Modeling abundance time series through a «pseudo-HMM» framework

> Guillaume Franchi Joint work with L. Truquet and M-P. Etienne

> > Ecodep Closing Conference 30 September 2024

Outlines

I. The problematic

-
-
-

The problematic The framework Estimation procedure Numerical experiments Insect pests

◎ The objective of the initial study is to control a population of insect pests in a sugar-cane field in La Réunion, while limiting the use of pesticides.

The problematic The framework Estimation procedure Numerical experiments Insect pests

◎ The objective of the initial study is to control a population of insect pests in a sugar-cane field in La Réunion, while limiting the use of pesticides.

 \circ It requires a good understanding of the ecosystem, and the impacts of species on each other.

The problematic The framework Estimation procedure Numerical experiments The study $(1/2)$

We focus here on four group of species

(a) Coleoptera (b) Diptera (c) Hymenoptera (d) Oribatida

We focus here on four group of species

Their population has been observed weekly from January, 2022 to August, 2023, catching the insects into traps.

The study (2/2)

We thus obtain a time series of counts $(\,Y_t)_{1\leqslant t\leqslant 82}$ valued in \mathbb{N}^4

$$
Y_t = (Y_{1,t}, Y_{2,t}, Y_{3,t}, Y_{4,t}), 1 \leq t \leq 82.
$$

 The time series of counts (*Yt*)*t∈*^Z is just a representation of the entire population.

 The time series of counts (*Yt*)*t∈*^Z is just a representation of the entire population.

The problematic The framework Estimation procedure Numerical experiments

→ It may not reflect the exact reality of the ecosystem.

 The time series of counts (*Yt*)*t∈*^Z is just a representation of the entire population.

The problematic The framework Estimation procedure Numerical experiments

➜ It may not reflect the exact reality of the ecosystem.

 $\mathbf{\Omega}$ Each multivariate count Y_t depend strongly on the overall proportion of each species in the whole ecosystem: the **relative abundance** *X^t* .

 The time series of counts (*Yt*)*t∈*^Z is just a representation of the entire population.

The problematic The framework Estimation procedure Numerical experiments

→ It may not reflect the exact reality of the ecosystem.

 $\mathbf{\Omega}$ Each multivariate count Y_t depend strongly on the overall proportion of each species in the whole ecosystem: the **relative abundance** *X^t* .

Xt is the vector of proportions of each species in the whole ecosystem. For p species, X_t is valued in the simplex

$$
S_{p-1} = \left\{ (x_1, \ldots, x_p) \in (0, +\infty)^p : \sum_{1=1}^p x_i = 1 \right\}.
$$

 The time series of counts (*Yt*)*t∈*^Z is just a representation of the entire population.

The problematic The framework Estimation procedure Numerical experiments

→ It may not reflect the exact reality of the ecosystem.

 $\mathbf{\Omega}$ Each multivariate count Y_t depend strongly on the overall proportion of each species in the whole ecosystem: the **relative abundance** *X^t* .

Xt is the vector of proportions of each species in the whole ecosystem. For p species, X_t is valued in the simplex

$$
S_{p-1} = \left\{ (x_1, \ldots, x_p) \in (0, +\infty)^p : \sum_{1=1}^p x_i = 1 \right\}.
$$

◎ Our goal is to provide a model for the joint process $(X_t, Y_t)_{t \in \mathbb{Z}}$, where $(X_t)_{t∈\mathbb{Z}}$ is not observed.

Outlines

II. The framework

-
-

The problematic The framework Estimation procedure Numerical experiments Dynamic of the relative abundance $(X_t)_{t \in \mathbb{Z}}$ (1/2)

Let us fix *p* the number of species in the ecosystem, and consider a process $(Z_t)_{t \in \mathbb{Z}}$ of *k* exogenous variables.

Let us fix *p* the number of species in the ecosystem, and consider a process $(Z_t)_{t \in \mathbb{Z}}$ of *k* exogenous variables.

The problematic The framework Estimation procedure Numerical experiments

(*Xt*)*t∈*^Z is defined as a Markov chain with a Dirichlet transition kernel

$$
\mathbb{P}\left(X_t \mid X_{t-1}, Z_t\right) = \mathrm{Dir}\left(\alpha_t\right),\,
$$

Let us fix p the number of species in the ecosystem, and consider a process $(Z_t)_{t∈\mathbb{Z}}$ of k exogenous variables.

The problematic The framework Estimation procedure Numerical experiments

 $(X_t)_{t \in \mathbb{Z}}$ is defined as a Markov chain with a Dirichlet transition kernel

$$
\mathbb{P}\left(X_t \mid X_{t-1}, Z_t\right) = \mathrm{Dir}\left(\alpha_t\right),\,
$$

where $\alpha_t = \alpha(X_{t-1}, Z_t) \in (0, +\infty)^p$ satisfies $\alpha(X_{t-1}, Z_t) = \varphi_t \cdot \mu_t$ with:

Let us fix p the number of species in the ecosystem, and consider a process $(Z_t)_{t∈\mathbb{Z}}$ of k exogenous variables.

The problematic The framework Estimation procedure Numerical experiments

(*Xt*)*t∈*^Z is defined as a Markov chain with a Dirichlet transition kernel

$$
\mathbb{P}\left(X_t \mid X_{t-1}, Z_t\right) = \mathrm{Dir}\left(\alpha_t\right),\,
$$

where $\alpha_t = \alpha(X_{t-1}, Z_t) \in (0, +\infty)^p$ satisfies $\alpha(X_{t-1}, Z_t) = \varphi_t \cdot \mu_t$ with: ➜ *φ^t ∈* R *∗* ⁺ a dispersion parameter

 $\varphi_t = \exp (a_0 + a_1 I_S(X_{t-1}))$,

where *I^S* denotes here the Shannon entropy.

Let us fix p the number of species in the ecosystem, and consider a process (*Zt*)*t∈*^Z of *k* exogenous variables.

The problematic The framework Estimation procedure Numerical experiments

(*Xt*)*t∈*^Z is defined as a Markov chain with a Dirichlet transition kernel

$$
\mathbb{P}\left(X_t \mid X_{t-1}, Z_t\right) = \mathrm{Dir}\left(\alpha_t\right),\,
$$

where $\alpha_t = \alpha(X_{t-1}, Z_t) \in (0, +\infty)^p$ satisfies $\alpha(X_{t-1}, Z_t) = \varphi_t \cdot \mu_t$ with: ➜ *φ^t ∈* R *∗* ⁺ a dispersion parameter

$$
\varphi_t = \exp\left(a_0 + a_1 I_S(X_{t-1})\right),\,
$$

where *I^S* denotes here the Shannon entropy.

 $\rightarrow \mu_t = (\mu_{1,t}, \ldots, \mu_{p,t}) \in \mathcal{S}_{p-1}$ a mean parameter

$$
\log\left(\frac{\mu_{i,t}}{\mu_{p,t}}\right) = A_0(i) + A_1(i, \cdot) \cdot (X_{1,t-1}, \dots X_{p-1,t-1})' + B(i, \cdot) \cdot Z_t, \ 1 \leq i \leq p-1,
$$

where $A_0 \in \mathbb{R}^{p-1}$, A_1 is a matrix of dimension $(p-1) \times (p-1)$ and *B* is a matrix with $(p-1)$ rows.
 Guillaume Franchi Modeling abundan

 The process (*Xt*)*t∈*^Z is actually a non-homogeneous Markov chain, with a random transition kernel determined by $(Z_t)_{t \in \mathbb{Z}}$.

 The process (*Xt*)*t∈*^Z is actually a non-homogeneous Markov chain, with a random transition kernel determined by $(Z_t)_{t \in \mathbb{Z}}$.

The problematic The framework Estimation procedure Numerical experiments

 The Dirichlet transtion kernel *P*(*· | x, z*) *∼* Dir(*α*(*x, z*)) satisfies a Doeblin condition

 $\forall x \in \mathcal{S}_{p-1}, \ \forall z \in \mathbb{R}^k, \ \forall A \in \mathcal{B}(\mathcal{S}_{p-1}) \ \ P(A \mid x, z) \geqslant \varepsilon(z) \mu(z, A),$

for some fixed measurable application *ε* valued in (0*,* 1] and a fixed Markov $\mathsf{kernel}\; \mu$ defined on $\mathbb{R}^k \times \mathcal{B}(\mathcal{S}_{p-1}).$

 The process (*Xt*)*t∈*^Z is actually a non-homogeneous Markov chain, with a random transition kernel determined by $(Z_t)_{t \in \mathbb{Z}}$.

The problematic The framework Estimation procedure Numerical experiments

 The Dirichlet transtion kernel *P*(*· | x, z*) *∼* Dir(*α*(*x, z*)) satisfies a Doeblin condition

k

$$
\forall x \in \mathcal{S}_{p-1}, \ \forall z \in \mathbb{R}^k, \ \forall A \in \mathcal{B}(\mathcal{S}_{p-1}) \ \ P(A \mid x, z) \geqslant \varepsilon(z) \mu(z, A),
$$

for some fixed measurable application *ε* valued in (0*,* 1] and a fixed Markov $\mathsf{kernel}\; \mu$ defined on $\mathbb{R}^k \times \mathcal{B}(\mathcal{S}_{p-1}).$

 The process (*Xt*)*t∈*^Z is actually a non-homogeneous Markov chain, with a random transition kernel determined by $(Z_t)_{t \in \mathbb{Z}}$.

The framework Estimation procedure Numerical experiments

 The Dirichlet transtion kernel *P*(*· | x, z*) *∼* Dir(*α*(*x, z*)) satisfies a Doeblin condition

$$
\forall x \in \mathcal{S}_{p-1}, \ \forall z \in \mathbb{R}^k, \ \forall A \in \mathcal{B}(\mathcal{S}_{p-1}) \ \ P(A \mid x, z) \geqslant \varepsilon(z) \mu(z, A),
$$

for some fixed measurable application *ε* valued in (0*,* 1] and a fixed Markov $\mathsf{kernel}\; \mu$ defined on $\mathbb{R}^k \times \mathcal{B}(\mathcal{S}_{p-1}).$

Proposition 1

Assume that $(Z_t)_{t \in \mathbb{Z}}$ is stationary.

Then, there exists a stationary process $(X_t, Z_t)_{t \in \mathbb{Z}}$ satisfying our dynamics, and its distribution is unique.

 The process (*Xt*)*t∈*^Z is actually a non-homogeneous Markov chain, with a random transition kernel determined by $(Z_t)_{t \in \mathbb{Z}}$.

The framework Estimation procedure Numerical experiments

 The Dirichlet transtion kernel *P*(*· | x, z*) *∼* Dir(*α*(*x, z*)) satisfies a Doeblin condition

$$
\forall x \in \mathcal{S}_{p-1}, \ \forall z \in \mathbb{R}^k, \ \forall A \in \mathcal{B}(\mathcal{S}_{p-1}) \ \ P(A \mid x, z) \geqslant \varepsilon(z) \mu(z, A),
$$

for some fixed measurable application *ε* valued in (0*,* 1] and a fixed Markov $\mathsf{kernel}\; \mu$ defined on $\mathbb{R}^k \times \mathcal{B}(\mathcal{S}_{p-1}).$

Proposition 1

Assume that $(Z_t)_{t \in \mathbb{Z}}$ is stationary. Then, there exists a stationary process $(X_t, Z_t)_{t \in \mathbb{Z}}$ satisfying our dynamics, and its distribution is unique. M oreover, if $(Z_t)_{t \in \mathbb{Z}}$ is ergodic, then $(X_t, Z_t)_{t \in \mathbb{Z}}$ is also ergodic.

The count process $(Y_t)_{t \in \mathbb{Z}}$ is derived from the relative abundance process $(X_t)_{t \in \mathbb{Z}}$ and a process $(N_t)_{t \in \mathbb{Z}}$ valued in N accounting for the total number of counts at time *t*:

The problematic The framework Estimation procedure Numerical experiments

$$
Y_t \sim \mathcal{M}_p(N_t, X_t),
$$

where $\mathcal{M}_p(N_t,X_t)$ denotes the multinomial distribution.

The count process $(Y_t)_{t \in \mathbb{Z}}$ is derived from the relative abundance process $(X_t)_{t \in \mathbb{Z}}$ and a process $(N_t)_{t \in \mathbb{Z}}$ valued in N accounting for the total number of counts at time *t*:

The problematic The framework Estimation procedure Numerical experiments

$$
Y_t \sim \mathcal{M}_p(N_t, X_t),
$$

where $\mathcal{M}_p(N_t,X_t)$ denotes the multinomial distribution.

The Dirichlet distribution and the multinomial distribution are conjugate to each other.

The count process $(Y_t)_{t \in \mathbb{Z}}$ is derived from the relative abundance process $(X_t)_{t \in \mathbb{Z}}$ and a process $(N_t)_{t \in \mathbb{Z}}$ valued in N accounting for the total number of counts at time *t*:

The problematic The framework Estimation procedure Numerical experiments

$$
Y_t \sim \mathcal{M}_p(N_t, X_t),
$$

where $\mathcal{M}_p(N_t,X_t)$ denotes the multinomial distribution.

The Dirichlet distribution and the multinomial distribution are conjugate to each other.

 $\mathbf{Q}_{\mathbf{B}}^{\mathbf{B}}$ Dirichlet density function:

$$
f_{\alpha}(x_1,\ldots,x_p)=\frac{\Gamma(\sum \alpha_i)}{\Gamma(\alpha_1)\cdots\Gamma(\alpha_p)}x_1^{\alpha_1-1}\cdots x_p^{\alpha_p-1}.
$$

The count process $(Y_t)_{t \in \mathbb{Z}}$ is derived from the relative abundance process $(X_t)_{t \in \mathbb{Z}}$ and a process $(N_t)_{t \in \mathbb{Z}}$ valued in N accounting for the total number of counts at time *t*:

The problematic The framework Estimation procedure Numerical experiments

$$
Y_t \sim \mathcal{M}_p(N_t, X_t),
$$

where $\mathcal{M}_p(N_t,X_t)$ denotes the multinomial distribution.

The Dirichlet distribution and the multinomial distribution are conjugate to each other.

 $\mathbf{Q}_{\mathbf{B}}^{\mathbf{B}}$ Dirichlet density function:

$$
f_{\alpha}(x_1,\ldots,x_p)=\frac{\Gamma(\sum \alpha_i)}{\Gamma(\alpha_1)\cdots\Gamma(\alpha_p)}x_1^{\alpha_1-1}\cdots x_p^{\alpha_p-1}.
$$

 $\mathbf{Q}_{\mathbf{B}}^{\mathbf{B}}$ Multinomial mass function:

Guillaume Franchi

$$
f_{N,x}(y_1,\ldots y_p) = \frac{N!}{y_1! \cdots y_p!} x_1^{y_1}, \cdots x_p^{y_p}.
$$

The problematic The framework Estimation procedure Numerical experiments

We assume that:

We assume that:

➜ Processes (*Xt*)*t∈*^Z and (*Nt*)*t∈*^Z are independent;

We assume that:

➜ Processes (*Xt*)*t∈*^Z and (*Nt*)*t∈*^Z are independent;

The problematic The framework Estimation procedure Numerical experiments

➜ (*Nt*)*t∈*^Z is a Markov chain;

We assume that:

- ➜ Processes (*Xt*)*t∈*^Z and (*Nt*)*t∈*^Z are independent;
- ➜ (*Nt*)*t∈*^Z is a Markov chain;
- \rightarrow Conditionally on $(X_t, N_t)_{t \in \mathbb{Z}}$, the Y_t 's are independent, and depend only on (X_t, N_t) .

We assume that:

- ➜ Processes (*Xt*)*t∈*^Z and (*Nt*)*t∈*^Z are independent;
- ➜ (*Nt*)*t∈*^Z is a Markov chain;
- \rightarrow Conditionally on $(X_t, N_t)_{t \in \mathbb{Z}}$, the Y_t 's are independent, and depend only on (X_t, N_t) .

The problematic The framework Estimation procedure Numerical experiments

We thus obtain a «pseudo-HMM» framework, where the underlying process is partially observed.

Guillaume Franchi Modeling abundance time series through a «pseudo-HMM» framework 11/26

 Ω Our framework allows us to consider $(X_t, Y_t)_{t \in \mathbb{Z}}$ as a Markov chain in a random environment, which is determined by $(Z_t, N_t)_{t \in \mathbb{Z}}$.

 Ω Our framework allows us to consider $(X_t, Y_t)_{t \in \mathbb{Z}}$ as a Markov chain in a random environment, which is determined by $(Z_t, N_t)_{t \in \mathbb{Z}}$.

The problematic The framework Estimation procedure Numerical experiments

Proposition 2

Assume that $(N_t, Z_t)_{t \in \mathbb{Z}}$ is stationary.

 Ω Our framework allows us to consider $(X_t, Y_t)_{t \in \mathbb{Z}}$ as a Markov chain in a random environment, which is determined by $(Z_t, N_t)_{t \in \mathbb{Z}}$.

The problematic The framework Estimation procedure Numerical experiments

Proposition 2

Assume that $(N_t, Z_t)_{t \in \mathbb{Z}}$ is stationary.

Then, there exists a stationary process $(X_t, Y_t, N_t, Z_t)_{t \in \mathbb{Z}}$ satisfying our dynamics, and its distribution is unique.

 Ω Our framework allows us to consider $(X_t, Y_t)_{t \in \mathbb{Z}}$ as a Markov chain in a random environment, which is determined by $(Z_t, N_t)_{t \in \mathbb{Z}}$.

The problematic The framework Estimation procedure Numerical experiments

Proposition 2

Assume that $(N_t, Z_t)_{t \in \mathbb{Z}}$ is stationary.

Then, there exists a stationary process $(X_t, Y_t, N_t, Z_t)_{t \in \mathbb{Z}}$ satisfying our dynamics, and its distribution is unique.

Moreover, if $(N_t, Z_t)_{t \in \mathbb{Z}}$ is ergodic, then $(X_t, Y_t, N_t, Z_t)_{t \in \mathbb{Z}}$ is also ergodic.
Outlines

The problematic The framework Estimation procedure Numerical experiments

III. Estimation procedure

Joint log-likelihood

Assume that for some $T \in \mathbb{N}^*, (y_0, n_0), \ldots, (y_T, n_T)$ are observed realizations of our process, corresponding to the unobserved relative abundances *x*0*, . . . , xT*.

Joint log-likelihood

Assume that for some $T \in \mathbb{N}^*, (y_0, n_0), \ldots, (y_T, n_T)$ are observed realizations of our process, corresponding to the unobserved relative abundances *x*0*, . . . , xT*.

The problematic The framework Estimation procedure Numerical experiments

The joint log-likelihood of our process is

$$
\mathcal{L}_{\theta}(x_{0:T}, y_{0:T}) = \sum_{t=1}^{T} \left\{ \log(n_t!) + \log(\Gamma(\phi_t)) + \sum_{j=1}^{p} [(\alpha_{j,t} + y_{j,t} - 1) \log(x_{j,t}) - \log(y_{j,t}!) - \log(\Gamma(\alpha_{j,t}))] \right\} + \log(n_0!) + \sum_{j=1}^{p} [y_{j,0} \log(x_{j,0}) - \log(y_{j,0}])].
$$

Joint log-likelihood

Assume that for some $T \in \mathbb{N}^*, (y_0, n_0), \ldots, (y_T, n_T)$ are observed realizations of our process, corresponding to the unobserved relative abundances *x*0*, . . . , xT*.

The joint log-likelihood of our process is

$$
\mathcal{L}_{\theta}(x_{0:T}, y_{0:T}) = \sum_{t=1}^{T} \left\{ \log(n_t!) + \log(\Gamma(\phi_t)) + \sum_{j=1}^{p} \left[(\alpha_{j,t} + y_{j,t} - 1) \log(x_{j,t}) - \log(y_{j,t}!) - \log(\Gamma(\alpha_{j,t})) \right] \right\} + \log(n_0!) + \sum_{j=1}^{p} \left[y_{j,0} \log(x_{j,0}) - \log(y_{j,0}!) \right].
$$

The problematic The framework Estimation procedure Numerical experiments

 \bullet We are interested in the estimation of the true parameter θ_0 of our model, where

 $\theta = (a_0, a_1, A_0(1), \ldots, A_0(p-1), A_1(1, 1), \ldots, A_1(p-1, p-1), B(1, 1), \ldots B(k, p-1)).$

 \rightarrow The EM algorithm is a classical manner of estimating θ_0 .

 \rightarrow The EM algorithm is a classical manner of estimating θ_0 . $\mathbf{\Omega}_{\mathbf{B}}^{\mathbf{B}}$ Initialize $\theta^{(0)}$ wisely.

 \rightarrow The EM algorithm is a classical manner of estimating θ_0 .

 $\mathbf{\Omega}_{\mathbf{B}}^{\mathbf{B}}$ Initialize $\theta^{(0)}$ wisely.

 $\mathbf{Q}_{\mathbf{a}}^{\mathbf{a}}$ After *n* iteration, update the estimate with

$$
\theta^{(n+1)} = \underset{\theta}{\operatorname{argmax}} \underbrace{\mathbb{E}_{X_{0:T}} \sim \mathbb{P}_{\theta^{(n)}}(\cdot | y_{0:T}) \left[\mathcal{L}_{\theta}\left(X_{0:T}, y_{0:T}\right)\right]}_{\mathcal{I}\left(\theta^{(n)}, \theta\right)}.
$$

 \rightarrow The EM algorithm is a classical manner of estimating θ_0 .

 $\mathbf{\Omega}_{\mathbf{B}}^{\mathbf{B}}$ Initialize $\theta^{(0)}$ wisely.

 $\mathbf{Q}_{\mathbf{a}}^{\mathbf{a}}$ After *n* iteration, update the estimate with

$$
\theta^{(n+1)} = \underset{\theta}{\operatorname{argmax}} \underbrace{\mathbb{E}_{X_{0:T}} \sim \mathbb{P}_{\theta^{(n)}}(\cdot | y_{0:T}) \left[\mathcal{L}_{\theta} \left(X_{0:T}, y_{0:T} \right) \right]}_{\mathcal{I} \left(\theta^{(n)}, \theta \right)}.
$$

The problematic The framework Estimation procedure Numerical experiments

 $\boldsymbol{\mathsf{x}}$ The quantity $\mathcal{I}\left(\theta^{(n)},\theta\right)$ can not by computed directly.

The problematic The framework Estimation procedure Numerical experiments Inference strategy (2/2)

→ Use of a particle filter to tackle this issue.

→ Use of a particle filter to tackle this issue.

 Ω The idea is to perform a large number N of simulated trajectories $\widetilde X_{0:\,T}^{(1)},\ldots,\widetilde X_{0:\,T}^{(N)}$ where for each $1\leqslant i\leqslant N$

$$
\widetilde{X}_{0:T}^{(i)} \sim \widetilde{\mathbb{P}}_{\theta^{(n)}}(\cdot \mid y_{0:T})
$$

The problematic The framework Estimation procedure Numerical experiments

approaches the target distribution $\mathbb{P}_{\theta^{(n)}}(\cdot \mid y_{0:T}).$

→ Use of a particle filter to tackle this issue.

 Ω The idea is to perform a large number N of simulated trajectories $\widetilde X_{0:\,T}^{(1)},\ldots,\widetilde X_{0:\,T}^{(N)}$ where for each $1\leqslant i\leqslant N$

$$
\widetilde{X}_{0:T}^{(i)} \sim \widetilde{\mathbb{P}}_{\theta^{(n)}}(\cdot \mid y_{0:T})
$$

The problematic The framework Estimation procedure Numerical experiments

approaches the target distribution $\mathbb{P}_{\theta^{(n)}}(\cdot \mid y_{0:T}).$

Each simulation $\widetilde X_{0:T}^{(i)}$ is then weighted by w_i , which measures its fit with the observed data.

→ Use of a particle filter to tackle this issue.

 Ω The idea is to perform a large number N of simulated trajectories $\widetilde X_{0:\,T}^{(1)},\ldots,\widetilde X_{0:\,T}^{(N)}$ where for each $1\leqslant i\leqslant N$

$$
\widetilde{X}_{0:T}^{(i)} \sim \widetilde{\mathbb{P}}_{\theta^{(n)}}(\cdot \mid y_{0:T})
$$

The problematic The framework Estimation procedure Numerical experiments

approaches the target distribution $\mathbb{P}_{\theta^{(n)}}(\cdot \mid y_{0:T}).$

Each simulation $\widetilde X_{0:T}^{(i)}$ is then weighted by w_i , which measures its fit with the observed data.

We then approach $\mathcal{I}\left(\theta^{(n)},\theta\right)$ by the mean

$$
\sum_{i=1}^N w_i \mathcal{L}_\theta(\widetilde{X}_{0:T}^{(i)}, y_{0:T}).
$$

 $\sqrt{\ }$ The proposal distribution chosen here is the one of a Markov chain (\widetilde{X}_t) *t∈*Z with transition kernel

$$
\widetilde{P}_{\theta^{(n)}}\left(\widetilde{X}_t \mid \widetilde{X}_{t-1}\right) = \mathrm{Dir}(\alpha^{(n)}_t + y_t).
$$

 $\sqrt{\ }$ The proposal distribution chosen here is the one of a Markov chain (\widetilde{X}_t) *t∈*Z with transition kernel

$$
\widetilde{P}_{\theta^{(n)}}\left(\widetilde{X}_t \mid \widetilde{X}_{t-1}\right) = \mathrm{Dir}(\alpha_t^{(n)} + y_t).
$$

The problematic The framework Estimation procedure Numerical experiments

A Most of the weights are close to zero.

 $\sqrt{\ }$ The proposal distribution chosen here is the one of a Markov chain (\widetilde{X}_t) *t∈*Z with transition kernel

$$
\widetilde{P}_{\theta^{(n)}}\left(\widetilde{X}_t \mid \widetilde{X}_{t-1}\right) = \mathrm{Dir}(\alpha_t^{(n)} + y_t).
$$

The problematic The framework Estimation procedure Numerical experiments

A Most of the weights are close to zero.

→ Resampling strategy:

8 The proposal distribution chosen here is the one of a Markov chain (\widetilde{X}_t) *t∈*Z with transition kernel

$$
\widetilde{P}_{\theta^{(n)}}\left(\widetilde{X}_t \mid \widetilde{X}_{t-1}\right) = \mathrm{Dir}(\alpha^{(n)}_t + y_t).
$$

The problematic The framework Estimation procedure Numerical experiments

A Most of the weights are close to zero.

→ Resampling strategy:

 $\widetilde{\mathbf{x}}_{\text{s}}^t$ Each simulation $\widetilde{X}_{0:T}^{(i)}$ and weight w_i are computed sequentially.

The proposal distribution chosen here is the one of a Markov chain (\widetilde{X}_t) *t∈*Z with transition kernel

$$
\widetilde{P}_{\theta^{(n)}}\left(\widetilde{X}_t \mid \widetilde{X}_{t-1}\right) = \mathrm{Dir}(\alpha^{(n)}_t + y_t).
$$

Estimation procedure

- A Most of the weights are close to zero.
- **→ Resampling strategy:**
	- $\widetilde{\mathbf{x}}_{\text{s}}^t$ Each simulation $\widetilde{X}_{0:T}^{(i)}$ and weight w_i are computed sequentially.
	- $\widetilde{X}_{t}^{(1)},\ldots,\widetilde{X}_{t}^{(N)}$ and the weights $w_{t,1},\ldots,w_{t,N}$ are computed, we replace the particles by a new sample, drawn with replacement, from the same set of particles, with probabilities given by the particles weights.

The problematic The framework Estimation procedure Numerical experiments About the particle filter $(2/2)$

 \vee We avoid the degeneracy of the weights.

The problematic The framework Estimation procedure Numerical experiments About the particle filter (2/2)

 \vee We avoid the degeneracy of the weights.

A The trajectories obtained are based on a small number of initial particles.

 \vee We avoid the degeneracy of the weights.

A The trajectories obtained are based on a small number of initial particles.

The problematic The framework Estimation procedure Numerical experiments

We perform backward smoothing in order to reduce this correlation.

 \vee We avoid the degeneracy of the weights.

A The trajectories obtained are based on a small number of initial particles.

The problematic The framework Estimation procedure Numerical experiments

We perform backward smoothing in order to reduce this correlation.

 $\textsf{Given the weighted set of particles } \left\{ \widetilde{X}_{t}^{(i)}, w_{t,i}: 0 \leqslant t \leqslant T, 1 \leqslant i \leqslant N \right\}$

 \vee We avoid the degeneracy of the weights.

A The trajectories obtained are based on a small number of initial particles.

The problematic The framework Estimation procedure Numerical experiments

We perform backward smoothing in order to reduce this correlation.

 $\textsf{Given the weighted set of particles } \left\{ \widetilde{X}_{t}^{(i)}, w_{t,i}: 0 \leqslant t \leqslant T, 1 \leqslant i \leqslant N \right\}$ $\mathbf{\hat{x}^k_{\mathbf{\hat{x}}}}$ Set $\xi_T = \widetilde{X}^{(i)}_T$ with probability $w_{i,T}$.

 \vee We avoid the degeneracy of the weights.

A The trajectories obtained are based on a small number of initial particles.

The problematic The framework Estimation procedure Numerical experiments

We perform backward smoothing in order to reduce this correlation.

 $\textsf{Given the weighted set of particles } \left\{ \widetilde{X}_{t}^{(i)}, w_{t,i}: 0 \leqslant t \leqslant T, 1 \leqslant i \leqslant N \right\}$ $\mathbf{\hat{x}^k_{\mathbf{\hat{x}}}}$ Set $\xi_T = \widetilde{X}^{(i)}_T$ with probability $w_{i,T}$.

For *t* = *T −* 1*, . . . ,* 0:

 \vee We avoid the degeneracy of the weights.

A The trajectories obtained are based on a small number of initial particles.

We perform backward smoothing in order to reduce this correlation.

 $\textsf{Given the weighted set of particles } \left\{ \widetilde{X}_{t}^{(i)}, w_{t,i}: 0 \leqslant t \leqslant T, 1 \leqslant i \leqslant N \right\}$

 $\mathbf{\hat{x}^k_{\mathbf{\hat{x}}}}$ Set $\xi_T = \widetilde{X}^{(i)}_T$ with probability $w_{i,T}$.

The problematic The framework Estimation procedure

- For *t* = *T −* 1*, . . . ,* 0:
	- **•** Compute new weights $w_{i,t|t+1} \propto w_{i,t} \times f_{\alpha_{t+1}(\widetilde{X}_t^{(i)})}(\xi_{t+1}).$

The problematic The framework Estimation procedure

 \vee We avoid the degeneracy of the weights.

A The trajectories obtained are based on a small number of initial particles.

We perform backward smoothing in order to reduce this correlation.

 $\textsf{Given the weighted set of particles } \left\{ \widetilde{X}_{t}^{(i)}, w_{t,i}: 0 \leqslant t \leqslant T, 1 \leqslant i \leqslant N \right\}$

- $\mathbf{\hat{x}^k_{\mathbf{\hat{x}}}}$ Set $\xi_T = \widetilde{X}^{(i)}_T$ with probability $w_{i,T}$.
- For *t* = *T −* 1*, . . . ,* 0:
	- **•** Compute new weights $w_{i,t|t+1} \propto w_{i,t} \times f_{\alpha_{t+1}(\widetilde{X}_t^{(i)})}(\xi_{t+1}).$
	- Set $\xi_t = \widetilde{X}_t^{(i)}$ with probability $w_{i,t|t+1}.$

 \vee We avoid the degeneracy of the weights.

A The trajectories obtained are based on a small number of initial particles.

Estimation procedure

We perform backward smoothing in order to reduce this correlation.

 $\textsf{Given the weighted set of particles } \left\{ \widetilde{X}_{t}^{(i)}, w_{t,i}: 0 \leqslant t \leqslant T, 1 \leqslant i \leqslant N \right\}$

- $\mathbf{\hat{x}^k_{\mathbf{\hat{x}}}}$ Set $\xi_T = \widetilde{X}^{(i)}_T$ with probability $w_{i,T}$.
- For *t* = *T −* 1*, . . . ,* 0:
	- **•** Compute new weights $w_{i,t|t+1} \propto w_{i,t} \times f_{\alpha_{t+1}(\widetilde{X}_t^{(i)})}(\xi_{t+1}).$
	- Set $\xi_t = \widetilde{X}_t^{(i)}$ with probability $w_{i,t|t+1}.$

The trajectory $\xi_{0:T}$ obtained is distributed with respect to $\mathbb{P}_{\theta^{(n)}}(\cdot \mid y_{0:T}).$

Outlines

-
-
-
- IV. Numerical experiments

Simulations (1/3)

We simulated $N = 100$ trajectories of relative abundances for two species, with one exogenous variable.

Simulations (1/3)

We simulated $N = 100$ trajectories of relative abundances for two species, with one exogenous variable.

The problematic The framework Estimation procedure Numerical experiments

We then applied our estimation strategy to infer the model's parameters.

Simulations (1/3)

We simulated $N = 100$ trajectories of relative abundances for two species, with one exogenous variable.

The problematic The framework Estimation procedure Numerical experiments

We then applied our estimation strategy to infer the model's parameters.

Simulations (2/3)

Simulations (3/3)

Once we obtain estimates of the model's parameters, it is possible to use backward smoothing to recover the hidden process of relative abundance.

Back in La Réunion (1/2)

We finally fit our model to the relative abundance of the insects in a sugar-cane field in La Réunion.

The problematic The framework Estimation procedure Numerical experiments

We use the temperature and the amount of precipitation as exogenous variables.
^{Guillaum}

Back in La Réunion (2/2)

Once our estimation is complete, we use backward smoothing in order to recover the correct relative abundance of our species.

Take away message

→ An innovative manner to model the Joint Species Distribution in Ecology.

Take away message

→ An innovative manner to model the Joint Species Distribution in Ecology.

The problematic The framework Estimation procedure Numerical experiments

 \rightarrow A very interpretable model.
→ An innovative manner to model the Joint Species Distribution in Ecology.

- \rightarrow A very interpretable model.
- **→** With good statistical properties.

→ An innovative manner to model the Joint Species Distribution in Ecology.

- \rightarrow A very interpretable model.
- **→** With good statistical properties.
- ✘ Estimators have a large variance.

→ An innovative manner to model the Joint Species Distribution in Ecology.

- \rightarrow A very interpretable model.
- **→** With good statistical properties.
- ✘ Estimators have a large variance.
- ✘ Would probably fail to recover the hidden relative abundance if its too far from the observed one.

→ An innovative manner to model the Joint Species Distribution in Ecology.

- \rightarrow A very interpretable model.
- **→** With good statistical properties.
- ✘ Estimators have a large variance.
- ✘ Would probably fail to recover the hidden relative abundance if its too far from the observed one.
- $\mathbf{Q}_{\mathbf{a}}^{\mathbf{a}}$ Add a variable selection.

Thank you !