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Insect pests

◎ The objective of the initial study is to control a population of insect pests
in a sugar-cane field in La Réunion, while limiting the use of pesticides.

 It requires a good understanding of the ecosystem, and the impacts of
species on each other.
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The study (1/2)

We focus here on four group of species

(a) Coleoptera (b) Diptera (c) Hymenoptera (d) Oribatida

Their population has been observed weekly from January, 2022 to August,
2023, catching the insects into traps.
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The study (2/2)
We thus obtain a time series of counts (Yt)1⩽t⩽82 valued in N4

Yt = (Y1,t,Y2,t,Y3,t,Y4,t), 1 ⩽ t ⩽ 82.
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The underlying relative abundance

 The time series of counts (Yt)t∈Z is just a representation of the entire
population.

Ü It may not reflect the exact reality of the ecosystem.
 Each multivariate count Yt depend strongly on the overall proportion of
each species in the whole ecosystem: the relative abundance Xt.
Xt is the vector of proportions of each species in the whole ecosystem. For
p species, Xt is valued in the simplex

Sp−1 =

{
(x1, . . . , xp) ∈ (0,+∞)p :

p∑
1=1

xi = 1

}
.

◎ Our goal is to provide a model for the joint process (Xt,Yt)t∈Z, where
(Xt)t∈Z is not observed.
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Dynamic of the relative abundance (Xt)t∈Z (1/2)
Let us fix p the number of species in the ecosystem, and consider a process
(Zt)t∈Z of k exogenous variables.

(Xt)t∈Z is defined as a Markov chain with a Dirichlet transition kernel

P (Xt | Xt−1,Zt) = Dir (αt) ,

where αt = α(Xt−1,Zt) ∈ (0,+∞)p satisfies α(Xt−1,Zt) = φt · µt with:
Ü φt ∈ R∗

+ a dispersion parameter

φt = exp (a0 + a1IS(Xt−1)) ,

where IS denotes here the Shannon entropy.
Ü µt = (µ1,t, . . . , µp,t) ∈ Sp−1 a mean parameter

log
(
µi,t
µp,t

)
= A0(i)+A1(i, ·)·(X1,t−1, . . .Xp−1,t−1)

′
+B(i, ·)·Zt, 1 ⩽ i ⩽ p−1,

where A0 ∈ Rp−1, A1 is a matrix of dimension (p − 1)× (p − 1) and
B is a matrix with (p − 1) rows.
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Dynamic of the relative abundance (Xt)t∈z (2/2)
 The process (Xt)t∈Z is actually a non-homogeneous Markov chain, with a
random transition kernel determined by (Zt)t∈Z.

 The Dirichlet transtion kernel P(· | x, z) ∼ Dir(α(x, z)) satisfies a
Doeblin condition

∀x ∈ Sp−1, ∀z ∈ Rk, ∀A ∈ B (Sp−1) P(A | x, z) ⩾ ε(z)µ(z,A),

for some fixed measurable application ε valued in (0, 1]� and a fixed Markov
kernel µ defined on Rk × B(Sp−1).

Proposition 1
Assume that (Zt)t∈Z is stationary.
Then, there exists a stationary process (Xt,Zt)t∈Z satisfying our dynamics,
and its distribution is unique.
Moreover, if (Zt)t∈Z is ergodic, then (Xt,Zt)t∈Z is also ergodic.
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Dynamic of the count process (Yt)t∈Z
The count process (Yt)t∈Z is derived from the relative abundance process
(Xt)t∈Z and a process (Nt)t∈Z valued in N accounting for the total number
of counts at time t:

Yt ∼ Mp(Nt,Xt),

where Mp(Nt,Xt) denotes the multinomial distribution.

 The Dirichlet distribution and the multinomial distribution are conjugate
to each other.
 Dirichlet density function:

fα(x1, . . . , xp) =
Γ(

∑
αi)

Γ(α1) · · ·Γ(αp)
xα1−1
1 · · · xαp−1

p .

 Multinomial mass function:

fN,x(y1, . . . yp) =
N!

y1! · · · yp!
xy1
1 , · · · xyp

p .
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«Pseudo-HMM» framework (1/2)
We assume that:

Ü Processes (Xt)t∈Z and (Nt)t∈Z are independent;
Ü (Nt)t∈Z is a Markov chain;
Ü Conditionally on (Xt,Nt)t∈Z, the Yt’s are independent, and depend

only on (Xt,Nt).

(Xt,Nt) (Xt+1,Nt+1)

Yt Yt+1

Dir(αt)⊗ PNt+1|Nt

Mp(Nt,Xt) Mp(Nt+1,Xt+1)

We thus obtain a «pseudo-HMM» framework, where the underlying process
is partially observed.
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«Pseudo-HMM» framework (2/2)

 Our framework allows us to consider (Xt,Yt)t∈Z as a Markov chain in a
random environment, which is determined by (Zt,Nt)t∈Z.

Proposition 2
Assume that (Nt,Zt)t∈Z is stationary.
Then, there exists a stationary process (Xt,Yt,Nt,Zt)t∈Z satisfying our
dynamics, and its distribution is unique.
Moreover, if (Nt,Zt)t∈Z is ergodic, then (Xt,Yt,Nt,Zt)t∈Z is also ergodic.
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Joint log-likelihood

Assume that for some T ∈ N∗, (y0,n0), . . . , (yT,nT) are observed
realizations of our process, corresponding to the unobserved relative
abundances x0, . . . , xT.

The joint log-likelihood of our process is

Lθ(x0:T, y0:T) =

T∑
t=1

{
log(nt!) + log(Γ(ϕt)) +

p∑
j=1

[(αj,t + yj,t − 1) log(xj,t)− log(yj,t!)

− log(Γ(αj,t))]

}
+ log(n0!) +

p∑
j=1

[yj,0 log(xj,0)− log(yj,0!)] .

◎ We are interested in the estimation of the true parameter θ0 of our
model, where
θ = (a0, a1,A0(1), . . . ,A0(p − 1),A1(1, 1), . . . ,A1(p − 1, p − 1),B(1, 1), . . .B(k, p − 1)) .
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Inference strategy (1/2)

Ü The EM algorithm is a classical manner of estimating θ0.

 Initialize θ(0) wisely.
 After n iteration, update the estimate with

θ(n+1) = argmax
θ

EX0:T ∼ P
θ(n) (·|y0:T) [Lθ (X0:T, y0:T)]︸ ︷︷ ︸

I(θ(n),θ)

.

8 The quantity I
(
θ(n), θ

)
can not by computed directly.
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Inference strategy (2/2)
Ü Use of a particle filter to tackle this issue.

 The idea is to perform a large number N of simulated trajectories
X̃(1)

0:T, . . . , X̃
(N)
0:T, where for each 1 ⩽ i ⩽ N

X̃(i)
0:T ∼ P̃θ(n)(· | y0:T)

approaches the target distribution Pθ(n)(· | y0:T).

Each simulation X̃(i)
0:T is then weighted by wi, which measures its fit with

the observed data.
We then approach I

(
θ(n), θ

)
by the mean

N∑
i=1

wiLθ(X̃(i)
0:T, y0:T).
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About the particle filter (1/2)

 The proposal distribution chosen here is the one of a Markov chain(
X̃t

)
t∈Z

with transition kernel

P̃θ(n)

(
X̃t | X̃t−1

)
= Dir(α(n)

t + yt).

 Most of the weights are close to zero.
Ü Resampling strategy:

 Each simulation X̃(i)
0:T and weight wi are computed sequentially.

 Once the particles X̃(1)
t , . . . , X̃(N)

t and the weights wt,1, . . . ,wt,N
are computed, we replace the particles by a new sample, drawn
with replacement, from the same set of particles, with
probabilities given by the particles weights.

Guillaume Franchi Modeling abundance time series through a «pseudo-HMM» framework 17/26



The problematic The framework Estimation procedure Numerical experiments

About the particle filter (1/2)

 The proposal distribution chosen here is the one of a Markov chain(
X̃t

)
t∈Z

with transition kernel

P̃θ(n)

(
X̃t | X̃t−1

)
= Dir(α(n)

t + yt).

 Most of the weights are close to zero.

Ü Resampling strategy:
 Each simulation X̃(i)

0:T and weight wi are computed sequentially.
 Once the particles X̃(1)

t , . . . , X̃(N)
t and the weights wt,1, . . . ,wt,N

are computed, we replace the particles by a new sample, drawn
with replacement, from the same set of particles, with
probabilities given by the particles weights.

Guillaume Franchi Modeling abundance time series through a «pseudo-HMM» framework 17/26



The problematic The framework Estimation procedure Numerical experiments

About the particle filter (1/2)

 The proposal distribution chosen here is the one of a Markov chain(
X̃t

)
t∈Z

with transition kernel

P̃θ(n)

(
X̃t | X̃t−1

)
= Dir(α(n)

t + yt).

 Most of the weights are close to zero.
Ü Resampling strategy:

 Each simulation X̃(i)
0:T and weight wi are computed sequentially.

 Once the particles X̃(1)
t , . . . , X̃(N)

t and the weights wt,1, . . . ,wt,N
are computed, we replace the particles by a new sample, drawn
with replacement, from the same set of particles, with
probabilities given by the particles weights.

Guillaume Franchi Modeling abundance time series through a «pseudo-HMM» framework 17/26



The problematic The framework Estimation procedure Numerical experiments

About the particle filter (1/2)

 The proposal distribution chosen here is the one of a Markov chain(
X̃t

)
t∈Z

with transition kernel

P̃θ(n)

(
X̃t | X̃t−1

)
= Dir(α(n)

t + yt).

 Most of the weights are close to zero.
Ü Resampling strategy:

 Each simulation X̃(i)
0:T and weight wi are computed sequentially.

 Once the particles X̃(1)
t , . . . , X̃(N)

t and the weights wt,1, . . . ,wt,N
are computed, we replace the particles by a new sample, drawn
with replacement, from the same set of particles, with
probabilities given by the particles weights.

Guillaume Franchi Modeling abundance time series through a «pseudo-HMM» framework 17/26



The problematic The framework Estimation procedure Numerical experiments

About the particle filter (1/2)

 The proposal distribution chosen here is the one of a Markov chain(
X̃t

)
t∈Z

with transition kernel

P̃θ(n)

(
X̃t | X̃t−1

)
= Dir(α(n)

t + yt).

 Most of the weights are close to zero.
Ü Resampling strategy:

 Each simulation X̃(i)
0:T and weight wi are computed sequentially.

 Once the particles X̃(1)
t , . . . , X̃(N)

t and the weights wt,1, . . . ,wt,N
are computed, we replace the particles by a new sample, drawn
with replacement, from the same set of particles, with
probabilities given by the particles weights.

Guillaume Franchi Modeling abundance time series through a «pseudo-HMM» framework 17/26



The problematic The framework Estimation procedure Numerical experiments

About the particle filter (2/2)

4 We avoid the degeneracy of the weights.

 The trajectories obtained are based on a small number of initial particles.
 We perform backward smoothing in order to reduce this correlation.

Given the weighted set of particles
{

X̃(i)
t ,wt,i : 0 ⩽ t ⩽ T, 1 ⩽ i ⩽ N

}
:

 Set ξT = X̃(i)
T with probability wi,T.

 For t = T − 1, . . . , 0:
• Compute new weights wi,t|t+1 ∝ wi,t × f

αt+1(X̃(i)
t )

(ξt+1).

• Set ξt = X̃(i)
t with probability wi,t|t+1.

The trajectory ξ0:T obtained is distributed with respect to Pθ(n)(· | y0:T).
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Simulations (1/3)

We simulated N = 100 trajectories of relative abundances for two species,
with one exogenous variable.

We then applied our estimation strategy to infer the model’s parameters.

Parameter True Value Mean Estimate MSE Bias Variance
a0 4 4.019 0.629 0.019 0.628
a1 -2 -1.932 1.872 0.068 1.868
A0 -1.5 -1.490 0.026 0.010 0.026
A1 2 1.959 0.220 -0.041 0.219
B -0.5 -0.466 0.127 0.034 0.012
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Simulations (2/3)
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Simulations (3/3)
Once we obtain estimates of the model’s parameters, it is possible to use
backward smoothing to recover the hidden process of relative abundance.
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Back in La Réunion (1/2)
We finally fit our model to the relative abundance of the insects in a
sugar-cane field in La Réunion.

We use the temperature and the amount of precipitation as exogenous
variables.
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Back in La Réunion (2/2)
Once our estimation is complete, we use backward smoothing in order to
recover the correct relative abundance of our species.
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Take away message

Ü An innovative manner to model the Joint Species Distribution in
Ecology.

Ü A very interpretable model.
Ü With good statistical properties.
8 Estimators have a large variance.
8 Would probably fail to recover the hidden relative abundance if its too

far from the observed one.
 Add a variable selection.
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Thank you !
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