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Introduction

• A popular approach to deal with count time series having a structure depending
on their past observations, is to consider the integer-valued autoregressive
(INAR) process, introduced by Steutel and Harn (1979), Al-Osh and Alzaid
(1987) and McKenzie (1988).

• The process is established by considering a Poisson distribution for the
innovations.

• One frequent manifestation of this overdispersion, in count data, is that the
incidence of zero counts is greater than expected.

• In the context of non-negative integer values time series, with excess zeros, Jazi
et al. (2012) proposed the ZINAR(1) process, which suppose that the
innovations of the process follow a Zero Inflated Poisson (ZIP) distribution.
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The First-order integer valued autoregressive processes
INAR(1)

Stochastic structure

Yt = α ◦ Yt−1 + Vt , t ∈ Z, (1)

where {Vt}t∈Z is a sequence of non-negative integer-valued random variables iid
(innovations), independent of Yt−1, for all t.

The thinning operator ‘◦’

Let X be a non negative integer value r.v. and α ∈ [ 0, 1]. Then, the r.v. α ◦ X is
given by:

α ◦ X =
X∑
i=1

Zi , (2)

where {Zi}i≥1 is a sequence of iid Bernoulli random variables, with P (Zi = 1) = α,
independent of X .
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Zero Inflated distributions

Definition

The discrete r.v. V follows a Zero Inflated (ZI) distribution, with parameters ρ and λ,
if it has the following stochastic representation:

V = BU, B⊥U,

where B is a Bernoulli r.v., with P (B = 1) = 1− ρ and 0 ≤ ρ < 1. U is a non
negative discrete r.v., with probability mass function (pmf) hU(u|λ).

P (V = v) =

{
ρ+ (1− ρ) hU (0|λ) v = 0
(1− ρ) hU (v |λ) v ≥ 1,

(3)

where hU (v |λ) = P (U = v). We denote V ∼ ZI(ρ,λ; hU(·)).

E [V ] = (1− ρ)E [U] and Var [V ] = (1− ρ)
(
Var [U] + ρE2 [U]

)
. (4)
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Zero Inflated distributions

• The Zero Inflated Poisson (ZIP) model:

P (V = v) =

{
ρ+ (1− ρ) e−λ, v = 0

(1− ρ) e−λλv

v !
v ≥ 1

Notation V ∼ ZIP (ρ, λ) .

• The Zero Inflated Negative Binomial (ZINB) model:

P (V = v) =


ρ+ (1− ρ)

(
ϕ

µ+ϕ

)ϕ
, v = 0

(1− ρ)
Γ(ϕ+ v)

Γ(v + 1)Γ(ϕ)

( µ

µ+ ϕ

)v( ϕ

µ+ ϕ

)ϕ
, v ≥ 1

Notation V ∼ ZINB (ρ, µ, ϕ).
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Zero Inflated distributions

• The Zero Inflated Poisson Inverse Gaussian (ZIPIG) model:

P (V = v) =


ρ+ (1− ρ)eϕ−

√
ϕ(ϕ+2λ), v = 0;

(1− ρ)
√

2
ρ
[ϕ(ϕ+ 2λ)]−

(v−1/2)
2

eϕ(λϕ)v

v !
Kv−1/2

(√
ϕ(ϕ+ 2λ)

)
, v ≥ 1 . . .

(5)

Kλ(t) is the modified Bessel function of third kind.
Notation: V ∼ ZIPIG(ρ, λ, ϕ).

The ZIPIG distribution is a particular case of the Mixed Poisson distribution,
with hierarchical representation: V |Z = z ∼ Poisson(µz), where Z follows an
Inverse Gaussian (IG) distribution, with mean 1 and dispersion parameter ϕ,
denoted by Z ∼ IG(1, ϕ).
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The ZI-INAR(1) process

Definition

The ZI-INAR(1) process is an integer valued first order autoregressive process, with ZI
innovations, given by:

Yt = α ◦ Yt−1 + Vt , t ∈ Z, (6)

where Vt ∼ ZI(ρ,λ; hU(·)).

Proposition

Let {Yt}t∈Z be a stationary ZI-INAR(1) process. Then, the expectation and variance
of Yt are given by:

E [Yt] =
(1− ρ)E [Ut]

1− α
and Var(Yt) =

(1− ρ)
(
αE [Ut] + ρE [Ut]2 + Var [Ut]

)
1− α2

,

where Ut denotes a r.v. with density function (or pmf) hU(u|λ), for all t ∈ Z.
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Motivation - INAR(p) processes

Yt =

p∑
i=1

αi ◦ Yt−i + Vt , t ∈ Z,

• where αi ∈ [0, 1] i = 1, . . . , p and {Vt} is an i.i.d. sequence of non-negative
integer-valued random variables (Jin-Guan and Yuan (1991)).

• {Vt} is independent of Yt−1, . . . ,Yt−p and it is stronger than the assumption
made by Al-Osh and Alzaid (1987), which define {Vt} as a sequence of
uncorrelated non-negative integer-valued random variables.
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The ZI-INAR(p) process

ZI-INAR(p) processes

Yt =

p∑
i=1

αi ◦ Yt−i + Vt , t ∈ Z,

where Vt ∼ ZI (ρ,λ; hU(·))

• We supposed that U follows different distributions, as Poisson, Negative
binomial and Poisson inverse Gaussian.

• We develop an EM-type algorithm for maximum likelihood estimation of the
parameters of the ZI-INAR(p) process, that consider the presence of latent
variables.

• We also develop a regenerative bootstrap method to construct confidence
intervals for the parameters as well as to estimate the forecasting distributions
for future values.
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Likelihood function of the ZI-INAR(p) processes

• Let y = (y1, . . . , yn)
⊤ be realizations of the ZI-INAR(p) process, the likelihood function of

θ = (α, π,λ)⊤ with α = (α1, . . . , αp)
⊤, given y, is defined by:

L (θ|Y) = P
(
Y1 = y1, . . . , Yp = yp

) n∏
t=p+1

P
(
Yt = yt |Yt−1 = yt−1, . . . , Yt−p = yt−p

)
,

• where

P
(
Yt = yt |Yt−1 = yt−1, . . . , Yt−p = yt−p

)
=

min
{
yt−1,yt

}∑
k1=0

( yt−1
k1

)
α
k1
1 (1 − α1)

yt−1−k1

× . . .

min
{
yt−p ,yt−

∑p−1
i=1

ki

}∑
kp=0

( yt−p
kp

)
α
kp
p (1 − αp)

yt−p−kp

×

πI{0}(yt −
p∑

i=1

ki ) + (1 − π)hU (yt −
p∑

i=1

ki |λ)

 .
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Maximum likelihood estimation

• The likelihood function is expressed in terms of the joint probability
P (Y1 = y1, . . . ,Yp = yp), which is not available; thus, the exact likelihood
function is intractable.

• An approach to estimate the parameters is to use the conditional log-likelihood
function, given by:

ℓ(θ|y) ∝
n∑

t=p+1

log [P (Yt = yt |Yt−1 = yt−1, . . . ,Yt−p = yt−p)] ,

• For ZI-INAR(p) processes, the direct maximization of this expression is not easy
due to its form.

• An alternative is to consider numerical optimization using the EM algorithm
(Dempster et. al. 1977). Its properties ensure the monotone convergence to a
stationary point of the log-likelihood function, in contrast to direct
maximization.
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Maximum likelihood estimation

ZI-INAR(p) processes

Yt =

p∑
i=1

αi ◦ Yt−i + Vt , t ∈ Z,

where Vt ∼ ZI (ρ,λ; hU(·))

• The key to the development of our EM-type algorithm is to consider the
presence of latent variables and treat the problem, as if these variables were in
fact observed:

- St,i = αi ◦ Yt−i ; where St,i |Yt−i = yt−i follows a binomial distribution,
with parameters yt−i and αi , when yt−i > 0 and if yt−i = 0, St,i follows
a degenerate distribution at zero.

- Considering that Vt ∼ ZI (ρ,λ; hU(·)), the latent binary random variable
Wt exists such that: Wt ∼ Bern(π) and

Vt |Wt = 0 ∼ hU(·|λ),
Vt |Wt = 1 follows a degenerate distribution at zero.
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ML estimation via the EM algorithm

• Let Y = (Y1, . . . ,Yn)⊤, W = (Wp+1, . . . ,Wn)⊤, S = (Sp+1, . . . ,Sn)⊤, with
St = (St,1, . . . , St,p)⊤ and Yc = (Ycp+1 , . . . ,Ycn )

⊤ with Yci = (Yi ,Wi ,Si ) for
i=p+1,. . . ,n.

Complete log-likelihood

ℓc (θ|yc ) ∝
p∑

i=1

(
n∑

t=p+1

st,i ) log(αi )

 +

p∑
i=1


 n∑
t=p+1

(yt−i − st,i )

 log(1 − αi )


+

n∑
t=p+1

wt log(π) +
n∑

t=p+1

(1 − wt ) log(1 − π)

+
n∑

t=p+1

(1 − wt ) log(hU (yt −
p∑

i=1

st,i |λ)).

ECODEP CONFERENCE DE - CCEN - UFPE



Preliminaries The ZI-INAR(1) processes Estimation Simulation Study Application Conclusions Bibliography

ML estimation via the EM algorithm

E-Step: Q(θ|θ̂(k)
) = E

[
ℓc (θ|yc )|y, θ̂

(k)
]

Given the current estimate θ̂
(k)

at k-th step

Q(θ|θ̂(k)
) ∝

p∑
i=1


 n∑

t=p+1

ŝ
(k)
t,i

 log (αi )

 +

p∑
i=1


 n∑
t=p+1

(
yt−i − ŝ

(k)
t,i

) log (1 − αi )


+

n∑
t=p+1

ŵ
(k)
t log (π) +

n∑
t=p+1

(
1 − ŵ

(k)
t

)
log (1 − π) +

n∑
t=p+1

Q∗
t

(
λ|θ̂(k)

)
.

where

ŝ
(k)
t,i = E

(
St,i |y, θ̂

(k)
)
,

ŵ
(k)
t = E

(
Wt |y, θ̂

(k)
)
,

Q∗
t (λ|θ̂(k)

) = E

(1 − Wt ) log hU (yt −
p∑

i=1

St,i )|y, θ̂
(k)

 .
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ML estimation via the EM algorithm

• The maximization of Q(θ|θ̂(k)
) over θ must be obtained under restrictions on

the parameter α in order to ensure the standard condition for stationarity and
ergodicity of the ZI-INAR(p) process. Recall that this process will be stationary
if and only if αi ∈ [0, 1), for i = 1, . . . , p, and

∑p
i=1 αi < 1.

Proposition

Let ∆ be the function from the set αi ∈ [0, 1), i = 1, ..., p,
∑p

i=1 αi < 1 to the set [0, 1)p defined by

∆ : (α1, . . . , αp)
⊤ → (β1, . . . , βp)

⊤ with βi = ∆i (α) = αi/(1 −
∑p

j ̸=i
αj ), i = 1, . . . , p. Then the ∆

transformation admits an inverse given by:

αi = ∆−1
i (β) =

1 −

∑p
i=1

βi
1−βi

1 +
∑p

i=1
βi

1−βi

 βi

1 − βi

, for i = 1, ..., p, and β = (β1, . . . , βp)
⊤

ECODEP CONFERENCE DE - CCEN - UFPE



Preliminaries The ZI-INAR(1) processes Estimation Simulation Study Application Conclusions Bibliography

ML estimation via the EM algorithm

M-step

Update θ̂
(k)

by maximizing the Q-function over θ, which leads to the following
expressions:

β̂
(k+1)

= argmax
β∈[0,1)p

{
Q(∆−1(β), π,λ|θ̂(k)

)
}
, α̂

(k+1)
i = ∆−1

i (β̂
(k+1)

)

π̂(k+1) =

∑n
t=p+1 ŵt

n − p
and λ̂

(k+1)
= argmax

λ


n∑

t=p+1

Q∗
t (λ|θ̂

(k)
)

 , (7)

where ∆−1(β) = (∆−1
1 (β), . . . ,∆−1

p (β))⊤.

In the following, we develop the procedure to obtain the expression Q∗
t (λ|θ(k)) and

λ̂
(k+1)

, considering the three particular cases of the ZI models.
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ML estimation via the EM algorithm

M-step

- If Vt ∼ ZIP(ρ,λ), then:

λ̂(k+1) =

 n∑
t=p+1

(1− ŵ
(k)
t )yt −

n∑
t=p+1

p∑
i=1

b̂tst,i
(k)

 n∑
t=p+1

(1− ŵ
(k)
t )

−1

.

- If Vt ∼ ZINB(ρ,µ,ϕ), then λ̂
(k+1)

= (µ̂(k+1), ϕ̂(k+1)) are given by:

µ̂(k+1) =

 n∑
t=p+1

(1− ŵ
(k)
t )yt −

n∑
t=p+1

p∑
i=1

b̂tst,i
(k)

 n∑
t=p+1

(1− ŵ
(k)
t )

−1

ϕ̂(k+1) = argmax
ϕ

{
ℓ
(
α̂(k), π̂(k), µ̂(k+1), ϕ|y

)}
,

ϕ̂(k+1) is obtained using the “optim” routine in the R software.
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ML estimation via the EM algorithm

M-step

- If Vt ∼ ZIPIG(ρ,µ,ϕ), then λ = (µ, ϕ).

µ̂(k+1) =

 n∑
t=p+1

(1− ŵ
(k)
t )yt −

n∑
t=p+1

p∑
i=1

b̂tst,i
(k)

 n∑
t=p+1

(1− ŵ
(k)
t )

−1

and

ϕ̂(k+1) =

 n∑
t=p+1

(1− ŵ
(k)
t )

 n∑
t=p+1

b̂tzt
(k)

+
n∑

t=p+1

b̂t/zt
(k)

− 2
n∑

t=p+1

(1− ŵ
(k)
t )

−1

.

where

b̂tzt
(k)

= E
[
E
(
BtZt |St , y, θ̂

(k)
)]

and b̂t/zt
(k)

= E
[
E
(
BtZ

−1
t |St , , y, θ̂

(k)
)]

.
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Regenerative Bootstrap method

• In the context of the INAR processes, different bootstrap methods have been
developed: residual based bootstrap, Block bootstrap methods, Block of block
bootstrap methods.

• However most of the time these methods were only analyzed by simulations.
Obtaining the validity of the bootstrap may be complicated or even false in this
framework.

• In this manuscript we use a different approach which is simple to implement and
which does not require the estimation of the residuals or of any other type of
hyper-parameters.

• Since the INAR process, and more generally integer valued processes, can be
approximated by Markov chains with atoms (each visited point or sequence of
visited points can be seen as an atom), the regenerative approach appears
natural in this context.
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Regenerative Bootstrap method

Step 1. Count the number of visits ln to the atom A up to time n. Divide the observed

sample path Y(n) = (Y0,Y1, . . . ,Yn) into ln + 1 blocks, B0, B1, . . . , Bln−1, B
(n)
ln

.

Drop the first and last (non-regenerative) blocks.

Step 2. Draw sequentially bootstrap data blocks B∗
1,n, . . . , B∗

k,n independently from the

empirical distribution Fn = (ln − 1)−1∑ln−1
j=1 δBj

of the blocks {Bj}1⩽j⩽ln−1

conditional on Y(n), until the length l∗(k) =
∑k

j=1 l(B∗
j,n) of the bootstrap data

series is larger than n.

Step 3. From the resampled data blocks, construct a pseudo-trajectory by binding the
blocks together Y∗(n) = (B∗

1,n, . . . ,B∗
l∗n −1,n) and truncating the joint blocks to

get a time series of length n. Then recompute the value of the statistics of
interest T ∗

n = Tn(Y ∗(n)) on these values.

Step 4. If Sn = S(B1, ...,Bln−1) is an estimator of the variance (otherwise set it to 1)
of the original statistic Tn. Similarly compute S∗

n,bn
= S(B∗

1,n, . . . ,B∗
l∗n −1,n).

Step 5. Repeat independently the procedure above in Step 2 to 4, by B times, to
compute successive values S∗−1

b,n (T ∗
b,n − Tn) , b = 1, . . . ,B.
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Regenerative Bootstrap method

• Illustrative example : We give a very simple illustration on the method on a short trajectory taking only
three possible values in {0, 1, 2} with p = 2.

• Let Y (n) = {0, 0, 1, 2, 0, 2, 0, 1, 0, 1, 0, 1, 2, 1, 0, 2, 1, 0, 1} By vectorization (with p = 2) we get the
two variate trajectory

Y(n) =

{
0
0

,
1
0

,
2
1

,
0
2

,
2
0

,
0
2

,
1
0

,
0
1

,
1
0

,
0
1

,
1
0

,
2
1

,
1
2

,
0
1

,
2
0

,
1
2

,
0
1

,
1
0

}
.

• Notice that (1, 0)⊤ is the most visited atom and will be our atom A, then we have

B0 =

{
0
0

,
1
0

}
, B1 =

{
2
1

,
0
2

,
2
0

,
0
2

,
1
0

}
,B2 =

{
0
1

,
1
0

}
B3 =

{
0
1

,
1
0

}
, B4 =

{
2
1

,
1
2

,
0
1

,
2
0

,
1
2

,
0
1

,
1
0

}
.

• In turn these blocks may be identify as part of the initial trajectory

B0 = “(0, 0, 1)”, B1 = “(2, 0, 2, 0, 1)”,B2 = “(0, 1)”

B3 = “(0, 1)”, B4 = “(2, 1, 0, 2, 1, 0, 1)”.
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Prediction in a regenerative framework

• As mentioned by Weiss, (2018), for real-valued processes, the most common
type of point forecasting is the conditional mean, as this is known to be optimal
in the sense of the mean squared error.

• The main disadvantage of the mean forecast is that it will usually lead to
non-integer value predictions, while Yn+h will certainly take an integer value.

• Let θ = (α, π,λ)⊤, the parameter vector of the ZI-INAR(p) process. We
update the values of {Yn+1,Yn+2, . . .} one component at a time, using a
procedure similar to that described by Neal and Subba Rao (2007) and Garay et
al. (2020) for predictive inference, but including an additional level of the
regenerative procedure to get the distribution of the predictor:
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Prediction in a regenerative framework

Step 1 Repeat the following procedure B times:

(a) Generate a bootstrap sample using the regenerative bootstrap method.
(b) Estimate the parameters θ, of the model, using the EM procedure,

denoted by θ̂
b
= (α̂b, π̂b, λ̂

b
)⊤, with b = 1, . . . ,B.

Step 2 For b = 1, . . . ,B = 999, repeat the following steps M = 199 times:

(a) Draw the value of w
(m)
n+h from the distribution Bern(π̂b).

(b) Draw the value of v
(m)
n+h from the distribution of Vn+h|w

(m)
n+h, λ̂

b
.

(c) For 1 ≤ i ≤ p, obtain:

s
(m)
n+h,i =

{
0, if yn+h−i = 0

Value drawn from Bin
(
yn+h−i ; α̂

b
i

)
, otherwise.

(d) Set y
(m)
n+h =

∑p
i=1 s

(m)
n+h,i + v

(m)
n+h, for h ≥ 1 and m = 1, . . . , M.

Step 3 For b = 1, . . . ,B, compute: p̂bn+h(j) =
#
{
m, y

(m)
n+h

=j
}

M
, h ≥ 1.
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Simulation Study: Robustness of the EM estimates

• The goal of this simulation study is to evaluate the finite-sample performance of
the parameter estimates for the ZI-INAR(p) model.

• We generated artificial samples with p ∈ {1, 2, 3} , π ∈ {0.3, 0.6} and α = 0.3,
α = (α1, α2)⊤ = (0.3, 0.2)⊤ and α = (α1, α2, α3)⊤ = (0.25, 0.2, 0.15)⊤ for
ZI-INAR(1) to ZI-INAR(3) processes, respectively.

• The sample sizes were fixed to n ∈ {100, 300, 500, 1000} and the ZI model
considered for the innovation were respectively: (i) ZIP, with λ = 2; and (ii)
ZINB and ZIPIG with µ = 2 and ϕ = 1.5.

• We generated N = 300 replicates of size n and analyzed the relative bias (RB)
and root relative mean square error (RRMSE):

RB(θ̂i ) =
1

N

N∑
j=1

θ̂ij − θi

θi
and RRMSE(θ̂i ) =

√√√√√ 1

N

N∑
j=1

(
θ̂ij − θi

θi

)2

,

θ̂ij is the estimate of parameter θi , in the j-th replicate.
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RB and RRMSE (in parentheses) of θ̂

p π n α̂1 α̂2 α̂3 π̂ λ̂

1

0.3

100 -0.067 (0.314) - - -0.076 (0.344) -0.004 (0.116)
300 -0.017 (0.164) - - -0.009 (0.194) 0.006 (0.078)
500 -0.023 (0.119) - - -0.013 (0.137) 0.003 (0.058)
1000 -0.002 (0.087) - - -0.015 (0.010) -0.002 (0.040)

0.6

100 -0.043 (0.236) - - -0.021 (0.134) 0.001 (0.158)
300 -0.012 (0.129) - - -0.007 (0.071) -0.006 (0.090)
500 -0.012 (0.099) - - -0.005 (0.049) 0.002 (0.065)
1000 -0.010 (0.075) - - -0.003 (0.039) -0.004 (0.047)

2

0.3

100 -0.060 (0.428) -0.106 (0.399) - -0.142 (0.476) 0.037 (0.176)
300 -0.003 (0.240) -0.058 (0.252) - -0.054 (0.279) 0.013 (0.096)
500 -0.004 (0.173) -0.018 (0.183) - -0.026 (0.210) -0.001 (0.070)
1000 -0.010 (0.120) -0.005 (0.138) - -0.017 (0.150) 0.006 (0.053)

0.6

100 -0.020 (0.332) -0.103 (0.398) - -0.056 (0.178) -0.014 (0.158)
300 -0.004 (0.195) -0.032 (0.203) - -0.018 (0.097) -0.010 (0.101)
500 0.004 (0.146) -0.029 (0.157) - -0.009 (0.076) -0.003 (0.084)
1000 -0.009 (0.105) -0.017 (0.115) - -0.009 (0.048) -0.006 (0.052)
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Real dataset: Assaults dataset

• This dataset concerns the weekly number of assaults, recorded from January
2008 to December 2015 at Federal University of Pernambuco (UFPE) – Brazil.

• All occurrences are described, recorded and organized by SSI/UFPE, that in an
office in charge of the planning, execution and evaluation of projects and
activities related to institutional security at the Federal University of
Pernambuco (UFPE) of Brazil.

• 422 observations from January 2008 to December 2015.

• This dataset contains a significant presence of zero values observations (52%).
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Real dataset: Assaults dataset
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Real dataset: Assaults dataset

Tabela: Model selection criteria of INAR(p) processes with different
innovations.

Innovations
Po NB PIG

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

AICM 1051.72 1041.13 1037.51 1018.09 1009.91 1009.22 1021.62 1013.45 1012.68
BICM 1059.80 1053.25 1053.67 1030.21 1026.07 1029.42 1033.74 1029.61 1032.88

ZIP ZINB ZIPIG
p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

AICM 1014.28 1004.75 1003.52 1016.06 1006.76 1005.61 1016.09 1006.75 1005.53
BICM 1026.40 1020.91 1023.72 1032.22 1026.96 1029.85 1032.25 1026.95 1029.77



Assaults dataset

Tabela: Parameter estimates, SE-Boots and CI Boots

Param
ZIP-INAR(2) ZIP-INAR(3)

Estimates SE Boots 95% CI Boots Estimates SE Boots 95% CI Boots

α1 0.180 0.035 (0.111, 0.248) 0.172 0.036 (0.102, 0.242)
α2 0.105 0.042 (0.023, 0.187) 0.089 0.043 (0.004, 0.173)
α3 – – — 0.072 0.039 [0.000, 0.148)
π 0.516 0.057 (0.404, 0.628) 0.542 0.060 (0.424, 0.660)
λ 1.173 0.119 (0.939, 1.407) 1.168 0.122 (0.928, 1.407)
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Assaults dataset

• Under the ZIP-INAR(2) model, we have that of total values ’zeros’ presents in
the sample, the estimated proportion of ’zeros’provided by the innovation is
given by:

1

B

B∑
b=1

{
π̂b + (1− π̂b)e−λ̂b

}
= 0.6677,

where π̂b and λ̂b are the m.l.e of the parameters, respectively, considering the
b-th regenerative bootstrap sample.
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Assaults dataset - ZINAR(2) process

• In order to obtain the forecasting distribution for the last two values of the
dataset (observations #421 and #422),

• We are more interested in the full distribution of the predicted value of the data
points #421 and #422; thus, some summary statistics for the probability
p421(j) and p422(j), respectively, defined by:

p421(j) = P (Y421 = j |Y420 = y420,Y419 = y419) and

p422(j) = P (Y422 = j |Y421 = y421,Y420 = y420) ,

with j ∈ {0, 1, 2, 3, 4, 5}

• We present the bar plots of the predictive distributions of the data points #421
and #422.
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Real dataset: Assaults dataset
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Real dataset: Assaults dataset

Tabela: Summaries of the predictive distributions of Y421 and Y422 in
ZIP-INAR(2) model.

Pred. Val. # 421 # 422

j Mean SD Q0.025 Q0.975 Mean SD Q0.025 Q0.975
0 0.595 0.048 0.497 0.688 0.596 0.048 0.492 0.688
1 0.229 0.036 0.161 0.302 0.220 0.034 0.161 0.291
2 0.110 0.025 0.065 0.161 0.116 0.026 0.070 0.171
3 0.047 0.017 0.020 0.080 0.048 0.017 0.020 0.085
4 0.015 0.009 0.000 0.035 0.016 0.009 0.000 0.035
5 0.004 0.005 0.000 0.015 0.004 0.005 0.000 0.015



Preliminaries The ZI-INAR(1) processes Estimation Simulation Study Application Conclusions Bibliography

Conclusions

• We study a new class of INAR processes, with innovations following the
zero-inflated distribution, a generalization of the ZINAR(1) process proposed by
Jazi et al.(2012) and Garay et al.(2021);

• We develop an innovative EM-type algorithm to obtain ML parameter estimates
computationally and present a regenerative bootstrap method to construct
confidence intervals for the parameters and construct the forecasting
distribution for future values.

• Simulation studies and a real data analysis demonstrated the applicability and
benefit of the proposed approach for practical cases, where we showed strong
evidence of high-order dependence and inflated zero counts.

• Our approach can be further extended, for example, by adding a moving average
structure or considering a full Bayesian approach as a basis for inference and
prediction.
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Thank you!!
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