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Modern data sets: complex mathematical structures

e Measurements from processes that vary over a continuum
> sequentially collected;
» sampled almost continuously on domain;
*» exhibit nonstationary behavior.

e In various applications: paramount interest in shape
» Dimensionality reduction followed by clustering is ubiquitous

— Clustering captures very coarse shape information.
— Standard approaches to dimensionality reduction often assume

linearity; e.g., PCA, compressed sensing, NMF, or a contractible
smooth manifold (manifold learning).

Idea: use more refined mathematical shape descriptors.



What is this talk about? (continued)

We are particularly interested in studying the evolution of shape over time:
<> time series of geometric objects.

1. foundational questions: how to do statistical inference?
2. algorithmic problems: can we implement inference methods efficiently?

3. and applications: we focus on genomics



Application: cell differentation in development

day_numerical cell_sets

 Epithelial
°IPS

@ MEF/other
© MET

© Neural
 Stromal

o Trophoblast

Figure: Developmental trajectories (color indicates time).

Goal: detect and capture changes in shape



Mathematical context

We are interested in data sampled from objects with complicated geometry,
low-dimensional geometry.
» Nonlinear manifolds: for example, the circle.
» Things close to manifolds: spaces with corners (singularities), unions of
manifolds of differing dimension.
» Non-manifold spaces, with a notion of local metric geometry (relevant in

genomics).

Representative of data of interest: sequence of finite metric spaces
(e.g., time series of point clouds)
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Topological Data Analysis

Topological data analysis applies invariants of algebraic topology to discrete
data.

» Algebraic topology assigns algebraic objects (e.g., numbers, vector spaces)
to geometric objects.

» These invariants are global and qualitative; e.g., the kth homology groups
Hi(X) of a space X count the number of k-dimensional holes.

— homology detects the connected components, tunnels, voids, etc., of a

topological space.
< Insensitive to deformation.

— Generalization of clustering: Hy counts the number of components.



Persistent homology

A core topological invariant in TDA is persistent homology: Describes
multi-scale topological features of a point cloud (i.e., a finite metric space)

1. Involves construction of a sequence of simplicial complexes from (X, 0x)
2. Associates to these simplices topological invariants such as homology

3. Assigns a birth and death value to each topological feature

This creates a filtered vector space for each k which can be represented as a

multiset of intervals (a, b) referred to as a barcode or persistence diagram
PH(X).



Persistent homology captures information at different scales
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Evolution of shape over time

Figure: A surface evolving in time; time increases along the z-axis from left to right.
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Figure: Persistence diagrams of the samples from the slices. The points away from the
line = y represent the circles.



Main theorems of persistent homology

There are two foundational theoretical results that speak for it:

1. There are comparatively efficient algorithms to compute persistent
homology

2. Persistent homology is stable!: for compact metric spaces
de(PHy(X), PH(Y)) < deu((X, 0x), (Y, 0y))

where dgp(X,Y) denotes the Gromov-Hausdorff distance
1
den(X,Y) = 3 inf {dist(R) | R correspondence between X and Y'}

where dist(R) = SUD (5.y),(a',y/)€R |0x (@, 2") — dy (y,9)]-

101rigina1 version due to D. Cohen-Steiner, H. Edelsbrunner, H. and J. Harer, 2007



The ‘barcode’ process

Given an ensemble of point clouds (X}*)Z_; we can track and analyze the

features via the process (PHy (X)L ;.

» (PH(X))L | takes values in the set of barcodes %

» % forms a metric space under various metrics, specifically the bottleneck
distance d

» (%,dz) is a complete separable metric space.



Inference?

Not straightforward:
» Only access to point clouds of latent process.
» The space of barcodes is Polish.

» Statistical inference on topological invariants not well-developed.
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A statistical framework
Theoretical setup



The process of interest (latent)
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The process of interest (latent)

» let (M, 0pr) and (M’, 0prr) be compact metric spaces

» We consider stochastic processes (X;: t € Z) defined by
X, : Q — C(M, M)

» Then the process (X;(m) : t € Z,m € M) defined by

Xi(m) :=em o0 Xy

with e, : C(M, M) — M’ £ — &(m) takes values in M’.

Interpretation: we think of M as a parameter space and the images in M’ as
representing the geometric object of interest



Locally stationary metric space-valued SP

Need asymptotic theory under nonstationarity;

Let (X7 :t€Z,T € N) be an (5, dg)-valued stochastic process.
Definition 1

(Xyr:teZ,T eN) is locally stationary if, for all u = ¢/T € [0,1], 3 an
(S, 0s)-valued stationary process (X;(u) : ¢t € Z,u € [0,1]) such that

as(xt’T,xt(%)) —0,(T™Y) and  9s(Xi(w), Xo(v)) = O, (Ju— o)

uniformly in ¢ = 1,...,7T and u,v € [0, 1].




The observed process

» An n-dimensional point cloud for the function X; is given by

N
Xt,T = €my,..omy, O XeT

» The data arises as an ensemble of point clouds (XZT)tT:l where n = n(T).

» For the data to be representative of the latent process, we must have
conditions such that

lim X' ~ X p(M) =X 7

n—o0

in an appropriate sense.
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Topological invariants to characterize (S, dg)-valued processes



Extension of Gromov’s characterization to ergodic MMPDS

» Gromov’s characterization: a metric measure space (S, ds,vg) is up to
isometry determined by the infinite-dimensional distance matrix
distribution

{aS(Sivsj)}(i,j)eNxN

where {s;} € S is an iid sequence with common distribution vg.



Extension of Gromov’s characterization to ergodic MMPDS

» Gromov’s characterization: a metric measure space (S, ds,vg) is up to
isometry determined by the infinite-dimensional distance matrix
distribution

{05 (s, Sj)}(i,j)eNxN

where {s;} € S is an iid sequence with common distribution vg.

» We show a similar result holds for ergodic metric measure-preserving
dynamical systems, i.e., tuples (S, ds, pus, 0s) where g is a
measure-preserving function that is ergodic under the measure ug.



» Thus, the infinite-dimensional distance matrix distribution
H(X) = (0s(Xy, Xs) : t,5 € Z)

is a complete invariant of a stationary ergodic Polish-valued stochastic
process X = (X;: t € Z).

» The ball volumes are fully determined by the infinite-dimensional matrix
distribution ¢(X)

Conditions such that the ball volumes characterize ¢(X), and thus pux?



(B, d)-valued proc. are determined by their values on balls?

Theorem 4.1

The space BY of N-point bounded barcodes has the property that any Borel
measure is determined by its values on balls.

Corollary 2

The pushforward of any Borel measure on point clouds under the persistent
homology functor PHy, is determined by its values on balls.

Corollary 3

The pushforward of any Borel measure on point clouds under the zigzag
persistent homology functor is determined by its values on balls.

!Van Delft & Blumberg (2024) arXiv:2401.11125: "Measures determined by their values on
balls and Gromov-Wasserstein convergence.”



Consequence of the preceding theorem

Characterizing the geometry of a Polish-valued process X via the ball volume
processes of the fidis
— convenient for inference as it reduces to analyzing U-processes.

To see this, note for example that

w3 (Bl o X,r)) = Eenyp, [ [ Losx, x<r].
jeJ
where
B(s,r) = (s} : max 0s(s,s}) <r)

1<5<|J|

denotes the ball volume on the |.J|-dimensional product metric space S .
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Application of methodology: testing for topological change



Detecting nonstationary behavior in the marginals

» Let vy := Po (PHy(X,))~" denote the marginal distribution at time ¢.
» The process

((pt(r) = Vt(B(PHk(Xt),r)) > O) PHk(Xt) ~ U

characterizes the measure v; up to isometry.



Detecting nonstationary behavior in the marginals

» Let vy := Po (PHy(X,))~" denote the marginal distribution at time ¢.
» The process

(cpt(r) = v (B(PHp(X,), 7)) : 1 = O) PH(X,) ~ vy
characterizes the measure v; up to isometry.

Then we are interested in testing pair of hypotheses
Hy :Epi(r) =Ep(r) VteZ,re|[0,%]
Versus

Hp :Epi(r) # Ep(r) for some t € Z,r € [0, Z].
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A weak invariance principle
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Test statistic

T

» Given we observe an ensemble of point clouds (X?(T)) i1

» Create the barcode sample (PH,€ (X?(T)))T

t=1
> Define the partial sum process

[uT]

1 - -
Sr(uyr) = 25 3 ME XD ) e (0, %) ueo,1]
s, t=1

where, for a compact metric space (R, dgr), the kernel
h:Rx R x[0,%] — R is given by

h(z,2',r) = 1{dg(PHy(z), PHy(z")) <r}, =z,2'€R.

Then let
Ur(u,r) = Sp(u,r) —uSr(1,7).

— Under Hy, EUp(u,r) = 0.



Test statistic (continued)

We consider suitably self-normalized versions of

sup  sup \/T‘UT(U,T)‘
re[0,%] uel0,1]

and of

T L% Ll (Ur(u, 7)) *dudr.



weak invariance principle in D([0, 1] x [0, Z])

Theorem

Under the regularity assumptions

{T1/2 (ST(u, r) —ES’T(u,r))} 2> {G(u,u,r)}

uel0,1],r€[0,%) uel0,1],r€[0,%2]

in D([0,1] x [0,%]) w.r.t. the Skorokhod topology as T" — oo, where
{G(u,v,7)}y<uel0,1],re0,) IS @ zero-mean Gaussian process with covariance
structure

min(u,us)

Cov(G(ur, vr, 1), Glug, vz, 2)) = f o (1, 01,11) (1, v3, 7).
0




Corollary 4

Under the previous conditions

{T1/2 (UT(u, r) — E(Ur(u, r)))}

u€[0,1],r€[0,2]

1
a(n,1, T)dB(”)}ue[ovllme[Ov@].

~ {Ju o(n,u,r)dB(n) —U,2J

T—0 0 0

in D[0,1] w.r.t. Skorokhod topology.

Under Hy, this reduces to

1/2 —
{T UT(U’T)}ue[O,l],re[O,%] e {W(T)(B(u) UB(l))}ue[o,u,re[W]'



Self-normalized (focus on max-type)

Define the range

Vr(r) = max (U(k/T,r) — E[Ur(k/T,r]) — min (U(k/T,r) —E[Ur(k/T,)])

1<k<T 1<k<T
And consider the empirical distance
Uk/T,r)|
D7 := max ma | .
T T V()

Then, under Hy,

]D)max — sup /MWB u)— U2B(1)| =. pmax
T—0 4 /éffsupu (uB(u) — u?B(1)) — inf, (uB(u) — u?B(1))

» RHS are pivotal and quantiles can be easily simulated

» Used to construct asymptotic level-a tests for the hypotheses of interest.



Summary

» Comprehensive theoretical framework based on FTS developed to infer on
the evolving geometric features

» Naturally incorporates:

- Nonstationary temporal and spatial dependence
- Irregular and noise corrupted sampling
- Analysis of convergence rate and non-asymptotic error bounds

» Simulation results: see arXiv.

» Applied to: developmental trajectories in single cell RNA-seq.



Outlook

Progress:

> We are exploiting theorem 4.1 without assuming a doubling measure.
» Estimation of break locations (to appear soon)

» Extensions mathematical shape descriptors
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