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Model-parameter estimation

Consider the classic setting where the true model parameter
x∗ ∈ Rd can be characterized as the minimizer of a convex
objective function F (x) from Rd to R, i.e

x∗ = argminx∈RdF (x) = argminx∈RdEξ∼Πf (x , ξ), (1)

where f (x , ξ) is a loss function and ξ is a random variable
following the distribution Π.
Example 1. Let d = 1 and f (x , ξ) = |x − ξ| (resp. |x − ξ|2).
Then x∗ is the median (resp. mean) of ξ.
Example 2. ξ = (Z ,Y ), where Z is a d-dim vector and Y is a
scalar and f (x , ξ) = |ZT x − Y |2.

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Model-parameter estimation

If the target function F is known, we can apply the Gradient
descent algorithm

xn+1 = xn − γn∇F (xn), (2)

where step size γn → 0 and ∇F (x) is the gradient of F at x

When F is not known, we can use the estimate

Fn(x) =
1

n

n∑
i=1

f (x , ξi ) (3)

based on the data ξ1, ξ2, . . .. For example, empirical risk
minimization, maximum-likelihood estimation, M-estimation,
least squares estimation etc

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Model-parameter estimation

The standard (or ”batch”) gradient descent method

xn+1 = xn − γ∇Fn(xn) = xn − γ
n∑

i=1

∇f (xn, ξi )/n, (4)

where γ is the step size.

doable if the function f has a simple structure

can be very expensive to compute the sum-gradient when the
training set is huge (stream/online/sequential data) and f has
a complicated form

One way out: Stochastic gradient descent by Robbins–Monro
algorithm (1951), Siegmund, Lai, Yin, Kushner......

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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How to deal with extremely large datasets?
How to process data on the fly?

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen



Introduction
Online Approach
Simulation study

References

Stochastic Gradient Decent (SGD)

Let {ξi}i≥1 be a sequence of i.i.d sample from the distribution Π.
Set x0 as the initial point. The k-th iteration through SGD
algorithm takes the following form

xk = xk−1 − ηk∇f (xk−1, ξk), (5)

where ηk is the learning rate, the step size at k-th step.

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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SGD

Advantage: Excellent computation and memory efficiency

Very popular algorithm for model training in machine learning

Coupled with backpropagation algorithm: standard algorithm
for training artificial neural networks

Statistical Inference Problem: How to address the
Uncertainty?
(SGD performs frequent updates with a high variability that
causes the outcome fluctuate heavily.)

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Averaged SGD: Acceleration by Averaging

The Robbins-Monro algorithm can perform poorly in practice
since it is sensitive to the choice of the learning rate sequence.

Following Ruppert (1988), Polyak (1990), Polyak, Juditsky
(1992), setting

ηk = ηk−α, η > 0, α ∈ (0.5, 1),

let the average

x̄n = n−1
n∑

i=1

xi (6)

be the final estimator for x∗. The Averaged SGD (ASGD) is
more robust to the choice of step sizes.

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Averaged SGD: Acceleration by Averaging

From Polyak and Juditsky (1992), under suitable conditions we
have the asymptotic normality of x̄n:

√
n(x̄n − x∗)⇒ N(0,A−1SA−1), (7)

where A = ∇2F (x∗), S = E
(
[∇f (x∗, ξ)][∇f (x∗, ξ)]T

)
.

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Existing work

Convergence properties for xn: Well studied.

Statistical Inference/Uncertainty quantification?
There are few works:
Chen et al. (2019); Fang et al. (2018); Su and Zhu (2023).
(Not on-line approach!)

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Motivation: efficient computation

In modern neural networks applications, the dimension d can be in
millions. Want to reduce the dimensionality.
With confidence intervals of the estimated parameters, we can

prune the unimportant connections

learning only important connections

simplify the network structure

reduce the computation

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Motivation: efficient computation

Han et al. (2015) NIPS, Learning both Weights and Connections
for Efficient Neural Network):

After an initial training phase, remove all connections whose
weight is lower than a threshold. This pruning converts a
dense, fully-connected layer to a sparse layer.

reduce the storage and computation required by neural
networks by an order of magnitude without affecting their
accuracy by learning only the important connections.

Network pruning has been used both to reduce network
complexity and to reduce over-fitting.

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Question:

How to obtain the confidence intervals/regions of the true
model parameter

in a fully online fashion?

only through SGD iterates?

Our goal is to obtain an online estimate of the covariance matrix
A−1SA−1 based only on the SGD iterates x1, . . . , xn, . . ..

With the above estimate, we can perform uncertainty
quantification and statistical inference with excellent computation
and memory efficiency.

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Averaged SGD: Acceleration by Averaging

Following Ruppert (1988), Polyak (1990), Polyak, Juditsky (1992),
consider the ASGD x̄n = n−1

∑n
i=1 xi .

Theorem. Polyak and Juditsky (1992). Let ηk = ηk−α with η > 0
and α ∈ (1/2, 1) and x̄n = n−1

∑n
i=1 xi . Then under suitable

conditions we have the asymptotic normality of x̄n:

√
n(x̄n − x∗)⇒ N(0,A−1SA−1), (8)

where A = ∇2F (x∗), S = E
(
[∇f (x∗, ξ)][∇f (x∗, ξ)]T

)
.

To leverage the CLT for inference, it is critical to estimate the
asymptotic covariance matrix Σ = A−1SA−1!

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Plug-in Estimate for Σ = A−1SA−1

Ŝn = n−1
∑n

i=1[∇f (xi−1, ξi )][∇f (xi−1, ξi )]>

Ân = n−1
∑n

i=1∇2f (xi−1, ξi )

The sandwich estimate Σ̂n = Â−1
n ŜnÂ

−1
n

Potential problems: computation of the Hessian matrix of the
loss function is not always available

For quantile regression, the Hessian matrix does not even exist

For legacy codes, only the SGD iterates are computed

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Covariance matrix estimation: overview

The sandwich estimate Σ̂n = Â−1
n ŜnÂ

−1
n

Manipulations of d × d matrix: naive algorithm O(d3),
Strassen O(d2.8074), Coppersmith–Winograd O(d2.3755).

Our online algorithm, which is based only on the SGD iterates
x1, x2, . . ., only requires O(d2) updates, achieving desirable
computation and memory efficiency.

What happens if d is in millions?

In the important special case of marginal inference of
coordinates/entries of x∗, O(d) computation suffices.

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Covariance matrix estimation: overview

In the important special case of marginal inference of
coordinates/entries of x∗, O(d) computation suffices.

Mao, Zhu and Wu. Music Recognition using Mel
Spectrogram: one input layer with dimension of 128, one
hidden layer with dimension 128 and one output layer of
dimension 1 with d = 16384. Need marginal inference.

handwritten digital classification: 1M

deepface: 120M

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Stationary processes and Non-stationary Markov Chains

Note that by (5), since ξk are i.i.d.,

xk = xk−1 − ηk∇f (xk−1, ξk) = mk(xk−1, ξk) (9)

defines a non-homogeneous (non-stationary) Markov chain,
since ηk = ηk−α. Iterations of (9) lead to

xk = gk(ξk , ξk−1, . . . , ξ1, x0). (10)

For a mean 0 stationary process

zk = g(ξk , ξk−1, . . .), (11)

under suitable weak dependence conditions, we have the CLT

√
nz̄n ⇒ N(0, σ2

∞), where σ2
∞ =

∞∑
k=−∞

cov(z0, zk) (12)

where is the long run variance.
Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Long-run Variance Estimation for Stationary Processes

The batched mean estimate for the long-run variance σ2
∞ is

σ̂2
n,ln =

1

n − ln

n−ln∑
i=1

(zi + zi+1 + . . .+ zi+ln−1 − lnz̄n)2

ln
,

where ln is the batch size.
Theorem (Liu and Wu). Assume that ln →∞ and ln/n→ 0.

We have the consistency ‖σ̂2
n,ln
− σ2

∞‖q/2 → 0 if

∞∑
j=1

δq(j) <∞ holds for some q > 2.

We have the CLT
√

n/ln(σ̂2
n,ln
− E σ̂2

n,ln
)⇒ N(0, π) if

∞∑
j=1

δ4(j) <∞.

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Long-run Variance Estimation

The sample mean z̄n =
∑n

i=1 zi/n can be recursively updated:

z̄n+1 = (nz̄n + zn+1)/(n + 1)

Memory complexity is O(1) and the computational complexity
scales linearly in n.

For the long-run variance estimate, assume µ = 0:

σ̂2
n,ln =

1

ln(n − ln)

n−ln∑
i=1

(zi + zi+1 + . . .+ zi+ln−1)2.

If ln 6= ln+1, one then has to update all the sums
zi + . . .+ zi+ln−1, 1 ≤ i ≤ n − ln. The memory complexity is
O(n) and the computational complexity >> O(n)

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Online Long-run Variance Estimation

In Markov Chain Monte Carlo, it is argued that
X̄n ± 1.96× σ̂n,ln/

√
n can be used for convergence diagnostics

for MCMC. The problem is:
asymptotically 100% of one’s computer time will be ex-
pended on computing the estimate of the σ2

n,ln
(as opposed

to simulating the trajectory of the process). This is clearly
(very!) undesirable.

Wu (2009) designed an online algorithm for computing
estimates of σ2

∞ for stationary processes

Chan, K.W. and Yau, C.Y. (2016, 2017) made important
improvements for the online algorithm.

The same algorithm of Wu (2009) can be applied to estimate
Σ = A−1SA−1 for outcomes of SGD, which form a
non-stationary Markov Chain!

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Online Long-run Variance Estimation

In the batched mean variance estimate

σ̂2
n,ln =

1

n − ln

n−ln∑
i=1

(zi + zi+1 + . . .+ zi+ln−1 − lnz̄n)2

ln
,

where ln is the batch size which is same for all blocks
{zi , zi+1, . . . , zi+ln−1}.
To account for dependence, ln →∞, making σ̂2

n,ln
non

recursive

Wu’s (2009) algorithm allows varying batch sizes

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Online Long-run Variance Estimation

Assume at the outset that µ = 0.

ak = k2, k ∈ N; ti = b
√
ic2. In general ak = bckpc, p > 1.

Vn =
∑n

i=1 W
2
i , where Wi = Xti + Xti+1 + . . .+ Xi

vn =
∑n

i=1 li , where li = i − ti + 1.
Overlap batched estimate: σ̃2

n := Vn/vn

V17 = X 2
1 + (X1 + X2)2 + (X1 + X2 + X3)2

+ X 2
4 + (X4 + X5)2 + . . .+ (X4 + . . .+ X8)2+

+ X 2
9 + (X9 + X10)2 + . . .+ (X9 + . . .+ X15)2

+ X 2
16 + (X16 + X17)2 = V16 + W 2

17;
v17 = 1 + 2 + 3

+ 1 + 2 + 3 + 4 + 5
+ 1 + 2 + . . .+ 7
+ 1 + 2 = v16 + l17

Key idea: Wi = Xi if i is a square and Wi = Wi−1 + Xi if not
Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Non-overlap Online Long-run Variance Estimation

Assume at the outset that µ = 0.

ak = k2, k ∈ N; ti = b
√
ic2, i ∈ N

Vn =
∑n

i=1 W
2
i , where Wi = Xti + Xti+1 + . . .+ Xi

vn =
∑n

i=1 li , where li = i − ti + 1.

Non-Overlap batched estimate: σ̂2
n := V ]

n/v
]
n

V ]
17 = (X1 + X2 + X3)2 + (X4 + . . .+ X8)2

+ (X9 + . . .+ X15)2 + (X16 + X17)2;

v ]17 = (22 − 1) + (32 − 22) + (42 − 32) + (17− 42 + 1)

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Online Long-run Variance Estimation

Key observations:

Both Vn and vn can be recursively updated

Length of block sums Wi are time-varying

Convergence properties of the recursive estimate σ̃2
n := Vn/vn

can be developed by using the functional dependence measure
(Wu, 2005):

(ε′i ): iid copy of (εi )
Fn = (. . . , εn−1, εn)
Coupling: F∗n = (F−1, ε

′
0, ε1, . . . , εn)

‖X‖p = [E (|X |p)]1/p, p ≥ 1
δp(n) = ‖g(Fn)− g(F∗n )‖p

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Long-run Variance Estimation

Convergence of σ̃2
n = Vn/vn? Far from being trivial!

Theorem (Wu, 2009). Assume Xi ∈ Lq, q > 2, EXi = 0, and

∞∑
j=0

δq(j) <∞. (13)

Then ‖σ̃2
n − σ2‖q/2 = [E |σ̃2

n − σ2|q/2]2/q = o(1).

Theorem (Wu (2009)). Assume that Xi ∈ L4, EXi = 0, and

∞∑
j=0

jδ4(j) <∞. (14)

Let ak = bckpc with p = 3/2. Then the Mean Squares Error

MSE(σ̃2
n) = ‖σ̃2

n − σ2‖2 := [E (σ̃2
n − σ2)2]1/2 = O(n−1/3).

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Long-run Variance Estimation

Convergence of σ̃2
n = Vn/vn? Far from being trivial!

Theorem (Wu, 2009). Assume Xi ∈ Lq, q > 2, EXi = 0, and

∞∑
j=0

δq(j) <∞. (13)

Then ‖σ̃2
n − σ2‖q/2 = [E |σ̃2

n − σ2|q/2]2/q = o(1).
Theorem (Wu (2009)). Assume that Xi ∈ L4, EXi = 0, and

∞∑
j=0

jδ4(j) <∞. (14)

Let ak = bckpc with p = 3/2. Then the Mean Squares Error

MSE(σ̃2
n) = ‖σ̃2

n − σ2‖2 := [E (σ̃2
n − σ2)2]1/2 = O(n−1/3).
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Long-run Variance Estimation

Theorem. Assume (14). For the batched mean estimate

σ̂2
n,ln =

1

ln(n − ln)

n−ln∑
i=1

(Xi + Xi+1 + . . .+ Xi+ln−1)2,

let θ = 2
∑∞

k=1 kγ(k). We have

‖σ̂2
n,ln − σ

2‖2 = O(n−1/3), where ln = b(λ∗n)1/3c, λ∗ =
3θ2

2σ4
.

Chan, K.W. and Yau, C.Y. (2016, 2017) made important
improvements for the online algorithm on high order correction and
optimal batch size selection; see Chan and Yau (2017).

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Long-run Variance Estimation

Theorem (Wu, 2009). Assume (14). Let ak = bck3/2c and choose

c as c = (4/3)3/2λ
1/2
∗ . Then

‖σ̃2
n − σ2‖2

‖σ̂2
n,ln
− σ2‖2

→ 4

3

Under (14), the optimal p in ak = bckpc is p = 3/2.

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Estimation of Asymptotic Covariance Matrix

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Let {ak}k∈N be a strictly increasing integer-valued sequence with
a1 = 1.

We split SGD iterates {x1, ..., xn, ...} into big batches based on
(ak)k∈N as follows:

{xa1 , ..., xa2−1}, {xa2 , ..., xa3−1}, ..., {xaM , ..., xn, ...}, ...

where M satisfies aM ≤ n < aM+1.

Note: the introduction of (big) batches {xam , ..., xam+1−1, ...} is
only used for motivating our overlapping construction of small
batches in following analysis.

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Review: Batch means estimator

Batch-means estimator in Chen et al. (2019) is defined as

M∑
m=1

nm
M

am+1−1∑
k=am

xk/nm − x̄n

am+1−1∑
k=am

xk/nm − x̄n

T

, (15)

based on the batch-means

am+1−1∑
k=am

xk/nm − x̄n, for 1 ≤ m ≤ M,

where nm = am+1 − am.

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Construction of batch-means estimator is based on big batch
and can only be updated batch by batch.

To ensure convergence, choice of {ak}k∈N in batch-means
estimator depends on total number of steps n.

So the estimator is not recursive!

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Modified overlapping batch means

To update the covariance estimate step by step, upon receiving a
new data point xi , we construct a new batch including previous
data points from iterations ti to i , i.e.,

{xti , ..., xi}.

Based on the small batch, we compute a new batch mean

i∑
k=ti

xk/li − x̄n, for 1 ≤ i ≤ n.

where ti = am when i ∈ [am, am+1) and li = i − ti + 1.

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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The recursive estimator Σ̂n is then defined as

Σ̂n =
n∑

i=1

l2i∑n
i=1 li

 i∑
k=ti

xk/li − x̄n

 i∑
k=ti

xk/li − x̄n

T

. (16)

Here, {ak}k∈Nis pre-defined, which means the construction does
not depend on total number of steps!

Construction intuition: A new local variance estimation term,
which can be viewed as the effect of the new data point xi on the
final variance estimator, is added to the final covariance estimate
with a novel re-weighting step.

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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How to choose {ak}k∈N?

Let δn = xn − x∗ and εn = ∇F (xn−1)−∇f (xn−1, ξn). Then

δn = δn−1 − ηn∇F (xn−1) + ηnεn.

With ∇F (xn−1) approximated by Aδn−1, for large n

δn ≈ (I − ηnA)δn−1 + ηnεn. (17)

Then for the i-th iterate xi and the j-th iterate xj (j < i), the
strength of correlation between them is roughly

Πi
k=j+1 ‖Id − ηkA‖2 ≤ (1− ηλAi−α)i−j , (18)

when ηk = ηk−α.

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen



Introduction
Online Approach
Simulation study

References

Estimator for Asymptotic Covariance Matrix
Recursive Algorithm
Convergence of the recursive estimator
Statistical Inference

One can choose i − j = Ki (α+1)/2, where K is a large constant.
Then the correlation is less than (1− ηλAi−α)Ki

αi (1−α)/2
, which

goes to zero as i goes to infinite. Then a reasonable setting is that
the sequence {ak}k∈N satisfies

ak − ak−1 = Ka
(α+1)/2
k . (19)

Let ak increase polynomially, i.e., ak = Ckβ for some constant C .
Solve equation (19), we obtain that β = 2/(1−α). Thus a natural
choice of ak is

ak = bCk2/(1−α)c. (20)

Recall in the stationary case the optimal ak = bck3/2c, smaller
than the one above.

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Recursive Algorithm

Given sequentially arriving SGD iterates x1, ...., xn, . . ., define

Wi =
i∑

k=ti

xk . (21)

Wi+1 can be updated recursively (e.g xi in the m-th batch):

When xi+1 is in the same batch as xi , i.e ti+1 = am, then
Wi+1 = Wi + xi+1.

When xi+1 belongs to a new batch, i.e ti+1 = am+1, then
Wi+1 = xi+1.

the batch size i − ti + 1 is time-varying

Wei Biao Wu, joint with Zeqi Mao, Wanrong Zhu and Xi Chen
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Then equation (16) can be expanded as

Σ̂n =

(
n∑

i=1

li

)−1{ n∑
i=1

WiW
T
i +

n∑
i=1

l2i x̄nx̄
T
n

−

(
n∑

i=1

liWi

)
x̄Tn − x̄n

(
n∑

i=1

liWi

)T
 .

(22)
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To further simplify (16), we introduce

Vn =
n∑

i=1

WiW
T
i , Pn =

n∑
i=1

liWi , vn =
n∑

i=1

li and qn =
n∑

i=1

l2i .

They can be updated recursively since both Wi and li can be
updated recursively. Now, Σ̂n can be finally rewritten as

Σ̂n =
1

vn
(Vn + qnx̄nx̄

T
n − x̄nP

T
n − Pnx̄

T
n ). (23)
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All five terms in (23): Vn, qn,Pn, vn, x̄n can be updated recursively.
Thus we can update Σ̂n only through the results in the (n − 1)-th
step and the new iterate xn at the n-th step.

Advantages:

The estimate can be updated step by step (online fashion)

Memory complexity is O(d2), which is independent of the
sample size n.

In the update step, the computational complexity is also
O(d2). Then the total computational cost scales linearly in n.

In the important special case of marginal inference of
coordinates/entries of x∗, O(d) computation suffices.
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Convergence of the recursive estimator
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Assumption 1: Strong convexity of the objective function F (x) and

Lipschitz continuity of its gradient.

Assume that the objective function F (x) is continuously
differentiable and strongly convex with parameter µ > 0. That is,
for any x1 and x2,

F (x2) ≥ F (x1) + 〈∇F (x1), x2 − x1〉+
µ

2
‖x1 − x2‖2

2.

Furthermore, assume that ∇2F (x∗) exists and ∇F (x) is Lipschitz
continuous in the sense that there exist L > 0 such that,

‖∇F (x1)−∇F (x2)‖2 ≤ L‖x1 − x2‖2.
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Assumption 2: Regularity and bound of the noisy gradient

Let error sequence δn = xn − x∗ and gradient difference sequence

εn = ∇F (xn−1)−∇f (xn−1, ξn).

The following hold:

1. The function f (x , ξ) is continuously differentiable with respect
to x for any ξ and ‖∇f (x , ξ)‖2 is uniformly integrable for any x .
So En−1∇f (xn−1, ξn) = ∇F (xn−1), which implies that En−1εn = 0.
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Assumption 2 (Continued)

2. The conditional covariance of εn has an expansion around S
which satisfies the following:

‖En−1(εnε
T
n )− S‖2 ≤ C

(
‖δn−1‖2 + ‖δn−1‖2

2

)
, (24)

where C is some constant. Here S is the asymptotic covariance
matrix for ASGD estimator.
3. There exists a constant C such that the fourth conditional
moment of εn is bounded by

En−1(‖εn‖4
2) ≤ C

(
1 + ‖δn−1‖4

2

)
.
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Convergence of Σ̂n

Theorem. (Zhu et al. (2023)) Under Assumptions 1 and 2, let

ak = bck2/(1−α)c, (25)

where c is a constant. Set step size at the i-th iteration as
ηi = ηi−α with 1

2 < α < 1. Then for Σ̂n defined in (16)

E‖Σ̂n − Σ‖2 . M
−α

2(1−α) + M−
1
2 , (26)

where M is the number of batches such that aM ≤ n < aM+1.
Same bound holds for Non-overlap batch estimator.
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Remark: Using the relationship between number of batches M
and the total sample size n, we translate the above Theorem into
the following results:

E‖Σ̂n − Σ‖2 . n−α/4 + n−(1−α)/4 � n−(1−α)/4. (27)

We achieve the fastest possible rate n−1/8 when α is close to 1/2.
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Remark: Using the relationship between number of batches M
and the total sample size n, we translate the above Theorem into
the following results:

E‖Σ̂n − Σ‖2 . n−α/4 + n−(1−α)/4 � n(α−1)/4. (28)

We achieve the fastest possible rate n−1/8 when α is close to 1/2.
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Convergence of Σ̂n

Recent development. Wanrong Zhu and Wu (August, 2023) are
making a substantial improvement by proposing a bias-corrected
covariance matrix estimator Σ̃n such that

E‖Σ̃n − Σ‖2
2 . nα−1 log n (29)
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Statistical inference
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Statistical inference:

As n goes to infinity, for i-th coordinate of x∗

Pr(x∗i ∈ CIn,i )→ 1− q, (30)

where

CIn,i =
[
x̄n,i − z1−q/2

√
σ̂ii/n, x̄n,i + z1−q/2

√
σ̂ii/n

]
and σ̂ii is the i-th diagonal of Σ̂n defined in (16). We can also
construct joint confidence region as follows:

Pr
(

(x̄n − x∗)T Σ̂−1
n (x̄n − x∗) ≤ χ2

d ,1−2/q

)
→ 1− q. (31)
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More generally, for any unit length vector w ∈ Rd (i.e., ‖w‖2 = 1),
the following convergence result holds:

√
nwT (x̄n − x∗)√

wT Σ̂nw

⇒ N(0, 1). (32)

Therefore, the (1− q)100% confidence interval for wT x∗ can be
construct as

wT x̄n ± z1−q/2

√
wT Σ̂nw/n (33)
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Simulation study
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Linear and logistic regression

Let bi = aTi x
∗ + εi , where ai ∈ Rd ∼ N(0, Id), εi ∼ N(0, 1).

The loss function f (·) is defined as the negative log likelihood
function, i.e.

f (x , ai , bi ) =
1

2
(aTi x − bi )

2.

Logistic regression: bi |ai ∼ Bernoulli((1 + exp(−aTi x∗))−1):

f (x , ai , bi ) = (1− bi )a
T
i x + log(1 + exp(−aTi x))−1

Check:

Convergence of recursive estimator

CI coverage
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Convergence of recursive estimator

(a) d=1 (b) d=5

Figure 1: Linear regression: Log loss (operator norm) of estimated
covariance matrix against the log of total number of steps. F denotes the
full overlapping version (16), and NOL denotes the non-overlapping
version. C denotes the constant in am = bCm2/(1−α)c.
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CI coverage

We construct 95% confidence interval for mean predictor
µ = 1T x∗ based on (33) i.e.,[

1T x̄n − z1−q/2

√
1T Σ̂n1/n , 1T x̄n + z1−q/2

√
1T Σ̂n1/n

]
.

From Figure 2, the empirical coverage rate converges to 95% and

the standardized error
√
n1T (x̂ − x∗)/

√
1T Σ̂n1 is approximately

standard normal.
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(a) Empirical cover rate (b) CI length (c) Normality

Figure 2: Linear regression with d = 5: (a): Empirical coverage rate vs
the number of steps. Red dashed line denotes the nominal coverage rate
of 0.95. (b): Length of confidence intervals. (c): Density plot for
standardized error. Red curve denotes density plot of N(0, 1).
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Computational Time

(a) d = 5 (b) d = 20

Figure 3: Comparison of online-BM and Plug-in estimators. Total
computation time for updating covariance estimate and confidence
intervals in SGD (same for both models).
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Music recognition example

Mao, Zhu and Wu: Plot of xi/σ̂i for the music recognition
example with d = 16384:
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Thank you!
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