Construction, consistency, asymptotic normality of viscosity estimation for 2D Navier-Stokes

Thi Hien Nguyen, Armen Shirikyan

Laboratoire AGM, CY Cergy Paris Université

EcoDep conference, 1 oct 2024

2 [Main results](#page-9-0)

- **[Consistency](#page-10-0)**
- [Asymptotic normality](#page-11-0)

3 [Schema of proof](#page-12-0)

- **[Consistency](#page-13-0)**
- [Asymptotic normality](#page-15-0)

Table of Contents

1 [Introduction](#page-2-0)

[Main results](#page-9-0)

- [Consistency](#page-10-0)
- [Asymptotic normality](#page-11-0)

[Schema of proof](#page-12-0) • [Consistency](#page-13-0)

[Asymptotic normality](#page-15-0)

Introduction

- . fluid friction, both within the fluid itself and between the fluid and its surroundings
- Juice has low viscosity.
- Syrup has high viscosity.

Fluid flow in pipes

- \bullet all the parts of the fluid do not move with equal velocity
- \bullet friction between the fluid and the pipe
- **·** friction between fluid layers
- **•** the fluid's resistance to flow is known as viscosity.

Application of measurement of viscosity of fluid

Measurement of viscosity plays an important role in the quality control and various research and development stages

- environmental, mechanical, and bio-mechanical engineering
- o oil production

The Navier-Stokes equations are partial differential equations which describe the motion of viscous fluid substances. Mathematically, we use 3D Navier-Stokes system in a cylindrical domain

- **•** Difficulties mathematical investigation
	- the absence of global well-posedness of the PDE
	- the unboundedness of the physical domain

Therefore, the problem is studied in a two-dimensional strip, assuming the periodicity in the unbounded direction and no-slip condition.

Model and notations

We consider the 2D Navier-Stokes system in

$$
D = \{x = (x_1, x_2) \in \mathbb{R}^2 : -1 < x_2 < 1\},
$$

$$
\partial_t u + \langle u, \nabla \rangle u - \nu \Delta u + \nabla p = \eta(t, x), \quad \text{div } u = 0,
$$
 (1.1)

$$
u\big|_{x_2=\pm 1} = 0, \quad \theta_a u \equiv u. \tag{1.2}
$$

Here $\nu > 0$ is the viscosity

$$
\eta(t,x) = \frac{\partial}{\partial t}\zeta(t,x), \quad \zeta(t,x) = \sum_{j=1}^{\infty} b_j \beta_j(t) e_j(x), \quad (1.3)
$$

where

- \bullet $\{e_i\}$ is an orthonormal basis of eigenfunctions of Stokes operator
- \bullet $\{\beta_i\}$ are independent standard Brownian motions $B := \sum^{\infty} b_j^2 > 0$ $i=1$

Construction $\hat{\nu}_t$

Let $H=\{u\in L^2(D,\mathbb{R}^2),$ div $u=0\}$, and $\Pi:L^2(D,\mathbb{R}^2)\longrightarrow H$ the orthogonal projection. Applying Π to the Navier-Stokes system [\(1.1\)](#page-6-0)

$$
\partial_t u + \nu L u + \Pi(\langle u, \nabla \rangle u) = \eta(t), \tag{1.4}
$$

Itô formula to $||u||^2$, we derive

$$
||u(t)||^2 + 2\nu \int_0^t ||\nabla u(s)||^2 ds = ||u_0||^2 + Bt + 2 \int_0^t (u(s), d\zeta(s)),
$$

This equivalent to

$$
\xi_t:=\frac{1}{t}\int_0^t \|\nabla u(s)\|^2 {\mathord{{\rm d}}} s=\frac{B}{2\nu}+\frac{1}{2\nu t}\big(\|u_0\|^2-\|u(t)\|^2\big)+\frac{1}{\nu t}\int_0^t \big(u(s),{\mathord{{\rm d}}} \zeta(s)\big).
$$

Let $t \to \infty$, it is natural to define an estimator for ν by the formula

$$
\hat{\nu}_t = \frac{B}{2\xi_t}
$$

Estimator is well-defined

Theorem

With probability 1, the estimator
$$
\hat{\nu}_t = \frac{B}{2\xi_t}
$$
 is well defined.

Proof.

Since $\mathbb{P}\big(\{u\in\mathcal{H}\}\big)=1,$ it suffices to prove that

$$
\mathbb{P}\big(\{\xi_t=0\}\cap\{u\in\mathcal{H}\}\big)=0.\tag{1.5}
$$

Let $\omega \in \Omega$ be such that $u \in \mathcal{H}$ and $\xi_t = 0$. Then $\nabla u(s) = 0$ for almost every $s \in [0,t]$. Since $u(s) \in V$ a.e and u is a continuous function of time with range in H, we conclude that $u(s) = 0$ for $s \in [0, t]$. It follows from [\(1.4\)](#page-7-0) that $\eta(s) = 0$ for $s \in [0, t]$. Since $B > 0$, there is an integer $j \ge 1$ such that $\beta_i(s) = 0$ for $s \in [0, t]$. This event has probability zero, so that we arrive at [\(1.5\)](#page-8-0).

Table of Contents

[Introduction](#page-2-0)

- **[Consistency](#page-10-0)**
- [Asymptotic normality](#page-11-0)

[Schema of proof](#page-12-0) • [Consistency](#page-13-0)

[Asymptotic normality](#page-15-0)

Consistency

Theorem

$$
\mathbb{P}_u\big\{\hat{\nu}_t\to\nu\text{ as }t\to\infty\big\}=1
$$

Furthermore, for any $\nu\in(0,1]$ and $\varepsilon\in(0,\frac{1}{2})$ $\frac{1}{2}$), there is a random time $T > 1$ such that

$$
|\hat{\nu}_t - \nu| \le t^{-\frac{1}{2} + \varepsilon} \quad \text{for } t \ge T. \tag{2.1}
$$

Asymptotic normality

Theorem

For any $\nu > 0$ there is $\sigma_{\nu} > 0$ such that

$$
\mathcal{D}(\sqrt{t}(\hat{\nu}_t-\nu))\rightharpoonup \mathcal{N}_{\sigma_{\nu}} \quad \text{as } t\to\infty \text{ for any } u\in H,
$$

Furthermore,

$$
\sup_{z \in \mathbb{R}} \left| \mathbb{P}_{\lambda} \{ \sqrt{t} \left(\hat{\nu}_t - \nu \right) \leq z \} - \Phi_{\sigma_{\nu}}(z) \right| \leq \text{const } t^{-\frac{1}{4} + \varepsilon}, \qquad (2.2)
$$

where $\mathcal{N}_{\sigma}\in\mathcal{P}(\mathbb{R})$ be the centered normal law with variance $\sigma^2>0$ and Φ_{σ} its distribution.

Table of Contents

[Introduction](#page-2-0)

[Main results](#page-9-0)

- [Consistency](#page-10-0)
- [Asymptotic normality](#page-11-0)

3 [Schema of proof](#page-12-0)

- **[Consistency](#page-13-0)**
- [Asymptotic normality](#page-15-0)

Consistency

Instead of $\hat{\nu}_t$, we work with ξ_t

$$
|\hat{\nu}_t - \nu| = \frac{\nu}{\xi_t} \left| \xi_t - \frac{B}{2\nu} \right|.
$$
 (3.1)

Recall that

$$
\xi_t = \frac{1}{t} \int_0^t \|\nabla u(s)\|^2 ds = \frac{B}{2\nu} + \frac{1}{2\nu t} (||u_0||^2 - ||u(t)||^2) + \frac{1}{\nu t} \int_0^t (u(s), d\zeta(s)).
$$

We can rewrite

$$
\left|\xi_t - \frac{B}{2\nu}\right| \le \left[\frac{1}{2\nu t} ||u_0||^2\right] + \left[\frac{1}{2\nu t} ||u(t)||^2\right] + \left[\frac{1}{\nu t} |M_t|\right].
$$

here $M_t = \int^t$ $\int\limits_0^{\cdot} \left(u(s),\mathsf{d}\zeta(s) \right)$. We estimate 3 terms

Proof of consistency

Three terms

$$
\text{① } \frac{1}{2\nu t} \|u_0\|^2 \leq \frac{1}{3} t^{-\frac{1}{2}+\epsilon} \quad \text{for } t \geq T_1 \text{ holds for } T_1 = \frac{9}{4\nu^2} \|u_0\|^4.
$$

$$
\begin{aligned}\n\bullet \ \ &\tfrac{1}{2\nu t} \| u(t) \|^2 \le \tfrac{1}{3} \, t^{-\tfrac{1}{2} + \epsilon} \quad \text{for } t \ge T_2 \text{ holds for} \\
T_2 &= \min \big\{ N \ge 1 : \sup_{k \le t \le k+1} \| u(t) \|^2 \le \tfrac{2\nu}{3} \, k^{1/2} \text{ for } k \ge N \big\} \n\end{aligned}
$$

$$
\begin{aligned} \n\bullet \quad & \frac{1}{\nu t} |M_t| \le \frac{1}{3} \, t^{-1/2 + \varepsilon} \quad \text{for } t \ge T_3 \text{ holds for} \\ \nT_3 &= \min \{ N \ge 1 : |M_k| \le \frac{\nu}{10} \, k^{\frac{1}{2} + \varepsilon} \} \n\end{aligned}
$$

Asymptotic normality

$$
\sup_{z \in \mathbb{R}} \left| \mathbb{P}_{\lambda} \{ \sqrt{t} \left(\hat{\nu}_t - \nu \right) \leq z \} - \Phi_{\sigma_{\nu}}(z) \right| \leq \text{const } t^{-\frac{1}{4} + \varepsilon}, \qquad (3.2)
$$

Some useful tools

Recall that $\hat{\nu}_t = \frac{B}{2\epsilon}$ $\overline{\overline{2}\xi_t}$, then we must prove that

$$
\left|\sup_{z\in\mathbb{R}}\left|\mathbb{P}_{\lambda}\{\sqrt{t}\left(\xi_{t}-(2\nu)^{-1}B\right)\leq z\}-\Phi_{\sigma_{\nu}}(z)\right|\leq \text{const } t^{-\frac{1}{4}+\varepsilon},\right|\tag{3.3}
$$

• Recall that

$$
\left|\xi_t - \frac{B}{2\nu}\right| \le \frac{1}{2\nu t} \|u_0\|^2 + \frac{1}{2\nu t} \|u(t)\|^2 + \frac{1}{\nu t} |M_t|.
$$

Idea of poof (cont)

Denote
$$
\Delta_{\sigma}(X, z) = \mathbb{P}\{X \leq z\} - \Phi_{\sigma}(z)
$$
, then

$$
\sup_{z \in \mathbb{R}} |\Delta_{\sigma}(X, z)| \leq \sup_{z \in \mathbb{R}} |\Delta_{\sigma}(Y, z)| + \mathbb{P}\{|X - Y| > \varepsilon\} + c_{\sigma}\varepsilon,
$$

Using this property with $X=\,$ √ $\overline{t}\left(\xi_t-(2\nu)^{-1}B\right)$ and $Y=k^{-1/2}M_k$, where k is the integer part of t.

$$
\sup_{z \in \mathbb{R}} \left| \mathbb{P}_{\lambda} \{ k^{-1/2} M_k \le z \} - \Phi_{\sigma}(z) \right| \le \text{ const } k^{-\frac{1}{4} + \varepsilon}
$$

Law of large numbers for conditional variance of zero-mean martingale, it suffices to establish for θ and Θ .

$$
\mathbb{E}_{\lambda} \exp(\theta \, |M_k - M_{k-1}|) \leq \Theta \quad \text{for } k \geq 1. \tag{3.4}
$$

It is done by properties of martingale and some technique calculation in using Cauchy-Swharz inequality.

- 譶 T.H. Nguyen, A. Shirikyan Viscosity estimation for 2D pipe flows I. Construction, consistency, asymptotic normality, accepted for publication in Bernoulli.
- **S.** Kuksin, A. Shirikyan, *Mathematics of Two-Dimensional* Turbulence, Cambridge University Press, 2012
- A. Shirikyan Law of large numbers and central limit theorem E. for randomly forced PDE's, Probab. Theory Related Fields, Vol. 134, pp. 215247, 2006.