A statistical framework for analyzing shape in a time series of random geometric $objects^1$

Anne van $Delft^1$

(Joint work with Andrew J. $Blumberg^2$)

¹Department of Statistics, Columbia University, NY, USA

²Department of Mathematics/Irving Institute for Cancer Dynamics, Columbia University, NY, USA

February 13, 2024

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二回 - のへで

¹Supported by NSF grant DMS-2311338

Outline

Overview: What is this talk about?

Topological Data Analysis

A statistical framework

Topological invariants to characterize (S, ∂_S) -valued processes

Application of methodology: testing for topological change

A weak invariance principle

Overview: what is this talk about?

Modern data sets: complex mathematical structures

• Measurements from processes that vary over a continuum

- sequentially collected;
- sampled almost continuously on domain;
- exhibit nonstationary behavior.

Overview: what is this talk about?

Modern data sets: complex mathematical structures

- Measurements from processes that vary over a continuum
 - sequentially collected;
 - sampled almost continuously on domain;
 - exhibit nonstationary behavior.
- In various applications: paramount interest in shape
 - Dimensionality reduction followed by clustering is ubiquitous
 - \hookrightarrow Clustering captures very coarse shape information.
 - → Standard approaches to dimensionality reduction often assume linearity; e.g., PCA, compressed sensing, NMF, or a contractible smooth manifold (manifold learning).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Overview: what is this talk about?

Modern data sets: complex mathematical structures

- Measurements from processes that vary over a continuum
 - sequentially collected;
 - sampled almost continuously on domain;
 - exhibit nonstationary behavior.
- In various applications: paramount interest in shape
 - Dimensionality reduction followed by clustering is ubiquitous
 - \hookrightarrow Clustering captures very coarse shape information.
 - → Standard approaches to dimensionality reduction often assume linearity; e.g., PCA, compressed sensing, NMF, or a contractible smooth manifold (manifold learning).

Idea: use more refined mathematical shape descriptors.

What is this talk about? (continued)

We are particularly interested in studying the evolution of shape over time: \hookrightarrow time series of geometric objects.

- 1. foundational questions: how to do statistical inference?
- 2. algorithmic problems: can we implement inference methods efficiently?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

3. and **applications:** we focus on genomics

Application: cell differentation in development

Figure: Developmental trajectories (color indicates time).

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

ъ

Goal: detect and capture changes in shape

Mathematical context

We are interested in data sampled from objects with complicated geometry, low-dimensional geometry.

- ▶ Nonlinear manifolds: for example, the circle.
- Things close to manifolds: spaces with corners (singularities), unions of manifolds of differing dimension.
- ▶ Non-manifold spaces, with a notion of local metric geometry (relevant in genomics).

Representative of data of interest: sequence of finite metric spaces (e.g., time series of point clouds)

Outline

Overview: What is this talk about?

Topological Data Analysis

A statistical framework

Topological invariants to characterize (S, ∂_S) -valued processes

Application of methodology: testing for topological change

A weak invariance principle

Topological Data Analysis

Topological data analysis applies invariants of algebraic topology to discrete data.

- Algebraic topology assigns algebraic objects (e.g., numbers, vector spaces) to geometric objects.
- These invariants are global and qualitative; e.g., the kth homology groups $H_k(X)$ of a space X count the number of k-dimensional holes.
- \hookrightarrow homology detects the connected components, tunnels, voids, etc., of a topological space.
- \hookrightarrow Insensitive to deformation.
- \hookrightarrow Generalization of clustering: H_0 counts the number of components.

A core topological invariant in TDA is persistent homology: Describes multi-scale topological features of a point cloud (i.e., a finite metric space)

- 1. Involves construction of a sequence of simplicial complexes from (X, ∂_X)
- 2. Associates to these simplices topological invariants such as homology
- 3. Assigns a birth and death value to each topological feature

This creates a filtered vector space for each k which can be represented as a multiset of intervals (a, b) referred to as a barcode or persistence diagram $PH_k(X)$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二回 - のへで

Persistent homology captures information at different scales

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Evolution of shape over time

Figure: A surface evolving in time; time increases along the x-axis from left to right.

Figure: Samples from slices at fixed times from the evolving surface as time increases.

Figure: Persistence diagrams of the samples from the slices. The points away from the line x = y represent the circles.

Main theorems of persistent homology

There are two foundational theoretical results that speak for it:

- 1. There are comparatively efficient algorithms to compute persistent homology
- 2. Persistent homology is stable¹: for compact metric spaces

$$d_{\mathscr{B}}(PH_k(X), PH_k(Y)) \leq d_{GH}((X, \partial_X), (Y, \partial_Y))$$

where $d_{GH}(X, Y)$ denotes the Gromov-Hausdorff distance

 $d_{GH}(X,Y) = \frac{1}{2} \inf \left\{ \operatorname{dist}(\mathcal{R}) \mid \mathcal{R} \text{ correspondence between } X \text{ and } Y \right\}$

where dist
$$(\mathcal{R}) = \sup_{(x,y),(x',y')\in\mathcal{R}} |\partial_X(x,x') - \partial_Y(y,y')|.$$

¹original version due to D. Cohen-Steiner, H. Edelsbrunner, H. and J. Harer, 2007

The 'barcode' process

Given an ensemble of point clouds $(X_t^n)_{t=1}^T$ we can track and analyze the features via the process $(PH_k(X_t^n))_{t=1}^T$.

- $(PH_k(X_t^n))_{t=1}^T$ takes values in the set of barcodes \mathscr{B}
- \blacktriangleright ${\mathscr B}$ forms a metric space under various metrics, specifically the bottleneck distance $d_{\mathscr B}$

・ロト ・ 同ト ・ ヨト ・ ヨー・ りへぐ

• $(\overline{\mathscr{B}}, d_{\mathscr{B}})$ is a complete separable metric space.

Inference?

Not straightforward:

- Only access to point clouds of latent process.
- ▶ The space of barcodes is Polish.
- ▶ Statistical inference on topological invariants not well-developed.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Outline

Overview: What is this talk about?

Topological Data Analysis

A statistical framework Theoretical setup

Topological invariants to characterize (S, ∂_S) -valued processes

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Application of methodology: testing for topological change

A weak invariance principle

The process of interest (latent)

- ▶ let (M, ∂_M) and $(M', \partial_{M'})$ be compact metric spaces
- We consider stochastic processes $(X_t: t \in \mathbb{Z})$ defined by

 $\mathbb{X}_t: \Omega \to C(M, M')$

The process of interest (latent)

- ▶ let (M, ∂_M) and $(M', \partial_{M'})$ be compact metric spaces
- We consider stochastic processes $(X_t: t \in \mathbb{Z})$ defined by

 $\mathbb{X}_t: \Omega \to C(M, M')$

▶ Then the process $(\tilde{\mathbb{X}}_t(m) : t \in \mathbb{Z}, m \in M)$ defined by

$$\tilde{\mathbb{X}}_t(m) := e_m \circ \mathbb{X}_t$$

with $e_m : C(M, M') \to M', \xi \mapsto \xi(m)$ takes values in M'.

Interpretation: we think of M as a parameter space and the images in M' as representing the geometric object of interest

Locally stationary metric space-valued SP

Need asymptotic theory under nonstationarity;

Let $(X_{t,T} : t \in \mathbb{Z}, T \in \mathbb{N})$ be an (S, ∂_S) -valued stochastic process. Definition 1

 $(\mathbb{X}_{t,T} : t \in \mathbb{Z}, T \in \mathbb{N})$ is locally stationary if, for all $u = t/T \in [0, 1], \exists$ an (S, ∂_S) -valued stationary process $(\mathbb{X}_t(u) : t \in \mathbb{Z}, u \in [0, 1])$ such that

$$\partial_S \left(\mathbb{X}_{t,T}, \mathbb{X}_t(\frac{t}{T}) \right) = O_p(T^{-1}) \text{ and } \partial_S \left(\mathbb{X}_t(u), \mathbb{X}_t(v) \right) = O_p(|u-v|)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

uniformly in $t = 1, \ldots, T$ and $u, v \in [0, 1]$.

The observed process

• An *n*-dimensional point cloud for the function X_t is given by

$$\tilde{\mathbb{X}}_{t,T}^n := e_{m_1,\dots,m_n} \circ \mathbb{X}_{t,T}$$

- ▶ The data arises as an ensemble of point clouds $(\tilde{\mathbb{X}}_{t,T}^n)_{t=1}^T$ where n = n(T).
- ▶ For the data to be representative of the latent process, we must have conditions such that

$$\lim_{n \to \infty} \tilde{\mathbb{X}}_{t,T}^n \approx \mathbb{X}_{t,T}(M) = \tilde{\mathbb{X}}_{t,T}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

in an appropriate sense.

Outline

Overview: What is this talk about?

Topological Data Analysis

A statistical framework

Topological invariants to characterize (S, ∂_S) -valued processes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Application of methodology: testing for topological change

A weak invariance principle

Extension of Gromov's characterization to ergodic MMPDS

• Gromov's characterization: a metric measure space (S, ∂_S, ν_S) is up to isometry determined by the infinite-dimensional distance matrix distribution

 $\{\partial_S(s_i,s_j)\}_{(i,j)\in\mathbb{N}\times\mathbb{N}}$

where $\{s_i\} \in S$ is an iid sequence with common distribution ν_S .

Extension of Gromov's characterization to ergodic MMPDS

• Gromov's characterization: a metric measure space (S, ∂_S, ν_S) is up to isometry determined by the infinite-dimensional distance matrix distribution

$$\{\partial_S(s_i,s_j)\}_{(i,j)\in\mathbb{N}\times\mathbb{N}}$$

where $\{s_i\} \in S$ is an iid sequence with common distribution ν_S .

• We show a similar result holds for ergodic metric measure-preserving dynamical systems, i.e., tuples $(S, \partial_S, \mu_S, \theta_S)$ where θ_S is a measure-preserving function that is ergodic under the measure μ_S .

▶ Thus, the infinite-dimensional distance matrix distribution

$$\phi(X) = (\partial_S(X_t, X_s) : t, s \in \mathbb{Z})$$

is a complete invariant of a stationary ergodic Polish-valued stochastic process $X = (X_t : t \in \mathbb{Z})$.

• The ball volumes are fully determined by the infinite-dimensional matrix distribution $\phi(X)$

Conditions such that the ball volumes characterize $\phi(X)$, and thus μ_X ?

 $(\overline{\mathcal{B}}, d_{\mathscr{B}})$ -valued proc. are determined by their values on balls¹

Theorem 4.1

The space \mathscr{B}^N_{α} of N-point bounded barcodes has the property that any Borel measure is determined by its values on balls.

Corollary 2

The pushforward of any Borel measure on point clouds under the persistent homology functor PH_k is determined by its values on balls.

Corollary 3

The pushforward of any Borel measure on point clouds under the zigzag persistent homology functor is determined by its values on balls.

Consequence of the preceding theorem

Characterizing the geometry of a Polish-valued process X via the ball volume processes of the fidis

 \rightarrow convenient for inference as it reduces to analyzing U-processes.

To see this, note for example that

$$\mu_J^X \left(B(\pi_J \circ X, r) \right) = \mathbb{E}_{(X') \sim \mu_J} \Big[\prod_{j \in J} \mathbb{1}_{\partial_S(X_j, X'_j) \leqslant r} \Big].$$

where

$$B(s,r) = (s'_j : \max_{1 \le j \le |J|} \partial_S(s,s'_j) \le r)$$

denotes the ball volume on the |J|-dimensional product metric space $S^{|J|}$.

Outline

Overview: What is this talk about?

Topological Data Analysis

A statistical framework

Topological invariants to characterize (S, ∂_S) -valued processes

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二回 - のへで

Application of methodology: testing for topological change

A weak invariance principle

Detecting nonstationary behavior in the marginals

- Let $\nu_t := \mathbb{P} \circ (PH_k(\tilde{\mathbb{X}}_t))^{-1}$ denote the marginal distribution at time t.
- ▶ The process

$$\left(\varphi_t(r) := \nu_t(B(PH_k(\tilde{\mathbb{X}}_t), r)) : r \ge 0\right) \quad PH_k(\tilde{\mathbb{X}}_t) \sim \nu_t$$

characterizes the measure ν_t up to isometry.

Detecting nonstationary behavior in the marginals

- Let $\nu_t := \mathbb{P} \circ (PH_k(\tilde{\mathbb{X}}_t))^{-1}$ denote the marginal distribution at time t.
- ▶ The process

$$\left(\varphi_t(r) := \nu_t(B(PH_k(\tilde{\mathbb{X}}_t), r)) : r \ge 0\right) \quad PH_k(\tilde{\mathbb{X}}_t) \sim \nu_t$$

characterizes the measure ν_t up to isometry.

Then we are interested in testing pair of hypotheses

$$H_0: \mathbb{E}\varphi_t(r) = \mathbb{E}\varphi(r) \quad \forall t \in \mathbb{Z}, r \in [0, \mathscr{R}]$$

versus

$$H_A : \mathbb{E}\varphi_t(r) \neq \mathbb{E}\varphi(r) \text{ for some } t \in \mathbb{Z}, r \in [0, \mathscr{R}].$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Outline

Overview: What is this talk about?

Topological Data Analysis

A statistical framework

Topological invariants to characterize (S, ∂_S) -valued processes

Application of methodology: testing for topological change

A weak invariance principle

- Given we observe an ensemble of point clouds $(\tilde{\mathbb{X}}_t^{n(T)})_{t=1}^T$
- Create the barcode sample $\left(PH_k(\tilde{\mathbb{X}}_t^{n(T)})\right)_{t=1}^T$.

- Given we observe an ensemble of point clouds $(\tilde{\mathbb{X}}_t^{n(T)})_{t=1}^T$
- Create the barcode sample $\left(PH_k(\tilde{\mathbb{X}}_t^{n(T)})\right)_{t=1}^T$.
- Define the partial sum process

$$S_T(u,r) = \frac{1}{T^2} \sum_{s,t=1}^{\lfloor uT \rfloor} h(\tilde{\mathbb{X}}_t^{n(T)}, \tilde{\mathbb{X}}_s^{n(T)}, r) \quad r \in [0, \mathscr{R}], u \in [0, 1].$$

where, for a compact metric space (R, ∂_R) , the kernel $h: R \times R \times [0, \mathscr{R}] \to \mathbb{R}$ is given by

$$h(x, x', r) = 1\{d_{\mathcal{B}}(PH_k(x), PH_k(x')) \leq r\}, \quad x, x' \in R.$$

- Given we observe an ensemble of point clouds $(\tilde{\mathbb{X}}_t^{n(T)})_{t=1}^T$
- Create the barcode sample $\left(PH_k(\tilde{\mathbb{X}}_t^{n(T)})\right)_{t=1}^T$.
- ▶ Define the partial sum process

$$S_T(u,r) = \frac{1}{T^2} \sum_{s,t=1}^{\lfloor uT \rfloor} h(\tilde{\mathbb{X}}_t^{n(T)}, \tilde{\mathbb{X}}_s^{n(T)}, r) \quad r \in [0, \mathscr{R}], u \in [0, 1].$$

where, for a compact metric space (R, ∂_R) , the kernel $h: R \times R \times [0, \mathscr{R}] \to \mathbb{R}$ is given by

$$h(x, x', r) = 1\{d_{\mathcal{B}}(PH_k(x), PH_k(x')) \leq r\}, \quad x, x' \in R.$$

Then let

$$U_T(u,r) = S_T(u,r) - u^2 S_T(1,r).$$

- Given we observe an ensemble of point clouds $(\tilde{\mathbb{X}}_t^{n(T)})_{t=1}^T$
- Create the barcode sample $\left(PH_k(\tilde{\mathbb{X}}_t^{n(T)})\right)_{t=1}^T$.
- Define the partial sum process

$$S_T(u,r) = \frac{1}{T^2} \sum_{s,t=1}^{\lfloor uT \rfloor} h(\tilde{\mathbb{X}}_t^{n(T)}, \tilde{\mathbb{X}}_s^{n(T)}, r) \quad r \in [0, \mathscr{R}], u \in [0, 1].$$

where, for a compact metric space (R, ∂_R) , the kernel $h: R \times R \times [0, \mathscr{R}] \to \mathbb{R}$ is given by

$$h(x, x', r) = 1\{d_{\mathcal{B}}(PH_k(x), PH_k(x')) \leq r\}, \quad x, x' \in R.$$

Then let

$$U_T(u,r) = S_T(u,r) - u^2 S_T(1,r).$$

$$\rightarrow$$
 Under H_0 , $\mathbb{E}U_T(u, r) = 0$.

Test statistic (continued)

We consider suitably self-normalized versions of

$$\sup_{r \in [0,\mathscr{R}]} \sup_{u \in [0,1]} \sqrt{T} \Big| U_T(u,r) \Big|$$

and of

$$T\int_0^{\mathscr{R}}\int_0^1 \left(U_T(u,r)\right)^2 du dr.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ のへぐ

weak invariance principle in $D([0,1] \times [0,\mathcal{R}])$

Theorem

Under the regularity assumptions

$$\left\{T^{1/2}\Big(S_T(u,r) - \mathbb{E}S_T(u,r)\Big)\right\}_{u \in [0,1], r \in [0,\mathscr{R}]} \xrightarrow{D} \left\{\mathbb{G}(u,u,r)\right\}_{u \in [0,1], r \in [0,\mathscr{R}]}$$

in $D([0,1] \times [0,\mathscr{R}])$ w.r.t. the Skorokhod topology as $T \to \infty$, where $\{\mathbb{G}(u,v,r)\}_{v \leq u \in [0,1], r \in [0,\mathscr{R}]}$ is a zero-mean Gaussian process with covariance structure

$$Cov(\mathbb{G}(u_1, v_1, r_1), \mathbb{G}(u_2, v_2, r_2)) = \int_0^{\min(u_1, u_2)} \sigma(\eta, v_1, r_1) \sigma(\eta, v_2, r_2) d\eta.$$

Corollary 4

Under the previous conditions

$$\begin{split} \Big\{ T^{1/2} \Big(U_T(u,r) - \mathbb{E}(U_T(u,r)) \Big) \Big\}_{u \in [0,1], r \in [0,\mathscr{R}]} \\ & \underset{T \to \infty}{\longrightarrow} \quad \Big\{ \int_0^u \sigma(\eta, u, r) d\mathbb{B}(\eta) - u^2 \int_0^1 \sigma(\eta, 1, r) d\mathbb{B}(\eta) \Big\}_{u \in [0,1], r \in [0,\mathscr{R}]}. \end{split}$$

in D[0,1] w.r.t. Skorokhod topology.

Under H_0 , this reduces to

$$\left\{T^{1/2}U_T(u,r)\right\}_{u\in[0,1],r\in[0,\mathscr{R}]} \quad \underset{T\to\infty}{\longrightarrow} \quad \left\{u\sigma(r)\big(\mathbb{B}(u)-u\mathbb{B}(1)\big)\right\}_{u\in[0,1],r\in[0,\mathscr{R}]}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二回 - のへで

Self-normalized (focus on max-type)

Define the range

$$V_T(r) = \max_{1 \le k \le T} \left(U(k/T, r) - \mathbb{E}[U_T(k/T, r]] \right) - \min_{1 \le k \le T} \left(U(k/T, r) - \mathbb{E}[U_T(k/T, r)] \right)$$

And consider the empirical distance

$$\mathbb{D}_T^{\max} := \max_r \max_k \frac{|U(k/T, r)|}{V_T(r)}$$

Then, under H_0 ,

$$\mathbb{D}_T^{\max} \underset{T \to \infty}{\Longrightarrow} \sup_u \frac{\mathcal{G}(T) |u\mathbb{B}(u) - u^2\mathbb{B}(1)|}{\mathcal{G}(T) \sup_u \left(u\mathbb{B}(u) - u^2\mathbb{B}(1)\right) - \inf_u \left(u\mathbb{B}(u) - u^2\mathbb{B}(1)\right)} =: \mathbb{D}^{\max}$$

- ▶ RHS are pivotal and quantiles can be easily simulated
- Used to construct asymptotic level- α tests for the hypotheses of interest.

Summary

 Comprehensive theoretical framework based on FTS developed to infer on the evolving geometric features

- Naturally incorporates:
 - Nonstationary temporal and spatial dependence
 - Irregular and noise corrupted sampling
 - Analysis of convergence rate and non-asymptotic error bounds
- Simulation results: see arXiv.
- Applied to: developmental trajectories in single cell RNA-seq.

Outlook

Progress:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- ▶ We are exploiting theorem 4.1 without assuming a doubling measure.
- Estimation of break locations (to appear soon)
- ▶ Extensions mathematical shape descriptors

References

A. van Delft, A. & A. J. Blumberg.

A statistical framework for analyzing shape in a time series of random geometric objects

Available: arXiv:2304.01984

A. van Delft & A. J. Blumberg.

Measures determined by their values on balls and Gromov-Wasserstein convergence.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Available: arXiv:2401.11125

D. Cohen-Steiner, H. Edelsbrunner, H. and J. Harer. Stability of Persistence Diagrams. Discrete Comput Geom, 37:103–120, 2007.