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Context

@ Correlation between two time series X' and X? can be created by:

» Endogenous events: direct causality of X' on X2 or X2 on X' ;
» Exogenous events: an event X® both affects X' and X?2.

@ Example: two time series of financial prices:

» Endo: traders react on market 2 because price on market 1 moved ;
» Exo: some economical news affects both market.

@ Example: intraday electricity prices for two different delivery hours:

» Endo: traders react on market 2 because price on market 1 moved ;
» Exo: power plant shutdown for the two hours.

@ How to quantity the percentage of exogeneity in the correlation ?
» Without observing exogenous events.
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Correlation estimation at a macroscopic scale

@ Correlation estimation for semimartingales:
X = phdt +o'dWj, i =1,2,
d < X', X? >i= padt

rolag
<X' X2>

V<X ><X2>
e ) ? pwhen A, — 0 (speed A:,/z) Ait-Sahalia and Jacod (2014).

@ Estimator p =

@ The quantity p accounts for both endogenous and exogenous
effects.

@ How to disentangle them ? Does it even make any sense ?
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Hawkes process

@ Point process (N;) with intensity A\; = o + fot o(t — 8)dNs.
@ 1 in RY the baseline,

@ (vi)1<ik<a the kernel matrix locally integrable.

@ To have LLN and CLT, spectral norm of |j¢[|1 < 1.
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Intensity trajectory in the model \f = 1 + fot o(t — s)dNg .
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Volatility

@ Population point of view (dim 1):
» A Poisson process gives birth to parents with rate .
» Each parent gives birth to children as an inhomogenous Poisson
process with intensity ¢(a), a being the age of the parent.
» Each child gives birth to children in the same way.

@ Parents = exogenous events, E(N¥°)/T =~ p,

@ Children = endogenous events, E(N$"%) /T ~ 1“”@"1‘1

2 _
@ For T large, f(NtT/T em ) = oW, 0% = iy

@ Using microscopic data, one can infer p and |||, ...
@ then disentangle exo and endo parts of the volatility.
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Volatility
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German 10Y Bund, 1 data per second (left) and one per day (right), from
Hoffmann 2018.
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Epps and Hawkes
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Correlation with respect to timestep sampling for intraday electricity prices Deschatre and Gruet (2022).

@ Correlation depends on scale :

S (X = Xina) X = X_iya)

T/A x T/A
\/217/1 /A (/ 1 A)2 Z / (X2 X(ZI 1)A)
@ Null correlation for high frequencies (no events at the same time),

@ Then stabilization.

@ Hawkes process can represent this feature Bacry et al. (2013b).
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Epps and Hawkes

@ Population point of view (dim 2):

» Two PP gives birth to parents of type i/ with rate p;, i = 1,2.

» Each parent of type j gives birth to children of type i/ as an
non-homogeneous Poisson process with intensity ¢; j(a), a being
the age of the parent.

» Each child gives birth to children in the same way.

@ N'is the sum of all the events of type i.

e Parents = exogenous events, E(NS*! + N&°?) /T ~ puy + pip.
@ But exo events 1 are not correlated with exo events 2.

@ Correlation is purely endogenous.

@ The Hawkes modeling framework is not sufficient.

@ How to correlate the two exogenous Poisson processes ?
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Outline

6 The Delayed Poisson process
e The Delayed Hawkes process
e Disentangling endogenous from exogenous correlation

© Estimation
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Outline

0 The Delayed Poisson process
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Common shock model

@ Powojowski et al. (2002); Lindskog and McNeil (2003)
@ Consider three independent PP, M’ with intensities 1,
o LetN' =M +M3, i=1,2.

@ Then N' and N? are marginally Poisson processes,

@ and are correlated with p = L

V(1+us)(pa+us)

@ But no Epps effect : p(A) does not depend on A (when T — o).
@ And jumps happen simultaneously for 1 and 2
» not consistent with null correlation at small time scales.
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Definition

@ Cox and Lewis (2005)
@ Let M3 be a PP with intensity 13 and jumps (T3)k>1.
® Fori=1,2,let M} = Yoy 173, 4 ¢ With

» (e} )k>1 two independent iid sequences of positive r.v.,
» independent from M3,
» exponentially distributed with parameter a > 0.

@ ¢’ consists in delays that we add to the PP MS.
@ In their own filtration, M3, i = 1,2, have intensity

p3(1 — exp(—at))

and are asymptotically Poisson.
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Epps

@ Now consider the Common Shock Model
N =M+M =12
@ In their own filtration, N/, i = 1,2 are asymptotically Poisson

processes and
@ For T large and A7/T — 0.

M3

(a7) (-2
o(A7) ~ -2 ).
V(1 + p3)(p2 + ps) alr

gna

Timestep (s)
Epps effect in the Common Shock delayed model.
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The DPP as a Hawkes process

o (M3, M3 M32)is a point process with
» N0 common jumps
» and intensity (Daley et al., 2003, Example 7.3(a) p.250)

)\}0’ = H3
Nl=a (M- M
A2 =a (M} — M2

@ "Hawkes" process with
» baseline (u3,0,0)

0 0 O
» and kernel p(f)=a|1 -1 0 |].

1 0 -1
@ Easy to include in a Hawkes framework.
@ But negative components in the kernel and ||¢l|1 = cc.
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Outline

e The Delayed Hawkes process
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Construction

@ We want a model for N', i = 1,2, with endo and exo correlation.
@ Population point of view (dim 2):
» Two point processes N/ gives birth to parents of type i, i = 1, 2.
» Each parent of type j gives birth to children of type i as an
non-homogeneous Poisson process with intensity ¢; j(a), a being
the age of the parent.
» Each child gives birth to children in the same way.
@ N'is the sum of all the events of type i.
@ N®©/ are now constructed from a Common Shock Delayed

» Marginally, each is a Poisson process (asymptotically),
» with intensity u; + u3

» They are correlated,

» with no common jump times.

@ Now exogenous correlation
» from correlation between the parents (exogenous events) Ne*°/,
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Intensity

@ We write N&/ = M/ + N3/ j =12
e With N3/ a delayed version of a PP NS.
o Let NP = NI — N8/,
o (NH1 NH2 N3 N31 NB2) has intensity
M= iy [T n(t - S)ANSOT 4 NFY) [T iy (t — s)d(NOO2 4 NH2)

)\';-”2 = u2 + fO <p2(t — S)d(Nexo’2 + NH’Z)) + fot @21(t — S)d(Nexo’1 + NH’1)

)\? = H3
31 3,1
A =a(Ng - N,
A2 =a (N — N2

@ Still a (degenerated) Hawkes process.
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Validity of results on Hawes

@ Results of Bacry et al. (2013a) still valid

» Law of large numbers

» CLT

» Convergence of empirical moments.
@ Whereas ||¢||1 = oo and we have negative component.
@ Sketch of the proof:

» Sufficient condition spectral radius of |||+ < 1 too strong
> We can replace it by the existence of }°, - ; »*¥) and its L' norm

0 0 O
» For the sub-matrix of o, p(t) =a|1 -1 0 |,
1 0 -1

0 O 0
d gty =ae* (1 -1 0 |].
1

k>1 0o -1
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Outline

e Disentangling endogenous from exogenous correlation
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Disentangling

@ We have a CLT towards a Brownian motion with covariance matrix

cov(Na,Np) = > A D R | DY R¥|,ab=1.2

k=123 ic{a3} je{b,3}

@ Depends only on ||¢||1 and u;.
@ A, corresponds to the mean number of events of type i
@ RY: mean number of events i triggered by one event j:
@ Exogenous part of the covariance:

» Population interpretation:

A3 E RIS § HjS
~—~ . X
s ie{1,3} je{2,3}
~—_—— ~——
mean number of events of Ny mean number of events of Ny
triggered by one exogenous event triggered by one exogenous event

» Probabilistic interpretation with law of total covariance:
= cov (E (N1|o(Ns)) , E (Na|o(Ns))) -
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Outline

© Estimation
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Method of Moments

@ To disentangle macroscopic correlation, we need :

> [, p2, and pg,
> [lill-

@ Method of moments from Achab et al. (2017) which is still valid.
@ Use of the first three order moments at a macroscopic scale.

@ Results on simulation satisfying.

@ Results on data : work in progress.
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Perspectives

@ Estimation on real financial dataset (CAC40),
@ Application to intraday electricity prices:

» Hawkes process for univariate price in Deschatre and Gruet (2022),
» Common Shock Model in Deschatre and Warin (2023).

@ Estimation of ¢ and not only ||| (EM algorithm ?)
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Thank you for your attention.
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