Disentangling endogenous and exogenous correlation effects via high frequency information

Thomas Deschatre^{1,2}

Joint work with E. Bacry, M. Hoffmann, J.F. Muzy, and R. Ruan

¹EDF Lab ²FiME Lab

October 2024

イロン イボン イヨン 一日

Context

- Correlation between two time series X^1 and X^2 can be created by:
 - Endogenous events: direct causality of X^1 on X^2 or X^2 on X^1 ;
 - Exogenous events: an event X^3 both affects X^1 and X^2 .
- Example: two time series of financial prices:
 - Endo: traders react on market 2 because price on market 1 moved ;
 - Exo: some economical news affects both market.
- Example: intraday electricity prices for two different delivery hours:
 - Endo: traders react on market 2 because price on market 1 moved ;
 - Exo: power plant shutdown for the two hours.
- How to quantity the percentage of exogeneity in the correlation ?
 - Without observing exogenous events.

Correlation estimation at a macroscopic scale

• Correlation estimation for semimartingales:

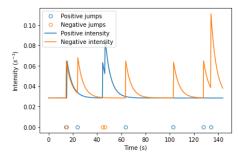
$$dX_t^i = \mu_t^i dt + \sigma^i dW_t^i, \ i = 1, 2,$$
$$d < X^1, X^2 >_t = \rho dt$$
observed on a grid $(i\Delta_n)_{i=0,...,\lfloor\frac{T}{\Delta_n}}$].

• Estimator
$$\hat{\rho} = \frac{\langle X^1, X^2 \rangle}{\sqrt{\langle X^1 \rangle \langle X^2 \rangle}}$$

- $\hat{\rho} \xrightarrow{\mathbb{P}} \rho$ when $\Delta_n \to 0$ (speed $\Delta_n^{1/2}$) Aït-Sahalia and Jacod (2014).
- The quantity ρ accounts for both endogenous and exogenous effects.
- How to disentangle them ? Does it even make any sense ?

Hawkes process

- Point process (N_t) with intensity $\lambda_t = \mu + \int_0^t \varphi(t-s) dN_s$.
- μ in \mathbb{R}^d the baseline,
- $(\varphi_{lk})_{1 \le l,k \le d}$ the kernel matrix locally integrable.
- To have LLN and CLT, spectral norm of $\|\varphi\|_1 < 1$.



Intensity trajectory in the model $\lambda_t^{\pm} = \mu + \int_0^t \varphi(t-s) dN_s^{\pm}$.

Volatility

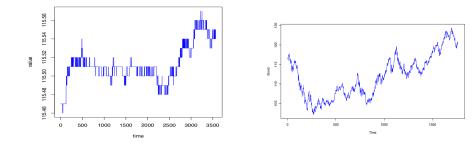
- Population point of view (dim 1):
 - A Poisson process gives birth to parents with rate μ .
 - Each parent gives birth to children as an inhomogenous Poisson process with intensity φ(a), a being the age of the parent.
 - Each child gives birth to children in the same way.
- Parents = exogenous events, $\mathbb{E}(N_T^{exo})/T \approx \mu$,
- Children = endogenous events, $\mathbb{E}(N_T^{\text{endo}})/T \approx \frac{\mu \|\varphi\|_1}{1 \|\varphi\|_1}$.

• For T large,
$$\sqrt{T}\left(N_{tT}/T - \frac{\mu t}{1 - \|\varphi\|_1}\right) \rightarrow \sigma W_t, \, \sigma^2 = \frac{\mu}{(1 - \|\varphi\|_1)^3}.$$

- Using microscopic data, one can infer μ and $\|\varphi\|_1, \dots$
- then disentangle exo and endo parts of the volatility.

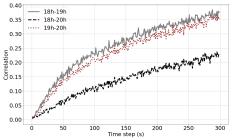
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● のへ()

Volatility



German 10Y Bund, 1 data per second (left) and one per day (right), from Hoffmann 2018.

Epps and Hawkes



Correlation with respect to timestep sampling for intraday electricity prices Deschatre and Gruet (2022).

• Correlation depends on scale :

$$\rho(\Delta) = \frac{\sum_{i=1}^{T/\Delta} (X_{i\Delta}^{1} - X_{(i-1)\Delta}^{1}) (X_{i\Delta}^{2} - X_{(i-1)\Delta}^{2})}{\sqrt{\sum_{i=1}^{T/\Delta} (X_{i\Delta}^{1} - X_{(i-1)\Delta}^{1})^{2} \sum_{i=1}^{T/\Delta} (X_{i\Delta}^{2} - X_{(i-1)\Delta}^{2})^{2}}}.$$

• Null correlation for high frequencies (no events at the same time),

- Then stabilization.
- Hawkes process can represent this feature Bacry et al. (2013b).osc

Epps and Hawkes

- Population point of view (dim 2):
 - Two PP gives birth to parents of type *i* with rate μ_i , i = 1, 2.
 - Each parent of type *j* gives birth to children of type *i* as an non-homogeneous Poisson process with intensity φ_{i,j}(a), a being the age of the parent.
 - Each child gives birth to children in the same way.
- N^i is the sum of all the events of type *i*.
- Parents = exogenous events, $\mathbb{E}(N_T^{\text{exo},1} + N_T^{\text{exo},2})/T \approx \mu_1 + \mu_2$.
- But exo events 1 are not correlated with exo events 2.
- Correlation is purely endogenous.
- The Hawkes modeling framework is not sufficient.
- How to correlate the two exogenous Poisson processes ?

Outline

- 2 The Delayed Hawkes process
- 3 Disentangling endogenous from exogenous correlation

4 Estimation

Outline

- 2 The Delayed Hawkes process
- 3 Disentangling endogenous from exogenous correlation

4 Estimation

Common shock model

- Powojowski et al. (2002); Lindskog and McNeil (2003)
- Consider three independent PP, M^i with intensities μ_i
- Let $N^i = M^i + M^3$, i = 1, 2.
- Then N^1 and N^2 are marginally Poisson processes,
- and are correlated with $\rho = \frac{\mu_3}{\sqrt{(\mu_1 + \mu_3)(\mu_2 + \mu_3)}}$.
- But no Epps effect : $\rho(\Delta)$ does not depend on Δ (when $T \to \infty$).
- And jumps happen simultaneously for 1 and 2
 - not consistent with null correlation at small time scales.

Definition

- Cox and Lewis (2005)
- Let M^3 be a PP with intensity μ_3 and jumps $(T_k^3)_{k\geq 1}$.
- For i = 1, 2, let $M_t^{3,i} = \sum_{k \ge 1} \mathbf{1}_{T_k^3 + \epsilon_k^i \le t}$ with
 - $(\epsilon_k^i)_{k\geq 1}$ two independent iid sequences of positive r.v.,
 - independent from M^3 ,
 - exponentially distributed with parameter a > 0.
- ϵ^i consists in delays that we add to the PP M^3 .
- In their own filtration, $M^{3,i}$, i = 1, 2, have intensity

$$\mu_3(1 - \exp(-at))$$

and are asymptotically Poisson.

イロン イロン イヨン イヨン 三日

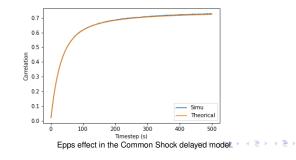
Epps

• Now consider the Common Shock Model

$$N^{i} = M^{i} + M^{3,i}, i = 1, 2.$$

- In their own filtration, Nⁱ, i = 1, 2 are asymptotically Poisson processes and
- For T large and $\Delta_T/T \rightarrow 0$.

$$ho(\Delta_T) \sim rac{\mu_3}{\sqrt{(\mu_1 + \mu_3)(\mu_2 + \mu_3)}} \left(1 - rac{1 - e^{-a\Delta_T}}{a\Delta_T}
ight).$$



3

The DPP as a Hawkes process

- $(M^3, M^{3,1}, M^{3,2})$ is a point process with
 - no common jumps
 - and intensity (Daley et al., 2003, Example 7.3(a) p.250)

$$\begin{cases} \lambda_t^3 = \mu_3 \\ \lambda_t^{3,1} = a \left(M_t^3 - M_t^{3,1} \right) \\ \lambda_t^{3,2} = a \left(M_t^3 - M_t^{3,2} \right) \end{cases}$$

- "Hawkes" process with
 - ▶ baseline (µ₃, 0, 0)

• and kernel
$$\varphi(t) = a \begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$
.

- Easy to include in a Hawkes framework.
- But negative components in the kernel and $\|\varphi\|_1 = \infty$.

Outline

The Delayed Poisson process

2 The Delayed Hawkes process

3 Disentangling endogenous from exogenous correlation

4 Estimation

Construction

- We want a model for N^i , i = 1, 2, with endo and exo correlation.
- Population point of view (dim 2):
 - Two point processes $N^{exo,i}$ gives birth to parents of type *i*, *i* = 1, 2.
 - Each parent of type *j* gives birth to children of type *i* as an non-homogeneous Poisson process with intensity φ_{i,j}(a), a being the age of the parent.
 - Each child gives birth to children in the same way.
- N^i is the sum of all the events of type *i*.
- N^{exo,i} are now constructed from a Common Shock Delayed
 - Marginally, each is a Poisson process (asymptotically),
 - with intensity $\mu_i + \mu_3$
 - They are correlated,
 - with no common jump times.
- Now exogenous correlation
 - ▶ from correlation between the parents (exogenous events) N^{exo,i}.

Intensity

• We write
$$N^{\text{exo},i} = M^{i} + N^{3,i}$$
, $i = 1, 2$
• With $N^{3,i}$ a delayed version of a PP N^{3} .
• Let $N^{H,i} = N^{i} - N^{3,i}$.
• $(N^{H,1}, N^{H,2}, N^{3}, N^{3,1}, N^{3,2})$ has intensity
 $\begin{pmatrix} \lambda_{t}^{H,1} = \mu_{1} + \int_{0}^{t} \varphi_{1}(t-s)d(N^{\text{exo},1} + N^{H,1}) + \int_{0}^{t} \varphi_{12}(t-s)d(N^{\text{exo},2} + N^{H,2}) \\ \lambda_{t}^{H,2} = \mu_{2} + \int_{0}^{t} \varphi_{2}(t-s)d(N^{\text{exo},2} + N^{H,2})) + \int_{0}^{t} \varphi_{21}(t-s)d(N^{\text{exo},1} + N^{H,1}) \\ \lambda_{t}^{3} = \mu_{3} \\ \lambda_{t}^{3,1} = a \left(N_{t}^{3} - N_{t}^{3,1}\right) \\ \lambda_{t}^{3,2} = a \left(N_{t}^{3} - N_{t}^{3,2}\right)$

• Still a (degenerated) Hawkes process.

•

Validity of results on Hawes

- Results of Bacry et al. (2013a) still valid
 - Law of large numbers
 - CLT
 - Convergence of empirical moments.
- Whereas $\|\varphi\|_1 = \infty$ and we have negative component.
- Sketch of the proof:
 - Sufficient condition spectral radius of $\|\varphi\|_1 < 1$ too strong
 - We can replace it by the existence of $\sum_{k\geq 1} \varphi^{(\star k)}$ and its L^1 norm
 - For the sub-matrix of φ , $\tilde{\varphi}(t) = a \begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$,

$$\sum_{k\geq 1} \tilde{\varphi}^{(\star k)}(t) = a e^{-at} \begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}.$$

イロン イロン イヨン イヨン 三日

Outline

1 The Delayed Poisson process

2 The Delayed Hawkes process

3 Disentangling endogenous from exogenous correlation

4 Estimation

Disentangling

We have a CLT towards a Brownian motion with covariance matrix

$$\operatorname{cov}(N_a, N_b) = \sum_{k=1,2,3} \Lambda_k \left(\sum_{i \in \{a,3\}} R^{ik} \right) \left(\sum_{j \in \{b,3\}} R^{jk} \right), \ a, b = 1, 2.$$

- Depends only on $\|\varphi\|_1$ and μ_i .
- Λ_i corresponds to the mean number of events of type i:
- R^{ij} : mean number of events *i* triggered by one event *j*:
- Exogenous part of the covariance:
 - Population interpretation:

mean number of events of N_1 triggered by one exogenous event

mean number of events of N_2 triggered by one exogenous event

Probabilistic interpretation with law of total covariance:

 $= \operatorname{cov} \left(\mathbb{E} \left(N_1 | \sigma(N_3) \right), \mathbb{E} \left(N_2 | \sigma(N_3) \right) \right).$

Outline

1 The Delayed Poisson process

- 2 The Delayed Hawkes process
- 3 Disentangling endogenous from exogenous correlation

Method of Moments

- To disentangle macroscopic correlation, we need :
 - $\mu_1, \mu_2, \text{ and } \mu_3,$
 - ► *∥ϕi*,*j∥*1.
- Method of moments from Achab et al. (2017) which is still valid.
- Use of the first three order moments at a macroscopic scale.
- Results on simulation satisfying.
- Results on data : work in progress.

Perspectives

- Estimation on real financial dataset (CAC40),
- Application to intraday electricity prices:
 - Hawkes process for univariate price in Deschatre and Gruet (2022),
 - Common Shock Model in Deschatre and Warin (2023).
- Estimation of φ and not only $\|\varphi\|$ (EM algorithm ?)

Thank you for your attention.

Bibliography I

- Achab, M., Bacry, E., Gaiffas, S., Mastromatteo, I., and Muzy, J.-F. (2017). Uncovering causality from multivariate hawkes integrated cumulants. In *International Conference on Machine Learning*, pages 1–10. PMLR.
- Aït-Sahalia, Y. and Jacod, J. (2014). *High-frequency financial econometrics*. Princeton University Press.
- Bacry, E., Delattre, S., Hoffmann, M., and Muzy, J.-F. (2013a). Modelling microstructure noise with mutually exciting point processes. *Quantitative finance*, 13(1):65–77.
- Bacry, E., Delattre, S., Hoffmann, M., and Muzy, J.-F. (2013b). Some limit theorems for hawkes processes and application to financial statistics. *Stochastic Processes and their Applications*, 123(7):2475–2499.
- Cox, D. and Lewis, P. (2005). Multivariate point processes. *Selected Statistical Papers of Sir David Cox*, 1:159.
- Daley, D. J., Vere-Jones, D., et al. (2003). An introduction to the theory of point processes: volume I: elementary theory and methods. Springer.
- Deschatre, T. and Gruet, P. (2022). Electricity intraday price modelling with marked hawkes processes. *Applied Mathematical Finance*, 29(4):227–260.

Bibliography II

- Deschatre, T. and Warin, X. (2023). A common shock model for multidimensional electricity intraday price modelling with application to battery valuation. *arXiv preprint arXiv:2307.16619*.
- Lindskog, F. and McNeil, A. J. (2003). Common poisson shock models: applications to insurance and credit risk modelling. *ASTIN Bulletin: The Journal of the IAA*, 33(2):209–238.
- Powojowski, M. R., Reynolds, D., and Tuenter, H. J. (2002). Dependent events and operational risk. *Algo Research Quarterly*, 5(2):65–73.