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Introduction

�uid friction, both within the �uid itself and between the �uid

and its surroundings

Juice has low viscosity.

Syrup has high viscosity.
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Fluid �ow in pipes

all the parts of the �uid do not move with equal velocity

friction between the �uid and the pipe

friction between �uid layers

the �uid's resistance to �ow is known as viscosity.
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Application of measurement of viscosity of �uid

Measurement of viscosity plays an important role in the quality

control and various research and development stages

environmental, mechanical, and bio-mechanical engineering

oil production

The Navier�Stokes equations are partial di�erential equations which

describe the motion of viscous �uid substances. Mathematically, we

use 3D Navier�Stokes system in a cylindrical domain

Di�culties mathematical investigation

the absence of global well-posedness of the PDE

the unboundedness of the physical domain

Therefore, the problem is studied in a two-dimensional strip,

assuming the periodicity in the unbounded direction and no-slip

condition.
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Model and notations

We consider the 2D Navier-Stokes system in

D = {x = (x1, x2) ∈ R2 : −1 < x2 < 1},

∂tu+ ⟨u,∇⟩u− ν∆u+∇p = η(t, x), div u = 0, (1.1)

u
∣∣
x2=±1

= 0, θau ≡ u. (1.2)

Here ν > 0 is the viscosity

η(t, x) =
∂

∂t
ζ(t, x), ζ(t, x) =

∞∑
j=1

bjβj(t)ej(x), (1.3)

where

{ej} is an orthonormal basis of eigenfunctions of Stokes

operator

{βj} are independent standard Brownian motions

B :=

∞∑
j=1

b2j > 0
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Construction ν̂t

Let H = {u ∈ L2(D,R2), divu = 0}, and Π : L2(D,R2) −→ H
the orthogonal projection. Applying Π to the Navier�Stokes

system (1.1)

∂tu+ νLu+Π(⟨u,∇⟩u) = η(t), (1.4)

Itô formula to ∥u∥2, we derive

∥u(t)∥2 + 2ν

∫ t

0
∥∇u(s)∥2ds = ∥u0∥2 +Bt+ 2

∫ t

0

(
u(s), dζ(s)

)
,

This equivalent to

ξt :=
1

t

∫ t

0

∥∇u(s)∥2ds =
B

2ν
+

1

2νt

(
∥u0∥2 − ∥u(t)∥2

)
+

1

νt

∫ t

0

(
u(s), dζ(s)

)
.

Let t → ∞, it is natural to de�ne an estimator for ν by the formula

ν̂t =
B

2ξt
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Estimator is well-de�ned

Theorem

With probability 1, the estimator ν̂t =
B
2ξt

is well de�ned.

Proof.

Since P
(
{u ∈ H}

)
= 1, it su�ces to prove that

P
(
{ξt = 0} ∩ {u ∈ H}

)
= 0. (1.5)

Let ω ∈ Ω be such that u ∈ H and ξt = 0. Then ∇u(s) = 0 for

almost every s ∈ [0, t]. Since u(s) ∈ V a.e and u is a continuous

function of time with range in H, we conclude that u(s) = 0 for

s ∈ [0, t]. It follows from (1.4) that η(s) = 0 for s ∈ [0, t]. Since
B > 0, there is an integer j ≥ 1 such that βj(s) = 0 for s ∈ [0, t].
This event has probability zero, so that we arrive at (1.5).
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Consistency

Theorem

Pu

{
ν̂t → ν as t → ∞

}
= 1

Furthermore, for any ν ∈ (0, 1] and ε ∈ (0, 12), there is a random

time T ≥ 1 such that

|ν̂t − ν| ≤ t−
1
2
+ε for t ≥ T . (2.1)
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Asymptotic normality

Theorem

For any ν > 0 there is σν > 0 such that

D
(√

t(ν̂t − ν)
)
⇀ Nσν as t → ∞ for any u ∈ H,

Furthermore,

sup
z∈R

∣∣Pλ

{√
t
(
ν̂t − ν

)
≤ z

}
− Φσν (z)

∣∣ ≤ const t−
1
4
+ε, (2.2)

where Nσ ∈ P(R) be the centered normal law with variance σ2 > 0
and Φσ its distribution.
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Consistency

Instead of ν̂t, we work with ξt

|ν̂t − ν| = ν

ξt

∣∣∣∣ξt − B

2ν

∣∣∣∣. (3.1)

Recall that

ξt =
1

t

∫ t

0

∥∇u(s)∥2ds =
B

2ν
+

1

2νt

(
∥u0∥2 − ∥u(t)∥2

)
+

1

νt

∫ t

0

(
u(s), dζ(s)

)
.

We can rewrite∣∣∣∣ξt − B

2ν

∣∣∣∣ ≤ 1

2νt
∥u0∥2 +

1

2νt
∥u(t)∥2 +

1

νt
|Mt| .

here Mt =

∫ t

0

(u(s), dζ(s)). We estimate 3 terms
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Proof of consistency

Three terms

1 1
2νt∥u0∥

2 ≤ 1
3 t

− 1
2
+ϵ for t ≥ T1 holds for T1 =

9
4ν2

∥u0∥4.

2 1
2νt∥u(t)∥

2 ≤ 1
3 t

− 1
2
+ϵ for t ≥ T2 holds for

T2 = min
{
N ≥ 1 : sup

k≤t≤k+1
∥u(t)∥2 ≤ 2ν

3 k1/2 for k ≥ N
}

3 1
νt |Mt| ≤ 1

3 t
−1/2+ε for t ≥ T3 holds for

T3 = min{N ≥ 1 : |Mk| ≤ ν
10 k

1
2
+ε}
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Asymptotic normality

sup
z∈R

∣∣Pλ

{√
t
(
ν̂t − ν

)
≤ z

}
− Φσν (z)

∣∣ ≤ const t−
1
4
+ε, (3.2)

Some useful tools

Recall that ν̂t =
B

2ξt
, then we must prove that

sup
z∈R

∣∣Pλ

{√
t
(
ξt − (2ν)−1B

)
≤ z

}
− Φσν (z)

∣∣ ≤ const t−
1
4
+ε,

(3.3)

Recall that∣∣∣∣ξt − B

2ν

∣∣∣∣ ≤ 1

2νt
∥u0∥2 +

1

2νt
∥u(t)∥2 + 1

νt
|Mt|.
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Idea of poof (cont)

Denote ∆σ(X, z) = P{X ≤ z} − Φσ(z), then

sup
z∈R

|∆σ(X, z)| ≤ sup
z∈R

|∆σ(Y, z)|+ P{|X − Y | > ε}+ cσε,

Using this property with X =
√
t
(
ξt − (2ν)−1B

)
and

Y = k−1/2Mk, where k is the integer part of t.

sup
z∈R

∣∣Pλ{k−1/2Mk ≤ z} − Φσ(z)
∣∣ ≤ const k−

1
4
+ε

Law of large numbers for conditional variance of zero-mean

martingale, it su�ces to establish for θ and Θ,

Eλ exp(θ |Mk −Mk−1|) ≤ Θ for k ≥ 1. (3.4)

It is done by properties of martingale and some technique

calculation in using Cauchy-Swharz inequality.
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