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Introduction
Introduction

e fluid friction, both within the fluid itself and between the fluid
and its surroundings

@ Juice has low viscosity.

@ Syrup has high viscosity.
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Introduction
Fluid flow in pipes

o all the parts of the fluid do not move with equal velocity
o friction between the fluid and the pipe

o friction between fluid layers

o the fluid’s resistance to flow is known as viscosity.

5/17



Introduction
Application of measurement of viscosity of fluid

Measurement of viscosity plays an important role in the quality
control and various research and development stages

@ environmental, mechanical, and bio-mechanical engineering

@ oil production
The Navier—Stokes equations are partial differential equations which
describe the motion of viscous fluid substances. Mathematically, we
use 3D Navier-Stokes system in a cylindrical domain

e Difficulties mathematical investigation

o the absence of global well-posedness of the PDE
o the unboundedness of the physical domain

Therefore, the problem is studied in a two-dimensional strip,
assuming the periodicity in the unbounded direction and no-slip
condition.
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Introduction
Model and notations

We consider the 2D Navier-Stokes system in

D ={x=(v1,22) €R*: —1 <9 < 1},

Ou~+ (u, Viu — vAu+ Vp =n(t,z), divu =0, (1.1)

u|m2:ﬂ =0, fu=u. (1.2)

Here v > 0 is the viscosity
8 oo
n(t o) = 5 (), (o) =) bBitej(x),  (L3)
j=1

where
e {e;} is an orthonormal basis of eigenfunctions of Stokes
operator
e {3;} are independent standard Brownian motions

o
oB::Zb]2->0
j=1
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Introduction
Construction

Let H = {u € L*(D,R?),divu = 0}, and I : L?(D,R?) — H
the orthogonal projection. Applying II to the Navier-Stokes
system (1.1)

O+ vLu + II((u, Vyu) = n(t), (1.4)

[t6 formula to ||ul|?, we derive
2 ¢ 2 2 K
Ju()|)? + 20 /0 IVu(s)[2ds = lluoll? + Bt +2 /0 (u(s),dC(s),
This equivalent to

= 1 [ 19ue s = £ o (lal? = @I + % [ (u(s).4c(o).

Let ¢ — oo, it is natural to define an estimator for v by the formula

5= B
I/t72§t J
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Introduction
Estimator is well-defined

With probability 1, the estimator iy = % is well defined.
Since P({u € H}) = 1, it suffices to prove that

P({& =0} N {ueH}) =0. (1.5)

Let w € Q be such that w € H and & = 0. Then Vu(s) = 0 for
almost every s € [0,¢]. Since u(s) € V a.e and w is a continuous
function of time with range in H, we conclude that u(s) = 0 for

s € [0,¢]. It follows from (1.4) that n(s) =0 for s € [0,t]. Since

B > 0, there is an integer j > 1 such that 3;(s) =0 for s € [0, t].
This event has probability zero, so that we arrive at (1.5). O
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Consistency

Pu{ﬁt—>yast—>oo}:1

Furthermore, for any v € (0,1] and € € (0, %), there is a random
time T > 1 such that

oy —v| <t 2 fort>T. (2.1)

V
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Asymptotic normality

For any v > 0 there is o,, > 0 such that
D(Vt(ty —v)) = N, ast— oo foranyu € H,
Furthermore,

sup ‘IP’A{\/Z (¢ —v) < 2} — By, (2)] < const t_%‘*'a, (2.2)
z€R

where NV, € P(R) be the centered normal law with variance o2 > 0
and &, its distribution.
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Consistency

Instead of 7y, we work with &

o —v| =+

&

Recall that

&= [ IVu(s)IPds = 5+ g (ol = o)) + 5 | (u(e).4C). J

We can rewrite

1 2 1 ) 1
<|— — ||u(t — | M| |-
< |5z ol [+] 5= @I | +| M

B
ft—27

t
here M, = / (u(s),d{(s)). We estimate 3 terms
0
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Proof of consistency

Three terms

|U0||2 < 1 t 2+€ for t > Tl holds for T1 |U(]”4-

| =1
21/t 402

Q@ L |lu(®)? < Lt73%¢ for ¢t > Ty holds for

Ty = min{N > 1: sup Ju(t)|]* < Z kY2 for k > N}
<t<k+1

o %’MH < %fl/?Jrs for t > T3 holds for

Ty = min{N > 1: [My] < % k2*}
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Asymptotic normality

sup ‘PA{\/ (r —v) <z} — &, )’ < const t_i‘*'e, (3.2)
z€R

Some useful tools

B
o Recall that 7y = i then we must prove that
t

sup }IP’,\{\[ & —(2v)7'B) < 2} — Py, (2)| < const gt
z€R

(3.3)
@ Recall that

1 1
— luoll® + 5= lu(®)||* + = | M.
2ut vt

&t

_2t
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|dea of poof (cont)

Denote A (X, z) =P{X < z} — &,(z), then

sup |Aq (X, 2)| < sup [A, (Y, 2)] + P{|X = Y| > e} + coe,
z€R z€R

e Using this property with X = v/t (& — (2v)~'B) and
Y = k‘l/QMk, where k is the integer part of t.

Suﬂlg ‘PA{kfl/QMk < 2} — Dy(2)| < const poite J
zE

o Law of large numbers for conditional variance of zero-mean
martingale, it suffices to establish for 6 and ©,

E)\ exp(é? ‘Mk- — Mk—l’) < O for k > 1. (34)

It is done by properties of martingale and some technique
calculation in using Cauchy-Swharz inequality.
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