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Framework

We consider a linear regression model applied to the components of

a time series, with the aim to

identify the constant conditional beta coe�cients;

identify the zero conditional betas.

To address the non-identi�ability of the parameters when a

conditional beta is constant, and to reduce the numerical

complexity of the estimation procedure

we employ a lasso-type* multi-step� QMLE.

*this penalized estimator simpli�es the model by shrinking the estimates to

their simplest form when the beta is constant.
�which �rst captures the dynamics of the regressors before estimating the

dynamics of the betas.
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Regressions with time-varying betas

Let (yt,x
>
t ) be a time series of 1 + p random variables.

Under stationarity and existence of second-order moments, it makes

sense to predict yt at a long horizon by a time-constant mean or

regression:

Ey1 or Ey1 + β>(xt − Ex1).

Short-term predictions can incorporate the information Ft available
at time t (given by {yu,xu;u ≤ t} and possibly some vector zt of
exogenous variables): given Ft−1, yt is better predicted by

Et−1yt := E(yt | Ft−1) or Et−1yt + β>t (xt − Et−1xt)

with

βt = Covt−1(yt,xt)Var
−1
t−1xt.
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Which time series model for a conditional beta ?

Blasques, Francq and Laurent (2024) (BFL) propose the

autoregressive conditional beta (ACB) model

xit = µ0i + εit, εit = gitηit,
g2
i,t+1 = ω0i + α0iε

2
it + β0ig

2
it,

yt = β1tx1t + · · ·+ βptxpt + vt, vt = gtηt,
βi,t+1 = $0i + ξ0i

vtxit
µ20i+g

2
it

+ c0iβit + γ01iz1t + · · ·+ γ0qizqt,

g2
t+1 = ω0 + α0v

2
t + β0g

2
t ,

with obvious notations (xt = (x1t, . . . , xpt)
> are the regressors and

zt = (z1t, . . . , zqt)
> is a vector of exogenous variables).

More about ACB
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Unidenti�ability of the constant betas

The beta βit is constant if (and only if, under some regularity

conditions)

ξ0i = γ01i = · · · = γ0qi = 0.

Note that, when this relation holds the parameter c0i is not well

de�ned because the model remains the same for all values of

($i0, c0i) such that $i0/(1− c0i) is �xed:

βi = $0i + 0× vtxit
µ2

0i + g2
it

+ c0iβi
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First-step estimator of the regressor GARCH models

The observations are (yt,xt, zt) for t = 1, . . . , n. The unknown
parameter is

ϕ0 = (θ>0 ,ϑ
>
0 )>, θ0 =

(
θ

(1)>
0 , . . . ,θ

(p)>
0

)>
︸ ︷︷ ︸

GARCH parameters of the regressors

.

The regressor GARCH(1,1) models can be estimated in parallel by

the standard QMLE θ̂
(i)

involving (xi1, . . . , xin).

Let

θ̂ =
(
θ̂

(1)>
, . . . , θ̂

(p)>)>
.
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The remaining parameters

Let

ϑ
(0)
0 = (ω0, α0, β0)>

be the GARCH(1,1) parameters of the regression error term. Let

ϑ
(i)
0 = ($0i, ξ0i, c0i, γ01i, . . . , γ0qi)

>

the parameters that are speci�c to βit, for i ∈ {1, . . . , p}. The
vector of the remaining parameters is thus

ϑ0 =
(
ϑ

(0)>
0 ,ϑ

(1)>
0 , . . . ,ϑ

(p)>
0

)>
∈ Rd2 .

Denote by ϑ be a generic element of the parameter space

Θϑ ⊂ (0,∞)× [0,∞)2 × Rp(3+q) and let the generic parameter

ϕ = (θ>,ϑ>)>.
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Second-step estimator of the beta dynamics

We estimate ϑ0 by

ϑ̂ = arg min
ϑ∈Θϑ

Õ(θ̂,ϑ), Õn(ϕ) =
1

n

n∑
t=2

˜̀
t(ϕ),

where, with standard notation,

˜̀
t(ϕ) =

ṽ2
t (ϕ)

g̃2
t (ϕ)

+ log g̃2
t (ϕ), ṽt(ϕ) = yt −

p∑
i=1

β̃it(ϕ)xit,

g̃2
t (ϕ) = ω + αṽ2

t−1(ϕ) + βg̃2
t−1(ϕ),

β̃it(ϕ) = $i + ξi
ṽt−1(ϕ)xi,t−1

µ2
i + g̃2

i,t−1(θ)
+ ciβ̃i,t−1(ϕ) +

q∑
j=1

γjizj,t−1.
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Motivation for penalized estimators

BFL showed the consistency and asymptotic normality (CAN) of

ϕ̂ = (θ̂
>
, ϑ̂
>

)>

under the assumption ξ0i 6= 0 for i = 1, . . . , p (and regularity

conditions).

We de�ne and study Lasso-type estimators which present the

advantages:

of being CAN under a more general framework than the

multi-step QMLE;

to lead to sparsity of the parameters, and thus to more

parsimonious models;

of being variable selection consistent (impossibility to use BIC

for, say p ≥ 5 which corresponds to more than 32000 models).
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The penalized components

We want to penalize non-zero estimated values of the parameters

ξi, ci, γ1i, . . . , γqi, for i = 1, . . . , p, to solve the non-identi�ability

problem by favoring the solution

ϑ̂
(i)

n = ($̂i, 0, 0, 0, . . . , 0)>

if βit is constant.

Let S = {5, . . . , q + 6, q + 8, . . . , d2} be the set of the components
that we want to shrink.
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Partially penalized estimator for constant beta detection

Thus consider the penalized QMLE

ϑ̂n = arg min
ϑ∈Θϑ

Q̃n(θ̂,ϑ), Q̃n(θ̂,ϑ) = Õn(θ̂,ϑ) + λnp(ϑ),

where λn ≥ 0 and p(ϑ) =
∑

i∈S |ϑi|.

The Lasso multi-step QMLE ϕ̂n =
(
θ̂
>
, ϑ̂
>
n

)>
encourages sparsity

of speci�c components of ϑ̂n in order to allow constant βit(ϕ̂n)'s.
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Consistency to a biased model

At the price of some bias, the Lasso estimator solves the lack of

identi�ability when λn → λ0 > 0 and

A(λ0):
Qλ0(ϑ) = E`1(θ0,ϑ) + λ0p (ϑ)

admits a minimum over Θϑ at some unique point ϑ?.

Assume standard regularity conditions and A(λ0) for some λ0 > 0.
If λn → λ0, then ϑ̂n → ϑ? in probability as n→∞.
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Comments on A(λ0)

Note that A(λ0) would be satis�ed for all λ0 ≥ 0 if the

function ϑ 7→ E`1(θ0,ϑ) where strictly convex.

It can be shown that A(λ0) generally holds true, at least when
λ0 > 0 is su�ciently small.

Note however that one can not take λ0 = 0, that is A(0) does
not hold true when a beta is constant.

Note also that, in general ϑ? 6= ϑ0. Thus the penalization

introduces an asymptotic bias, but it can be shown that the

bias is small when λ0 > 0 is small.

Illustration
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FOC satis�ed by ϑ?

Let ∂p (ϑ?) be the set of the subgradients of p on Θϑ at

ϑ? = (ϑ?1, . . . , ϑ
?
d2

). When the limit ϑ? belongs to Θ̊ϑ, the interior

of Θϑ, it must satisfy the subgradient �rst-order condition

0 ∈ ∂◦Qλ0(ϑ?) :=

{
∂E`1(θ0,ϑ

?)

∂ϑ

}
+ λ0∂p (ϑ?) .

When E`1(θ0, ·) is convex, ∂◦Qλ0(ϑ) is the subdi�erential of
Qλ0(ϑ) (the FOC is necessary and su�cient).

More generally, Clarke (1975) showed that, since the functions

E`1(θ0, ·) and p (·) are locally Lipschitz, ∂◦Qλ0(ϑ) is the set of
the generalized gradients of Qλ0(ϑ), which contains its

subgradients (the FOC is necessary).
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Sparsity of ϑ?

The set ∂p (ϑ) consists of the vectors u = (u1, . . . , ud2)> where:

for i ∈ S, ui = 0;

for i ∈ S,
ui = sign(ϑi) when ϑi 6= 0,
ui ∈ [−1, 1] when ϑi = 0.

It follows that if ϑ? ∈ Θ̊ϑ, for all i ∈ S,∣∣∣∂E`1(θ0,ϑ
?)

∂ϑi

∣∣∣ ≤ λ0 if ϑ?i = 0,;

∂E`1(θ0,ϑ
?)

∂ϑi
= −λ0sign(ϑ?i ) if ϑ?i 6= 0.

Estimator's FOC
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Upper bound for the penalty term

If λn > λ for some su�ciently large λ, then the penalized estimator

ϑ̂n is equal to the constrained QMLE ϕ̂cn = (θ̂, ϑ̂
c

n) such that

ϑ̂
c

n = arg min
ϑ∈Θcϑ

Õn(θ̂,ϑ),

where Θc
ϑ denotes the set of the parameters ϑ ∈ Θϑ with i-th

element ϑi = 0 for all i ∈ S.

The FOC entails that

λ ≥ λi := max
j∈S

∣∣∣∣∣ 1n
n∑
t=2

∂

∂ϑj
˜̀
t(ϕ̂

c
n)

∣∣∣∣∣ .
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Another bound for λ

Let Θj−
ϑ∗

(resp. Θj+
ϑ∗
) denotes the set of the parameters ϑ ∈ Θϑ

with j-th element ϑj ≤ 0 (resp. ϑj ≥ 0) and the other component

of ϑ are that of ϑ∗. Assume ϑ̂
c

n ∈ Θ̊ϑ.

One can take

λ = λs := max
j∈S

max

 sup
ϑ∈Θj−

ϑ̂
c
n

1

n

n∑
t=2

∂

∂ϑj
˜̀
t(θ̂,ϑ),

− inf
ϑ∈Θj+

ϑ̂
c
n

1

n

n∑
t=2

∂

∂ϑj
˜̀
t(θ̂,ϑ)

 .

If ϑ 7→ Õn(θ̂,ϑ) is a strictly convex, then λ = λi = λs. case λi < λs
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Adaptive estimator for constant beta detection

Let the data-driven weights

δ̂i =
1∣∣∣ϑ̂ni∣∣∣1ϑ̂ni 6=0

+∞1
ϑ̂ni=0

for i ∈ S,

and the adaptive penalized QMLE

ϑ̂
a

n = arg min
ϑ∈Θϑ

Õn(θ̂,ϑ) + λan
∑
i∈S

δ̂i|ϑi|.

Let A = A(ϑ0) be the subset of the active (and shrunk)

components of the model of parameter ϑ0, i.e. the set of indices

i ∈ S such that ϑ0i 6= 0. Let I = S ∩ A(ϑ0) be the subset of the
inactive components. Let A be the d6 × d2 selector matrix which

selects the active (or not shrunk) components of ϑ0.
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Asymptotics of the adaptive penalized multi-step QMLE

Let the previous assumptions and A(ϑ0) = A(ϑ?) for some
λ0 > 0. If λn → λ0, if there exists n0 such that λan > 0 for all

n ≥ n0, and
√
nλan → λa0 ≥ 0, then the components of ϑ̂

a

n whose

indices belong to I are zero with probability tending to 1, and

√
nA

(
ϑ̂
a

n − ϑ0

)
d→ arg min

u∈Rd6
V (u),

where, for u = (u1, . . . , ud6)>,

V (u) = u>W 2 − u>JAϑθJ−1
∗ W 1 +

1

2
u>JAϑu+ λa0 p(δ,ϑ0,A

>u),

with
(
W>

1 ,W
>
2

)> ∼ N (0, IA) and, for u2 = (u1, . . . , ud2)>,

p(δ,ϑ0,u2) =
∑
i∈A

δiuisign (ϑ0i) .
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Particular case with oracle property

Choosing a penalty term such that λa0 = 0, we obtain

√
nA

(
ϑ̂
a

n − ϑ0

)
d→ N

(
0,ΣA

ϑ

)
,

where ΣA
ϑ is the asymptotic distribution of the multistep QMLE

that we would obtained if we would know which are the constant

betas and all the non active components of the model.

After a �rst-step Lasso variable selection, the post-Lasso method

which simply consists of a second-step estimation of the

components selected from the �rst-step Lasso has the same

asymptotic distribution.

This kind of property is interpreted as an oracle property by Fan

and Li (2001) and Zou (2006), but the interpretation is strongly

criticized by Leeb and Pötscher (2008) and Hansen (2016).
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Penalizing the constant does not work

The previously de�ned estimators do not allow to detect the

irrelevant betas, i.e. the indices i such that ϑ
(i)
0 = 0q+3.

The naive solution would be to penalize all the ϑ(i)'s coe�cients,

does not work because a constant beta βi,t+1 ≡ β can be written as

βi,t+1 = $i + ξi
vtxit

µ2
i + g2

it

+ ciβit + γ1iz1t + · · ·+ γqizqt,

with many possibilities for ϑ(i), in particular

ϑ(i) = ϑ1 := (β,0′q+2)′ or ϑ(i) = ϑ2 := (0, 0, 1,0′q)
′.

Note that the solution ϑ(i) = ϑ2 would be favored by the penalized

estimator if |β| > 1, because in this case ‖ϑ1‖1 > ‖ϑ2‖1.
Therefore, penalizing $i along with the other parameters

ξi, ci, γ1i, . . . , γqi is likely to result in an inconsistent estimator.
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First detecting the zero ci's and then the irrelevant betas

Having, in a �rst step, identi�ed (some of) the ξ0i and c0i that are

zero, we obtain the second-step model

βi,t+1 = $0i + γ01iz1t + · · ·+ γ0qizqt, i = 1, . . . , p1

βi,t+1 = $0i + ξ0i
vtxit
µ20i+g

2
it

+ γ01iz1t + · · ·+ γ0qizqt,

i = p1 + 1, . . . , p1 + p2

βi,t+1 = $0i + ξ0i
vtxit
µ20i+g

2
it

+ c0iβit + γ01iz1t + · · ·+ γ0qizqt,

i = p1 + p2 + 1, . . . , p,

for 0 ≤ p1 ≤ p1 + p2 ≤ p, with obvious convention. It is possible to

shrink all the beta coe�cients for i = 1, . . . , p1 + p2 (but not the

$0i's for i = p1 + p2 + 1, . . . , p.)

C. Francq, S. Laurent and J. Schnaitmann Lasso-QMLEs of time series regressions



Time series model for a beta coe�cient
Asymptotic properties of Lasso multi-step QMLEs

Numerical study

Optimization algorithm
Monte-Carlo Simulations
Financial application

General optimization problem

Consider the optimization problem

ϑ(λ) = arg min
ϑ∈Θ

Qλ(ϑ), Qλ(ϑ) = Q(ϑ) + λp(ϑ),

with p(ϑ) =
∑

i∈S δi|ϑi|, where λ ≥ 0, ϑ = (ϑ1, . . . , ϑd)
>, Θ is a

convex compact subset of Rd, δ1, . . . , δd are given relative

shrinkage coe�cients with δi ≥ 0 and S = {i : δi > 0} 6= ∅.

Assume that Q(·) is two times continuously di�erentiable but not

necessarily convex. The Newton-Raphson method may not work

since Qλ(·) is not di�erentiable everywhere.
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Nonlinear shooting (NLShoot) algorithm Illustration LQA

For the Lasso-LSE of linear regressions Fu (1998) proposes the

"shooting algorithm", which is a coordinate-wise descent algorithm.

We �rst de�ne set of negative T−i (ϑ) and positive T+
i (ϑ) points,

real functions Q
(i)
λ (·;ϑ), and

ϑ̃i = arg min
ϑ∈T−

i (ϑ)∪T+
i (ϑ)∪{0}

Q
(i)
λ (ϑ;ϑ).

We then propose the following generalized shooting algorithm:

start with an initial value ϑ = ϑ0 and

replace the i-th coordinate of ϑ by ϑ̃i for i = 1, 2, . . . , d, 1, 2, . . .

We show that the cluster point(s) of this NLShoot algorithm are

stationary points of Qλ(·).
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Monte-Carlo design

The explanatory ptv + pcst variables follow a DCC-GARCH model.

For each replication, the penalized model is evaluated on a grid of

15 equidistant values of λ between 0 and λ, using the nonlinear

shooting (NLShoot) algorithm initialized with the LQA algorithm.

The next table reports the number of time-varying betas, of

constant betas, the percentage of correctly selected models, of

correctly identi�ed time-varying betas, of constant conditional

betas, of correctly identi�ed non active parameters and active

parameters.

In Step 1, only the ξ and c parameters are penalized. In Step 2 ,

the intercepts $'s of the conditional betas identi�ed as constant or

for which the c parameter is 0 in Step 1 are also penalized.
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100 replications for sample of 4, 000 observations
More than 1 billion of possible models when p = 10

ptv pcst % correct ptv % correct pcst % correct 0's % correct !0's

Step 1

3 3 93.3 66.0 82.3 94.3

6 2 94.0 45.5 71.7 95.8

2 6 88.4 78.3 88.0 90.6

5 5 92.4 66.4 81.7 93.9

7 3 94.8 52.3 75.0 96.1

3 7 88.0 76.3 86.6 90.0

Step 2

3 3 92.6 100.0 97.4 95.9

6 2 93.0 99.5 96.2 94.0

2 6 77.5 99.3 97.5 91.4

5 5 88.8 99.0 95.6 94.0

7 3 92.0 99.3 95.6 95.3

3 7 87.0 97.9 95.6 94.9
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The data set

We regress 30 daily Dow Jones stock returns from January 5th,

2010 to June 29th, 2023 (3,394 values) on nine sector ETFs

(potentially more than 1 billion of models for each stock).

For example, the BP series, which belongs to the Oil & Gas sector,

has a penalized ACB model that includes only 3 ETFs:

XLB (Material) and XLF (Financial services) with cst betas;

XLE (Energy) with ($, ξ, c) = (0.005, 0.009, 0.995);

and an error term with vol (ω, α, β) = (0.079, 0.089, 0.846).

In general, the ETF to which the stock is linked always appears as

relevant regressor, and the error term of the regression is always

conditionally heteroscedastic.
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Conclusion

The Lasso can be used to solve the non-identi�ability of our

beta time series model, at the price of some bias.

The adaptive version is able to suppress the bias.

The Lasso Multi-Step QMLE is tractable even though the

optimization is nonlinear, nonconvex, and involves a large

number of parameters.

The penalized estimator allows to select the constant betas in

a �rst step, and the relevant regressors in a second term.

Thank you!
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The autoregressive conditional beta (ACB) model

We focus on simple GARCH models for simplicity, but there are no

major conceptual or practical issues in considering more general

time series models for the regressors xit and for the error term vt of
the regression.

The term vtxit
µ20i+g

2
it
can be interpreted as an update variable for the

dynamics of the betas.

This term has been obtained by using the score-driven (SD)

approach SD approach with the aim to obtain a simple beta model,

analogous to an ARMA or a GARCH for the �rst conditional

moments.
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Interpretation of the update variable vtxit
µ2
0i+g

2
it

The presence of the product vtxit allows dynamic monitoring of the

orthogonality condition between the error term of the regression vt
and the regressors xit.
Indeed, if vtxit ' 0 and there is no exogenous variable (q = 0),
then we have the constant solution βit ≡ βi. Now, if βit is negative
and very small, then vtxit = ytxit −

∑
j 6=i βjtxitxjt − βitx2

it tends

to be positive. Therefore if βit is small and ξi > 0, then βi,t+1

tends to be larger than βit.

Also note that since the volatility g2
it is in the denominator of the

update variable, the time variation of the beta is smaller in periods

of high volatility in the regressors.
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Score Driven (GAS and Beta-t-GARCH) models

Assume that yt follows a conditional density p(yt|ft,Ft−1, θ),
where ft is a time-varying parameter of interest.

Harvey and Chakravarty (2008) and Creal, Koopman and Lucas

(2012) proposed the score-driven (SD) model for ft:

ft+1 = $ + ξS(ft)
∂ log p(yt|ft,Ft−1, θ)

∂ft
+ cft,

where $, ξ and c are unknown parameters and S(ft) is the inverse
of the conditional information matrix.

→ The scaled score is the updating mechanism in this approach.
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Examples of SD models

The SD model for mt in the location model

yt = mt + ηt, ηt iid N (0, σ2),

is the ARMA model

mt+1 = $ + ξ(yt −mt) + cmt.

The SD model for g2
t in the scale model

yt = gtηt, ηt iid N (0, 1),

is the GARCH model

g2
t+1 = $ + ξ(y2

t − g2
t ) + cg2

t .

→ The SD approach provides benchmark models for Gaussian

conditional distributions with location-scale parameters.
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Applying the SD approach for the beta parameters

Let us de�ne a SD model for βit in the regression model

yt = β1tx1t + · · ·+ βptxpt + vt,

where vt = gtηt, g
2
t = Et−1v

2
t , ηt iid N (0, 1). Let Et−1xit = µit

and Et−1x
2
it = g2

it + µ2
it.

We have lt := log p(yt|Ft−1, θ) = −1
2

{
v2t
g2t

+ log g2
t

}
,

∂lt
∂βit

=
vtxit
g2
t

, S(βit) = −
(
Et−1

∂2lt
∂2βit

)−1

=
g2
t

µ2
it + g2

it

.

Therefore the updating mechanism S(βit)
∂lt
∂βit

= vtxit
µ2it+g

2
it
.
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ACB with exogenous variables and special cases

For simplicity, assume µit = µi and a GARCH(1,1) volatility git.
Let the ACB with q additional exogenous variables z1t, . . . , zqt

βit+1 = $i + ξi
vtxit

µ2
i + g2

it

+ ciβit + γ1iz1t + · · ·+ γqizqt.

1 No GARCH e�ects in xit: αi = βi = 0→ g2
it+1 = ωi.

βit+1 = $i + ξivtxit + ciβit + γ1iz1t + · · ·+ γqizqt.

2 xit = 1 (intercept): βit time varying unless ξi = 0 and q = 0

βit+1 = $i + ξivt + ciβit + γ1iz1t + · · ·+ γqizqt.

3 Assume that p = 1, q = 0 and that x1t = 1
→ yt = $ + (ξ − c)vt−1 + cyt−1 + vt =ARMA(1,1).
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Illustration of A(λ0)

Let

Qλ(ϑ) = Q(ϑ) + λ‖ϑ‖1
with ϑ = (ϑ1, ϑ2)>,

Q(ϑ) = P(ϑ1 − ϑ2), P(x) =
x4

4
− 2x3

3
− x2 + 1.

Note that Q(ϑ) is minimal for all ϑ such that ϑ2 = ϑ1 − 2.

If λ > 0 is very small but not zero, ϑ? = arg minQλ(ϑ) is
unique and is close to (1,−1);

if λ is very large ϑ? is also unique and equal to (0, 0);

if λ = 2.03 the function reaches its minimum at 2 points

λ = 0 the minimum is not well de�ned (i.e. not unique).
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A(λ0) always satis�ed, except for λ0 = 0 and λ0 = 2.03
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Figure: Left graph: minQλ(ϑ) as function of ϑ1 for several values of λ.
Right graph: (ϑ?1, ϑ

?
2) = arg minQλ(ϑ) as function of λ.
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Example showing that we can have λi 6= λs

Let

Qλ(ϑ) = Q(ϑ) + λ|ϑ1|, ϑ = (ϑ1, ϑ2)>,

with Q(ϑ) =
∑2

i=1 ϑ
4
i − 2

3ϑ
3
i − 2ϑ2

i + 2ϑi + 1. Note that
ϑ? := arg minQλ(ϑ) = (ϑ?1,−1)>, and that for ϑc := (0,−1)>

we have

λi = ∂Q(ϑc)/∂ϑ1 = 2.

However, arg minQ2(ϑ) = (−0.781,−1)> 6= ϑc. We have

ϑ? = ϑc for λ ≥ 2.746, which is in agreement with

λs = sup
ϑ1≤0

4ϑ3
1 − 2ϑ2

1 − 4ϑ1 + 2 = 3.032.

C. Francq, S. Laurent and J. Schnaitmann Lasso-QMLEs of time series regressions



Time series model for a beta coe�cient
Asymptotic properties of Lasso multi-step QMLEs

Numerical study

Optimization algorithm
Monte-Carlo Simulations
Financial application

Example where λi < λs
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Figure: Function ϑ1 7→ Qλ(ϑ1,−1) = Q(ϑ1,−1) + λ|ϑ1|. For
ϑc = (0,−1), we have ∂Q(ϑc)/∂ϑ1 = 2, but arg minϑQλ(ϑ) = ϑc only
for λ ≥ 2.746 and not for λ = λi = 2.
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Example of computation of λi and λs

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
10

−
5

0
5

ϑ1

∂Q
λ(

ϑ)
/∂

ϑ 1
 a

nd
  +

−
 λ

λs=3.032

λi=2

λ=1.5

λ=2.746

λ=4

Figure: Graphical representation of λi and λs.
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NLShoot for a simple optimization

Let us use the NLshoot algorithm to compute

arg min
ϑ

P (ϑ) + λ|ϑ|, P (x) = x4 − 2

3
x3 − 2x2 + 2x.

NLShoot reduces to a single application of the algorithm. The

�gure below shows that, for λ = 2.5, the set {ϑ < 0 : P ′(ϑ) = λ}
contains 2 points, that 0 is also a point at which a generalized

gradient is zero, and that the set {ϑ > 0 : P ′(ϑ) = −λ} is empty.
To �nd the minimum, it is then su�cient to compare the value of

the penalized function at these 3 points.
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The objective function
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Figure: Function P (ϑ) + 2.5|ϑ| with a minimum at ϑ = −0.689, and two

other "critical points" at ϑ = −0.137 and ϑ = 0.
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NLShoot in a simple (degenerate) case
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Figure: NLShoot �nds the 3 critical points.
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FOC satis�ed by ϑ̂n and sparsity of the estimator

We have

0 ∈

{
∂Õn(θ̂, ϑ̂n)

∂ϑ

}
+ λn∂p

(
ϑ̂n

)
.

Therefore, for all i ∈ S,∣∣∣ 1
n

∑n
t=2

∂ ˜̀t(ϕ̂n)
∂ϑi

∣∣∣ ≤ λn if ϑ̂ni = 0,

1
n

∑n
t=2

∂ ˜̀t(ϕ̂n)
∂ϑi

= −λnsign
(
ϑ̂ni

)
if ϑ̂ni 6= 0.
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The LQA algorithm

For penalty terms that are non convex and non di�erentiable, Fan

and Li (2001) proposed the local quadratic approximation (LQA)

algorithm. In our framework the LQA algorithm consists of

repeatedly solving

ϑ(k+1) = arg min
ϑ∈Θ

{
Q(ϑ) + λ

∑
i∈S

δi
sign(ϑ

(k)
i )

2ϑ
(k)
i

ϑ2
i

}

until convergence, where ϑ(0) ∈ Θ is an initial value.

Fan and Li (2001) suggested to set |ϑ(·)
i | ≡ 0 and to remove this

component from the optimization problem if |ϑ(k)
i | < ε for some

small ε > 0, but the choice of ε matters.
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