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Matérn correlations, context
Matérn correlations are very popular, their uses date at least to
Matheron 1960, maybe Krige ... A Matérn isotropic zero-mean
stationary Gaussian field model for (possibly noisy) observations at

sites
⇀
si ∈ IRd , i = 1, · · · , n, with (known) regularity (an index

ν > 0), is determined by, || · || being the Euclidean norm in IRd :

IE(Z (
⇀
s )Z (

⇀
t )) = b ρν,θ(||⇀s −

⇀
t ||), IE(Z (

⇀
s )2) ≡ b > 0

where

ρν,θ(x) :=
(θx)ν

Γ(ν)2ν−1
Kν (θx), x > 0, θ > 0,

where Kν is the Bessel function of the 2nd kind of order ν > 0.

• ν = 1/2: ρν,θ(x) = e−θx (“Exponential” case. In 1D: O.U.)

• ν = 3/2: ρν,θ(x) = (1 + θx)e−θx

• ν = +∞: limν→∞ ρ
ν, 2ν

1
2
`

(x) = e−
x2

`2 (“squared exponential”)



Spectral densities
Models more succinctly defined by their family of spectral densities
over (−∞,+∞)d :

f ∗ν,b,θ(
⇀
ω) = b g∗ν,θ(

⇀
ω), with g∗ν,θ(

⇀
ω) :=

C (d , ν) θ2ν

(θ2 + ||⇀ω ||2)ν+ d
2

where the constant C (d , ν) is chosen s.t.
∫

IRd g∗ν,θ(
⇀
ω)d

⇀
ω = 1

Here one mainly considers gridded data sites, oberved on the
hypercube (i.e. data sites are δ{1, · · · , n}⊗d)
From the well known aliasing formula, the spectral density on
(−π, π]d of Zδ is

f δν,θ(
⇀
λ) = b g δν,θ(

⇀
λ) with g δν,θ(

⇀
λ) :=

1

δd

∑
⇀
k ∈ZZd

g∗ν,θ

⇀
λ + 2

⇀
k π

δ

 .



Spectral densities, and quasi-Matérn variant

Simple expressions for g δν,θ(
⇀
λ) are available only for d = 1, when

ν − 1/2 is a small integer, says 0, 1 or 2 : they then coincide with
particular ARMA spectral densities with a constrained vector of
parameters.
The quasi-Matérn spectral density model one considers here, for a

process defined on ZZd , is defined by fQ,ν,β(
⇀
λ) = b gQ,ν,β(

⇀
λ) with

gQ,ν,β(
⇀
λ) := CQ(d , ν)

(
d + β −

d∑
k=1

cos(λk)

)−ν−d/2

, β > 0,

CQ(d , ν) being again chosen s.t.
∫

[π,π]d gQ,ν,β(
⇀
λ)d

⇀
λ = 1

• the case d = 2, ν = 1 gives the SAR model of order 1

Motivation : As δ ↓ 0 , g δν,θ(
⇀
λ) ' gQ,ν,β(δ

⇀
λ) (with β = (δθ)2/2).



A not so “well-known” expression

Let ϑ3 denote the Jacobi 3rd theta function. Recall that√
π
α2

∑∞
j=−∞ e−

(2πj+λ)2

4α2 = ϑ3

(
λ
2 , e
−α2
)

Proposition 1

With α = δθ and wν(κ) := e−
1

4κ κ−ν−1

22νΓ(ν)
(it is a pdf on [0,∞[), it

holds

g δν,θ(λ1, · · · , λd) =

∫ ∞
0

g∞,αφ(λ1, · · · , λd)× 2φwν(φ2) dφ

where

g∞,α(
⇀
λ) =

1

(2π)d

d∏
k=1

ϑ3

(
λk
2
, e−α

2

)
.



Two “monotonicity” results (or conjectures)
Let d = 1, 2, · · · and ν > 0 fixed. In the following, gα(·) stands
either for g δ=1

ν,α (·) (which coincides with g δν,α
δ

(·) ) or for gQ,ν,α(·).

Monotonicity of the “entropy-rate”

α ∈ IR+ −→
∫

[−π,π]d
log

(
gα(

⇀
λ)

)
d
⇀
λ

is strictly increasing.

‘Unimodality” property. Let α0 fixed (> 0)

α ∈ IR+ −→
1

(2π)d

∫
[−π,π]d

gα0(
⇀
λ)

gα(
⇀
λ)

d
⇀
λ − 1 =: F (α0, α)

has a unique finite root α = α0.



Two “monotonicity” results (or conjectures)

Their proofs will be (hopefully) published soon.

• They are easy for the quasi-Matérn spectral densities.

• For pure Matérn spectral densities, the proofs are relatively
easy for d = 1.



Consequence of this “entropy monotonicity” property

As is well known, in 1D, this entropy rate is proportional to the
prediction error variance of Z (t = 0) based on the past (Szego’s
formula).
Generalization of the Szego’s formula is also known in 2D when
the “past” is a half-plane.
This ”entropy” monotonicity thus indicates that the ability to
extrapolate at unobserved sites (in geostatistic it’s called the
ability to interpolate), of such processes, whose the underlying true
range parameter is θ, is strenghened when θ increases.



Consequences of this “Unimodality” property

The so-called “(Gaussian) energy-variance matching” (GE-EV)
method for estimating α0 is an empirical version of the above
equation F (α0, α) = 0 in α.
Recall that the (maybe simplest version of) GE–EV estimating
equation is defined by replacing, in this integrated ratio, gα0(·) by
a tapered periodogram normalized by 1

nd

∑
s∈δ{1,··· ,n}⊗d Z (s)2.

The previously published consistency for GE–EV was only a weak
result (“there exists a sequence of roots ...”) and required the
assumption : α0 (or δ) must be small..
This “unimodality” property implies a global consistency result,
even without this assumption.

It also entails some “robustness” properties for simple algorithms
for computing the GE–EV estimate of α0



A third “monotonicity” result (or conjecture...)

Let hα(
⇀
λ) = ∂

∂α log(gα(
⇀
λ)). Define the “coefficient of variation”

of f (where “
∫

” denotes integrals over [−π, π]d) by:

CV(f ) :=


1

(2π)d

∫ (∣∣∣∣f − ( 1

(2π)d

∫
f

)∣∣∣∣2
)

/(
1

(2π)d

∫
f

)2

Monotonicity property of the “inefficiency”

α ∈ IR+ −→ CV(hα) CV(gα)

is a decreasing function.



Consequences of this “CVs product monotonicity”

Assume the process is Gaussian Matérn (or Gaussian quasi-Matérn)
with sdf b0 gα0 (recall that α0 = δθ0 for pure Matérn).
inefficiencyν,α0

:= “asymptotic variance” (a.v.) of the GE–EV
estimator divided by the a.v. of the maximum likelihood estimator .

Recall

Theorem (slight extension of Girard 2016).

For d = 1

inefficiencyν,α0
= CV(hα0) CV(gα0)→ ineff1(ν) as α0 ↓ 0,

where ineff1(ν) :=
√
π

2

(
Γ(ν+3/2)

Γ(ν+1)

)2 Γ(2ν+1/2)
Γ(2ν+1) .



The above approximates values of inefficiencyν,α0
for the cases

when the true α0 is small are satisfactory since they are close to 1
for typical values of ν. For instance

ineff1(1/2) = 1, ineff1(3/2) = 1.0542, ineff1(5/2) = 1.1222

Conjecture (extension of the near-efficiency result of Girard
2016 to any α0 (or to any δ in the case of pure Matérn)).

∀α0 > 0, inefficiencyν,α0
≤ ineffd(ν)

where ineffd(ν) := limα↓0 CV(hα) CV(gα).



Theorem.

For d = 1, the above conjecture holds true for ν − 1/2 a “small”
integers; and thus, in particular, for any true α0

• inefficiencyν,α0
≡ 1 in the case ν = 1/2,

• inefficiencyν,α0
≤ 10/9 in the case ν = 3/2,

• inefficiencyν,α0
≤ 63/50 in the case ν = 5/2,

• inefficiencyν,α0
≤ 1716

1225 ' 1.183562 in the case ν = 7/2.



In 2D, a numerical verification for quasi-Matérn 1
2

ν = 1
2

Figure 1 : α0 →
√

(inefficiencyν,α0
)



In 2D, for quasi-Matérn 3
2

ν = 3
2

Figure 2 : α0 →
√

(inefficiencyν,α0
)



A finite size analog of “monotonicity of the entropy-rate”

Let d = 1, 2, · · · and ν > 0 fixed. Let S = {⇀si , i = 1, · · · , n}
fixed. In the following, Rν,θ denotes the n × n matrix with

(i , j)th term := ρν,θ(||⇀si −
⇀
sj ||)

Monotonicity of the determinant

θ ∈ IR+ −→ det (Rν,θ)

is strictly increasing.

Theorem. If ν = 1
2

then

this Monotonicity of the determinant holds true.

Proof. It stems on Rν,θ1+θ2 ≡ Rν,θ1 ◦ Rν,θ2 when ν = 1/2, and a
known determinant inequality for Hadamard products (Oppenheim
1930).



Consequence of this determinant’s monotonicity

Let Fn(θ0, θ) := 1
n trace

(
R−1
ν,θRν,θ0

)
.

It is known that

Fn(θ0, θ) ≤
(

det
(

R−1
ν,θRν,θ0

)) 1
n

Theorem. If ν = 1
2

then

the function
θ −→ Fn(θ0, θ)− 1

has no root in θ ∈]0, θ0[.

NB: The GE-EV method for estimating θ0 is an empirical version
of the above equation Fn(θ0, θ) = 1 in θ.
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