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Overview: what is this talk about?

Modern data sets: complex mathematical structures

‚ Measurements from processes that vary over a continuum
§ sequentially collected;
§ sampled almost continuously on domain;
§ exhibit nonstationary behavior.

‚ In various applications: paramount interest in shape
§ Dimensionality reduction followed by clustering is ubiquitous
ãÑ Clustering captures very coarse shape information.
ãÑ Standard approaches to dimensionality reduction often assume

linearity; e.g., PCA, compressed sensing, NMF, or a contractible
smooth manifold (manifold learning).

Idea: use more refined mathematical shape descriptors.



Overview: what is this talk about?

Modern data sets: complex mathematical structures

‚ Measurements from processes that vary over a continuum
§ sequentially collected;
§ sampled almost continuously on domain;
§ exhibit nonstationary behavior.

‚ In various applications: paramount interest in shape
§ Dimensionality reduction followed by clustering is ubiquitous
ãÑ Clustering captures very coarse shape information.
ãÑ Standard approaches to dimensionality reduction often assume

linearity; e.g., PCA, compressed sensing, NMF, or a contractible
smooth manifold (manifold learning).

Idea: use more refined mathematical shape descriptors.



Overview: what is this talk about?

Modern data sets: complex mathematical structures

‚ Measurements from processes that vary over a continuum
§ sequentially collected;
§ sampled almost continuously on domain;
§ exhibit nonstationary behavior.

‚ In various applications: paramount interest in shape
§ Dimensionality reduction followed by clustering is ubiquitous
ãÑ Clustering captures very coarse shape information.
ãÑ Standard approaches to dimensionality reduction often assume

linearity; e.g., PCA, compressed sensing, NMF, or a contractible
smooth manifold (manifold learning).

Idea: use more refined mathematical shape descriptors.



What is this talk about? (continued)

We are particularly interested in studying the evolution of shape over time:
ãÑ time series of geometric objects.

1. foundational questions: how to do statistical inference?

2. algorithmic problems: can we implement inference methods efficiently?

3. and applications: we focus on genomics



Application: cell differentation in development

Figure: Developmental trajectories (color indicates time).

Goal: detect and capture changes in shape



Mathematical context

We are interested in data sampled from objects with complicated geometry,
low-dimensional geometry.

§ Nonlinear manifolds: for example, the circle.
§ Things close to manifolds: spaces with corners (singularities), unions of

manifolds of differing dimension.
§ Non-manifold spaces, with a notion of local metric geometry (relevant in

genomics).

Representative of data of interest: sequence of finite metric spaces
(e.g., time series of point clouds)
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Topological Data Analysis

Topological data analysis applies invariants of algebraic topology to discrete
data.

§ Algebraic topology assigns algebraic objects (e.g., numbers, vector spaces)
to geometric objects.

§ These invariants are global and qualitative; e.g., the kth homology groups
HkpXq of a space X count the number of k-dimensional holes.

ãÑ homology detects the connected components, tunnels, voids, etc., of a
topological space.

ãÑ Insensitive to deformation.
ãÑ Generalization of clustering: H0 counts the number of components.



Persistent homology

A core topological invariant in TDA is persistent homology: Describes
multi-scale topological features of a point cloud (i.e., a finite metric space)

1. Involves construction of a sequence of simplicial complexes from pX, BXq

2. Associates to these simplices topological invariants such as homology

3. Assigns a birth and death value to each topological feature

This creates a filtered vector space for each k which can be represented as a
multiset of intervals pa, bq referred to as a barcode or persistence diagram
PHkpXq.



Persistent homology captures information at different scales



Evolution of shape over time

Figure: A surface evolving in time; time increases along the x-axis from left to right.

Figure: Samples from slices at fixed times from the evolving surface as time increases.

Figure: Persistence diagrams of the samples from the slices. The points away from the
line x “ y represent the circles.



Main theorems of persistent homology

There are two foundational theoretical results that speak for it:

1. There are comparatively efficient algorithms to compute persistent
homology

2. Persistent homology is stable1: for compact metric spaces

dBpPHkpXq, PHkpY qq ď dGHppX, BXq, pY, BY qq

where dGHpX, Y q denotes the Gromov-Hausdorff distance

dGHpX, Y q “
1
2 inf

␣

distpRq | R correspondence between X and Y
(

where distpRq “ suppx,yq,px1,y1qPR |BXpx, x1q ´ BY py, y1q|.

1original version due to D. Cohen-Steiner, H. Edelsbrunner, H. and J. Harer, 2007



The ‘barcode’ process

Given an ensemble of point clouds pXn
t qT

t“1 we can track and analyze the
features via the process pPHkpXn

t qqT
t“1.

§ pPHkpXn
t qqT

t“1 takes values in the set of barcodes B

§ B forms a metric space under various metrics, specifically the bottleneck
distance dB

§ pB, dBq is a complete separable metric space.



Inference?

Not straightforward:
§ Only access to point clouds of latent process.
§ The space of barcodes is Polish.
§ Statistical inference on topological invariants not well-developed.
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The process of interest (latent)

§ let pM, BM q and pM 1, BM 1 q be compact metric spaces

§ We consider stochastic processes pXt : t P Zq defined by

Xt : Ω Ñ CpM, M 1q

§ Then the process pX̃tpmq : t P Z, m P Mq defined by

X̃tpmq :“ em ˝ Xt

with em : CpM, M 1q Ñ M 1, ξ ÞÑ ξpmq takes values in M 1.

Interpretation: we think of M as a parameter space and the images in M 1 as
representing the geometric object of interest
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Locally stationary metric space-valued SP

Need asymptotic theory under nonstationarity;

Let pXt,T : t P Z, T P Nq be an pS, BSq-valued stochastic process.

Definition 1
pXt,T : t P Z, T P Nq is locally stationary if, for all u “ t{T P r0, 1s, D an
pS, BSq-valued stationary process pXtpuq : t P Z, u P r0, 1sq such that

BS

`

Xt,T ,Xtp
t

T
q
˘

“ OppT ´1q and BSpXtpuq,Xtpvqq “ Opp|u ´ v|q

uniformly in t “ 1, . . . , T and u, v P r0, 1s.



The observed process

§ An n-dimensional point cloud for the function Xt is given by

X̃n
t,T :“ em1,...,mn ˝ Xt,T

§ The data arises as an ensemble of point clouds pX̃n
t,T qT

t“1 where n “ npT q.
§ For the data to be representative of the latent process, we must have

conditions such that

lim
nÑ8

X̃n
t,T « Xt,T pMq “ X̃t,T

in an appropriate sense.
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Extension of Gromov’s characterization to ergodic MMPDS

§ Gromov’s characterization: a metric measure space pS, BS , νSq is up to
isometry determined by the infinite-dimensional distance matrix
distribution

tBSpsi, sjqupi,jqPNˆN

where tsiu P S is an iid sequence with common distribution νS .

§ We show a similar result holds for ergodic metric measure-preserving
dynamical systems, i.e., tuples pS, BS , µS , θSq where θS is a
measure-preserving function that is ergodic under the measure µS .
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§ Thus, the infinite-dimensional distance matrix distribution

ϕpXq “ pBSpXt, Xsq : t, s P Zq

is a complete invariant of a stationary ergodic Polish-valued stochastic
process X “ pXt : t P Zq.

§ The ball volumes are fully determined by the infinite-dimensional matrix
distribution ϕpXq

Conditions such that the ball volumes characterize ϕpXq, and thus µX?



pB, dBq-valued proc. are determined by their values on balls1

Theorem 4.1
The space BN

α of N -point bounded barcodes has the property that any Borel
measure is determined by its values on balls.

Corollary 2
The pushforward of any Borel measure on point clouds under the persistent
homology functor PHk is determined by its values on balls.

Corollary 3
The pushforward of any Borel measure on point clouds under the zigzag
persistent homology functor is determined by its values on balls.

1Van Delft & Blumberg (2024) arXiv:2401.11125: ”Measures determined by their values on
balls and Gromov-Wasserstein convergence.”



Consequence of the preceding theorem

Characterizing the geometry of a Polish-valued process X via the ball volume
processes of the fidis
Ñ convenient for inference as it reduces to analyzing U -processes.

To see this, note for example that

µX
J

`

BpπJ ˝ X, rq
˘

“ EpX1q„µJ

“

ź

jPJ

1BSpXj ,X1
j

qďr

‰

.

where
Bps, rq “ ps1

j : max
1ďjď|J|

BSps, s1
jq ď rq

denotes the ball volume on the |J |-dimensional product metric space S|J| .



Outline

Overview: What is this talk about?

Topological Data Analysis

A statistical framework

Topological invariants to characterize pS, BSq-valued processes

Application of methodology: testing for topological change

A weak invariance principle



Detecting nonstationary behavior in the marginals

§ Let νt :“ P ˝ pPHkpX̃tqq´1 denote the marginal distribution at time t.
§ The process

´

φtprq :“ νtpBpPHkpX̃tq, rqq : r ě 0
¯

PHkpX̃tq „ νt

characterizes the measure νt up to isometry.

Then we are interested in testing pair of hypotheses

H0 :Eφtprq “ Eφprq @t P Z, r P r0, Rs

versus

HA :Eφtprq ‰ Eφprq for some t P Z,r P r0, Rs.
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Test statistic
§ Given we observe an ensemble of point clouds

`

X̃npT q

t

˘T

t“1

§ Create the barcode sample
`

PHkpX̃npT q

t q
˘T

t“1.

§ Define the partial sum process

ST pu, rq “
1

T 2

tuT u
ÿ

s,t“1
hpX̃npT q

t , X̃npT q
s , rq r P r0, Rs, u P r0, 1s.

where, for a compact metric space pR, BRq, the kernel
h : R ˆ R ˆ r0, Rs Ñ R is given by

hpx, x1, rq “ 1
␣

dB
`

PHkpxq, PHkpx1q
˘

ď r
(

, x, x1 P R.

Then let
UT pu, rq “ ST pu, rq ´ u2ST p1, rq.

Ñ Under H0, EUT pu, rq “ 0.



Test statistic
§ Given we observe an ensemble of point clouds

`

X̃npT q

t

˘T

t“1

§ Create the barcode sample
`

PHkpX̃npT q

t q
˘T

t“1.
§ Define the partial sum process

ST pu, rq “
1

T 2

tuT u
ÿ

s,t“1
hpX̃npT q

t , X̃npT q
s , rq r P r0, Rs, u P r0, 1s.

where, for a compact metric space pR, BRq, the kernel
h : R ˆ R ˆ r0, Rs Ñ R is given by

hpx, x1, rq “ 1
␣

dB
`

PHkpxq, PHkpx1q
˘

ď r
(

, x, x1 P R.

Then let
UT pu, rq “ ST pu, rq ´ u2ST p1, rq.

Ñ Under H0, EUT pu, rq “ 0.



Test statistic
§ Given we observe an ensemble of point clouds

`

X̃npT q

t

˘T

t“1

§ Create the barcode sample
`

PHkpX̃npT q

t q
˘T

t“1.
§ Define the partial sum process

ST pu, rq “
1

T 2

tuT u
ÿ

s,t“1
hpX̃npT q

t , X̃npT q
s , rq r P r0, Rs, u P r0, 1s.

where, for a compact metric space pR, BRq, the kernel
h : R ˆ R ˆ r0, Rs Ñ R is given by

hpx, x1, rq “ 1
␣

dB
`

PHkpxq, PHkpx1q
˘

ď r
(

, x, x1 P R.

Then let
UT pu, rq “ ST pu, rq ´ u2ST p1, rq.

Ñ Under H0, EUT pu, rq “ 0.



Test statistic
§ Given we observe an ensemble of point clouds

`

X̃npT q

t

˘T

t“1

§ Create the barcode sample
`

PHkpX̃npT q

t q
˘T

t“1.
§ Define the partial sum process

ST pu, rq “
1

T 2

tuT u
ÿ

s,t“1
hpX̃npT q

t , X̃npT q
s , rq r P r0, Rs, u P r0, 1s.

where, for a compact metric space pR, BRq, the kernel
h : R ˆ R ˆ r0, Rs Ñ R is given by

hpx, x1, rq “ 1
␣

dB
`

PHkpxq, PHkpx1q
˘

ď r
(

, x, x1 P R.

Then let
UT pu, rq “ ST pu, rq ´ u2ST p1, rq.

Ñ Under H0, EUT pu, rq “ 0.



Test statistic (continued)

We consider suitably self-normalized versions of

sup
rPr0,Rs

sup
uPr0,1s

?
T
ˇ

ˇ

ˇ
UT pu, rq

ˇ

ˇ

ˇ

and of
T

ż R

0

ż 1

0

`

UT pu, rq
˘2

dudr.



weak invariance principle in Dpr0, 1s ˆ r0, Rsq

Theorem
Under the regularity assumptions

!

T 1{2
´

ST pu, rq ´ EST pu, rq

¯)

uPr0,1s,rPr0,Rs

D
ù

!

Gpu, u, rq

)

uPr0,1s,rPr0,Rs
.

in Dpr0, 1s ˆ r0, Rsq w.r.t. the Skorokhod topology as T Ñ 8, where
tGpu, v, rquvďuPr0,1s,rPr0,Rs is a zero-mean Gaussian process with covariance
structure

CovpGpu1, v1, r1q,Gpu2, v2, r2qq “

ż minpu1,u2q

0
σpη, v1, r1qσpη, v2, r2qdη.



Corollary 4
Under the previous conditions

!

T 1{2
´

UT pu, rq ´ EpUT pu, rqq

¯)

uPr0,1s,rPr0,Rs

//

T Ñ8

!

ż u

0
σpη, u, rqdBpηq ´ u2

ż 1

0
σpη, 1, rqdBpηq

)

uPr0,1s,rPr0,Rs
.

in Dr0, 1s w.r.t. Skorokhod topology.

Under H0, this reduces to
!

T 1{2UT pu, rq

)

uPr0,1s,rPr0,Rs

//

T Ñ8

!

uσprq
`

Bpuq ´ uBp1q
˘

)

uPr0,1s,rPr0,Rs
.



Self-normalized (focus on max-type)

Define the range

VT prq “ max
1ďkďT

`

Upk{T, rq ´ ErUT pk{T, rs
˘

´ min
1ďkďT

`

Upk{T, rq ´ ErUT pk{T, rqs
˘

And consider the empirical distance

Dmax
T :“ max

r
max

k

|Upk{T, rq|

VT prq

Then, under H0,

Dmax
T ùñ

T Ñ8
sup

u

�
��σprq |uBpuq ´ u2Bp1q|

���σprq supu

`

uBpuq ´ u2Bp1q
˘

´ infu

`

uBpuq ´ u2Bp1q
˘ “: Dmax

§ RHS are pivotal and quantiles can be easily simulated
§ Used to construct asymptotic level-α tests for the hypotheses of interest.



Summary

§ Comprehensive theoretical framework based on FTS developed to infer on
the evolving geometric features

§ Naturally incorporates:
- Nonstationary temporal and spatial dependence
- Irregular and noise corrupted sampling
- Analysis of convergence rate and non-asymptotic error bounds

§ Simulation results: see arXiv.

§ Applied to: developmental trajectories in single cell RNA-seq.



Outlook

Progress:

§ We are exploiting theorem 4.1 without assuming a doubling measure.
§ Estimation of break locations (to appear soon)
§ Extensions mathematical shape descriptors
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