbb{S} \leftrightarrow \chi \in \mathbb{S}_1\mathbb{S} \leftrightarrow \phi \in \mathcal{B}_c = \{\phi \in \mathcal{B} \text{ with } \phi(0) = 0, \phi(\infty) = \infty, \phi'(0) < \infty\}$

PROPOSITION 1

 $\mathbb{X} = X_\mathbb{c} \in \mathbb{S}_1\mathbb{S} \stackrel{\text{Lamp} }{\leftrightarrow} (\Psi, \phi) \in \mathcal{N} \times \mathcal{B} \stackrel{\text{WH}}{\leftrightarrow} (\phi_+, \phi_-, \phi) \in \mathcal{B}^2 \times \mathcal{B}_\mathbb{c}$

 $\mathbb{T} = \mathbb{T}_{\Psi}(\phi) = \inf\{t > 0; \mathbb{X}_t \leq 0\} \neq \infty \Longleftrightarrow \phi_+(0) > 0$

For any $\phi \in \mathcal{B}$, the BERNSTEIN-GAMMA function W_{ϕ} is the unique positive-definite function solution to

 $W_{\phi}(z+1) = \phi(z)W_{\phi}(z), \quad W_{\phi}(1) = 1$

When $\phi(z) = z$ then $W_{\phi}(z+1) = \Gamma(z+1)$

For any $\phi \in \mathcal{B}$, the BERNSTEIN-GAMMA function W_{ϕ} is the unique positive-definite function solution to

 $W_{\phi}(z+1) = \phi(z)W_{\phi}(z), \quad W_{\phi}(1) = 1$

When $\phi(z) = z$ then $W_{\phi}(z+1) = \Gamma(z+1)$

THEOREM

Let $\Psi = -\phi_-\phi_+ \in \mathcal{N}$ and $\phi \in \mathcal{B}_\sigma$

For any $\phi \in \mathcal{B}$, the BERNSTEIN-GAMMA function W_{ϕ} is the unique positive-definite function solution to

 $W_{\phi}(z+1) = \phi(z)W_{\phi}(z), \quad W_{\phi}(1) = 1$

When $\phi(z) = z$ then $W_{\phi}(z+1) = \Gamma(z+1)$

THEOREM

Let $\Psi = -\phi_-\phi_+ \in \mathcal{N}$ and $\phi \in \mathcal{B}_c$ **1)** For any $-a < \Re(z) < b$, $a, b > 0$ explicit, $\mathbb{E}_x \left[\mathbb{T}^z_\Psi(\phi) \right] = x^z \frac{\phi_+(0)}{\phi_-(0)}$ *ϕ*′(0) $\Gamma(-z)$ *Wϕ*(−*z*) $\Gamma(z+1)W_{\phi_+}(-z)$ *W^ϕ*[−] (*z* + 1)

For any $\phi \in \mathcal{B}$, the BERNSTEIN-GAMMA function W_{ϕ} is the unique positive-definite function solution to

 $W_{\phi}(z+1) = \phi(z)W_{\phi}(z), \quad W_{\phi}(1) = 1$

When $\phi(z) = z$ then $W_{\phi}(z+1) = \Gamma(z+1)$

THEOREM

Let $\Psi = -\phi_-\phi_+ \in \mathcal{N}$ and $\phi \in \mathcal{B}_c$ **1)** For any $-a < \Re(z) < b$, $a, b > 0$ explicit, $\mathbb{E}_x \left[\mathbb{T}^z_\Psi(\phi) \right] = x^z \frac{\phi_+(0)}{\phi_-(0)}$ *ϕ*′(0) $\Gamma(-z)$ *Wϕ*(−*z*) $\Gamma(z+1)W_{\phi_+}(-z)$ *W^ϕ*[−] (*z* + 1) **2)** $\mathbb{P}_x(\mathbb{T}_{\Psi}(\phi) \in dt) = f_{\mathbb{T}_{\Psi}(\phi)}(t)dt$ with $f_{\mathbb{T}_{\Psi}(\phi)} \in C_0^{\lceil N \rceil - 2}(\mathbb{R}_+)$ where $N = N_{\Psi} + N_{\phi} \in (1, \infty]$ for some explicit positive constants with $N_{\phi} > 1$

For any $\phi \in \mathcal{B}$, the BERNSTEIN-GAMMA function W_{ϕ} is the unique positive-definite function solution to

 $W_{\phi}(z+1) = \phi(z)W_{\phi}(z), \quad W_{\phi}(1) = 1$

When $\phi(z) = z$ then $W_{\phi}(z+1) = \Gamma(z+1)$

THEOREM

Let
$$
\Psi = -\phi_-\phi_+ \in \mathcal{N}
$$
 and $\phi \in \mathcal{B}_c$
\n1) For any $-a < \Re(\epsilon) < b$, $a, b > 0$ explicit,
\n
$$
\mathbb{E}_x [\mathbb{T}_{\Psi}^z(\phi)] = x^z \frac{\phi_+(0)}{\phi'(0)} \frac{\Gamma(-z)}{W_{\phi}(-z)} \frac{\Gamma(z+1)W_{\phi_+}(-z)}{W_{\phi_-}(z+1)}
$$
\n2) $\mathbb{P}_x(\mathbb{T}_{\Psi}(\phi) \in dt) = f_{\mathbb{T}_{\Psi}(\phi)}(t)dt$ with $f_{\mathbb{T}_{\Psi}(\phi)} \in C_0^{[N]-2}(\mathbb{R}_+)$ where
\n $N = N_{\Psi} + N_{\phi} \in (1, \infty]$ for some explicit positive constants with $N_{\phi} > 1$

Let $T_{\Psi} = \inf\{t > 0; X_t \le 0\}$. Then, $f_{T_{\Psi}} \in C_0^{\lceil N_{\Psi} \rceil - 2}(\mathbb{R}_+),$ P. and Savov $f_{\mathbb{T}_{\Psi}(\phi)}$ is smoother than $f_{\mathbb{T}_{\Psi}}$ by $[N] - [N_{\Psi}] > 0$ number of derivatives

From P., we have, for any $\phi \in \mathcal{B}_{-1} = {\phi \in \mathcal{B}}; 0 \le \phi(u) < \infty \ u \ge -1$,

$$
\mathcal{S}\phi(u)=\frac{u}{u+1}\phi(u)\in\mathcal{B}
$$

From P., we have, for any $\phi \in \mathcal{B}_{-1} = {\phi \in \mathcal{B}}; 0 \le \phi(u) < \infty \ u \ge -1$,

$$
\mathcal{S}\phi(u) = \frac{u}{u+1}\phi(u) \in \mathcal{B}
$$

THEOREM

1) For any $\Psi \in \mathcal{N}_{-1} = {\Psi = -\phi_{-\phi_{+}} \in \mathcal{N} \text{ with } \phi_{+} \in \mathcal{B}_{-1}},$

$$
\mathbb{T}_{\Psi}(\mathcal{S}\phi_+) \stackrel{d}{=} x \mathbb{F}(\phi_-)
$$

where $\mathbb{P}(\mathbb{F}(\phi) \in dt) = t^{-2}I_{\phi}(t^{-1})dt$, $I_{\phi}(z) = \sum_{n=0}^{\infty} \frac{n+1}{\phi(n+1)} \frac{(-z)^n}{W_{\phi}(n+1)}$ $W_{\phi}(n+1)$

From P., we have, for any $\phi \in \mathcal{B}_{-1} = {\phi \in \mathcal{B}}; 0 \leq \phi(u) < \infty \ u \geq -1$,

$$
\mathcal{S}\phi(u) = \frac{u}{u+1}\phi(u) \in \mathcal{B}
$$

THEOREM

1) For any
$$
\Psi \in \mathcal{N}_{-1} = \{ \Psi = -\phi_-\phi_+ \in \mathcal{N} \text{ with } \phi_+ \in \mathcal{B}_{-1} \},
$$

$$
\mathbb{T}_{\Psi}(\mathcal{S}\phi_+) \stackrel{d}{=} x \mathbb{F}(\phi_-)
$$

where $\mathbb{P}(\mathbb{F}(\phi) \in dt) = t^{-2}I_{\phi}(t^{-1})dt$, $I_{\phi}(z) = \sum_{n=0}^{\infty} \frac{n+1}{\phi(n+1)} \frac{(-z)^n}{W_{\phi}(n+1)}$ $W_{\phi}(n+1)$ **2)** If $\Psi \in \mathcal{N}_{-1}^+ = {\Psi \in \mathcal{N}_1 \text{ with } \phi_-(u) = u}$, i.e. X has no negative jumps,

$$
\mathbb{T}_{\Psi}(\mathcal{S}\phi_+) \stackrel{d}{=} x \mathbb{F}
$$

where $\mathbb{P}(\mathbb{F} \in dt) = t^{-2}e^{-t^{-1}}dt$ is the Fréchet distribution

From P., we have, for any $\phi \in \mathcal{B}_{-1} = {\phi \in \mathcal{B}}; 0 \leq \phi(u) < \infty \ u \geq -1$,

$$
\mathcal{S}\phi(u) = \frac{u}{u+1}\phi(u) \in \mathcal{B}
$$

THEOREM

1) For any
$$
\Psi \in \mathcal{N}_{-1} = \{ \Psi = -\phi_-\phi_+ \in \mathcal{N} \text{ with } \phi_+ \in \mathcal{B}_{-1} \},
$$

 $\mathbb{T}_{\Psi}(\mathcal{S}\phi_+) \stackrel{d}{=} x\mathbb{F}(\phi_-)$

where $\mathbb{P}(\mathbb{F}(\phi) \in dt) = t^{-2}I_{\phi}(t^{-1})dt$, $I_{\phi}(z) = \sum_{n=0}^{\infty} \frac{n+1}{\phi(n+1)} \frac{(-z)^n}{W_{\phi}(n+1)}$ $W_{\phi}(n+1)$ **2)** If $\Psi \in \mathcal{N}_{-1}^+ = {\Psi \in \mathcal{N}_1 \text{ with } \phi_-(u) = u}$, i.e. X has no negative jumps,

$$
\mathbb{T}_{\Psi}(\mathcal{S}\phi_+) \stackrel{d}{=} x \mathbb{F}
$$

where $\mathbb{P}(\mathbb{F} \in dt) = t^{-2}e^{-t^{-1}}dt$ is the Fréchet distribution

For any $\phi_-\in\mathcal{B}$, $(\mathbb{T}_{\phi_+,\phi_-}(\mathcal{S}\phi_+))_{\phi_+\in\mathcal{B}}$ have the same distribution

Some intriguing identities II

Recall that, for any $\phi \in \mathcal{B}_{-1} = {\phi \in \mathcal{B}}; 0 \leq \phi(u) < \infty$ for all $u \geq -1$,

$$
\mathcal{S}\phi(u) = \frac{u}{u+1}\phi(u) \in \mathcal{B}
$$

THEOREM

For all $\Psi \in \mathcal{N}_{-1} = {\Psi = -\phi_{-\phi_{+}} \in \mathcal{N}}$ with $\phi_{+} \in \mathcal{B}_{1}$ we have

$$
\mathbb{T}_{\Psi}(\mathcal{S}\phi_+) \stackrel{d}{=} \mathrm{T}_{\psi}
$$

where $T_{\psi} = \inf\{t > 0; \overline{X}_t \leq 0\}$ with \overline{X} a S_1S with no positive jumps associated, via the Lamperti mapping, to $\psi(z) = (z-1)\phi_-(z) \in \mathcal{N}$.

Some intriguing identities II

Recall that, for any $\phi \in \mathcal{B}_{-1} = {\phi \in \mathcal{B}}; 0 \leq \phi(u) < \infty$ for all $u \geq -1$,

$$
\mathcal{S}\phi(u) = \frac{u}{u+1}\phi(u) \in \mathcal{B}
$$

THEOREM

For all $\Psi \in \mathcal{N}_{-1} = {\Psi = -\phi_-\phi_+ \in \mathcal{N}}$ with $\phi_+ \in \mathcal{B}_1$ we have

 $\mathbb{T}_{\Psi}(\mathcal{S}\phi_+) \overset{d}{=} \mathrm{T}_{\psi}$

where $T_{\psi} = \inf\{t > 0; \overline{X}_t \leq 0\}$ with \overline{X} a S₁S with no positive jumps associated, via the Lamperti mapping, to $\psi(z) = (z-1)\phi_-(z) \in \mathcal{N}$.

Interpretation that the time-change annihilates the upward jumps of X

Some intriguing identities II

Recall that, for any $\phi \in \mathcal{B}_{-1} = {\phi \in \mathcal{B}}; 0 \leq \phi(u) < \infty$ for all $u \geq -1$,

$$
\mathcal{S}\phi(u) = \frac{u}{u+1}\phi(u) \in \mathcal{B}
$$

THEOREM

For all $\Psi \in \mathcal{N}_{-1} = {\Psi = -\phi_-\phi_+ \in \mathcal{N}}$ with $\phi_+ \in \mathcal{B}_1$ we have

 $\mathbb{T}_{\Psi}(\mathcal{S}\phi_+) \overset{d}{=} \mathrm{T}_{\psi}$

where $T_{\psi} = \inf\{t > 0; \overline{X}_t \leq 0\}$ with \overline{X} a S₁S with no positive jumps associated, via the Lamperti mapping, to $\psi(z) = (z-1)\phi_-(z) \in \mathcal{N}$.

Interpretation that the time-change annihilates the upward jumps of X FPT do not characterize a process