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ECODEP motivations



Chains with infinite memory

Chain with infinite memory
Let (Xt) be a solution of the non-linear stochastic recurrent equation

Xt = F(Xt−1,Xt−2, . . . ; ξt) , t ∈ Z ,

where (ξt) is iid.

Theorem (Doukhan and W., 2008)
Assume

E[|F(x0, x1, x2, . . . ; ξ)− F(y0, y1, y2, . . . ; ξ)|] ⩽
∞∑
j=0

aj|xj − yj| , (xj) , (yj) ∈ RN ,

∞∑
j=0

|aj| < 1 , and E[|F(0, 0, . . . ; ξ)|] < ∞,

then the causal stationary solution (Xt) exists and satisfies E[|X|] < ∞.
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Application to Poisson Quasi Maximum Likelihood Estimation (PQMLE)

Poisson QMLE, Ahmad and Francq (2016)
PQMLE is defined under the assumption that we observe Xt ∈ N, t = 1, . . . , n such
that

E[Xt|Xt−1,Xt−2, . . .] = λ(Xt−1,Xt−2, . . . ; θ0) =: λt(θ0) , a.s. ,

for some parameter θ0 ∈ Θ and some measurable function λ.

Note that if (Xt) is a chain with infinite memory then

E[Xt|Xt−1,Xt−2, . . .] = Eξ[F(Xt−1,Xt−2, . . . ; ξ)] , a.s. ,

and Poisson QMLE corresponds to the parametrization of F = Fθ0 , θ0 ∈ Θ (Bardet
and W., 2009).

The asymptotic normality of PQMLE is derived under the assumption

E[X2
t |Xt−1,Xt−2, . . .]− λt(θ0)

2 =: vt(θ0) , a.s. .

Under which minimal conditions on F the LHS exists?
Ferland et al. (2006)
If Xt is conditionally Poisson then vt = 0 and the LHS exists under the conditions of
Doukhan and W. (2008).
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Moments for AR models with ran-
dom coefficients and finite order



AutoRegressive models of infinite order AR(P) with random coefficients,
p ∈ ⋉ ∪ {∞}

AR(p) model with random coefficients
Let (Aj)j⩾1, B be non-negative random variable. Consider the recurrence

Xt =
p∑

j=1
At,jXt−j + Bt , t ∈ Z , p ∈ N ∪ {∞} ,

where ((At,j)j⩾1,Bt)t∈Z is an iid sequence with generic element ((Aj)j⩾1,B).

Review of the results in the litterature for p < ∞.
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Stochastic Recurrence Equation SRE

The solution of the AR(p) model with random coefficients satisfies the SRE

Xt = AtXt−1 + Bt , t ∈ Z ,

with the matrix notation

At :=


At,1 At,2 · · · At,p

1
. . .

1

 , Bt :=


Bt

0
...
0

 , Xt :=


Xt
...

Xt−p+1

 .
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Kesten theory

Theorem (Kesten, 1973, Buraczewski et al. 2018)
Consider the convex function

h(θ) = lim
n→∞

1
n

logE
[
∥An · · ·A1∥θ

]
, θ > 0 .

If there exist 0 < α < α′, such that h(α) = 0, h(α′) < ∞ and E[Bα′
] < ∞, and

under a further non-lattice assumption, there exists a stationary solution (Xt) to the
SRE with generic element X satisfying

P(∥X∥ > x) ∼ C x−α, x → ∞ .

Then E[Xθ] < ∞ for θ < α and E[Xθ] = ∞ otherwise.
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Explicit conditions

Moment of order 1
By linearity the sufficient condition h(1) < 0 is equivalent to

p∑
j=1

E[Aj] < 1 .

Theorem (Nicholls and Quinn, 1982, Pham 1986)
Denote by ρ the spectral radius and ⊗ the tensor product. The sufficient condition
of h(2) < 0 is equivalent to

ρ(E[A ⊗ A]) < 1 .
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Moments for AR models with ran-
dom coefficients and infinite order



Smoothing transform

Consider the recurrence

Xt =
∞∑
j=1

At,jXt−j + Bt , t ∈ Z .

Definition
The smoothing transform is the solution of the distributional equation

Y d
=

∞∑
j=1

AjY(j) + B,

where (Y(j))j⩾1 are iid copies of Y, independent of ((Aj)j⩾1,B).

Theorem (Buraczewski et al., 2018)
Using the notation

φ1(θ) := log
∞∑
j=1

E
[
Aθ

j
]
, θ > 0 ,

the smoothing transform exists if for some θ ∈ (0, 1], E[Bθ] < ∞ and φ1(θ) < 0,
and then E[Yθ] < ∞.
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Representation of the stationary solution

Consider the recurrence

Xt =
∞∑
j=1

At,jXt−j + Bt , t ∈ Z .

Sums of products
A non-anticipative stationary solution (Xt) of the AR(∞) with generic element ad-
mitting the representation

X̃ =
∑

0=t0<t1<···<tn, n⩾0
Ãt0,t1−t0 · · · Ãtn−1,tn−tn−1 B−tn ,

where Ãt,j = A−t,j, t ∈ Z, j ⩾ 1.

12



Representation of the stationary solution

Recall the sum of products

X̃ =
∑

0=t0<t1<···<tn, n⩾0
Ãt0,t1−t0 · · · Ãtn−1,tn−tn−1 B−tn .

Applying Minkowski’s inequality we get for every θ ⩾ 1,

E[X̃θ]1/θ ⩽
∑

0=t0<t1<···<tn, n⩾0
E[(Ãt0,t1−t0 · · · Ãtn−1,tn−tn−1 B−tn )

θ]1/θ .

Definition
We introduce the notation

φ̃1(θ) := log
∞∑
j=1

E
[
Aθ

j
]1/θ

, θ > 0 .
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First order condition of moments

By subadditivty we have {
θφ̃1(θ) ⩽ φ1(θ), 0 < θ ⩽ 1,
φ1(θ) ⩽ θφ̃1(θ), θ ⩾ 1,

and φ1(1) = φ̃1(1).
Theorem (Maillard and W., 2024)
Let (Xt) satisfies the AR(∞) model with X−1 = X−2 = · · · = 0.

- As t → ∞, Xt converges in law to a (possibly infinite) limit X̃. Moreover if
1 For some 0 < θ ⩽ 1

1.1 φ1(θ) < 0 and E[Bθ] < ∞ then E[X̃θ] < ∞.
1.2 φ̃1(θ) ⩾ 0 or E[Bθ] = ∞ then E[X̃θ] = ∞.

2 For some θ ⩾ 1
2.2 φ̃1(θ) < 0 and E[Bθ] < ∞ then E[X̃θ] < ∞.
2.1 φ1(θ) ⩾ 0 or E[Bθ] = ∞ then E[X̃θ] = ∞.
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Second order conditions

Definition (Finite increasing integer-valued sequences)
Define

T = {t = (t0, . . . , tn) : n ⩾ 0, 0 = t0 < t1 < · · · < tn} ,

0 = (0), t = (t0, . . . , tn) ∈ T , n(t) = n and Ãt = Ãt0,t1−t0 · · · Ãtn−1,tn−tn−1 , with
Ã0 = 1 by convention. We also denote B̃t := B−tn .

With this notation, we have
X̃ =

∑
t∈T

ÃtB̃t,

and hence
X̃2 =

∑
s,t∈T

ÃsB̃sÃtB̃t.
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Decomposition of pairs

Definition (Closed and open pairs)
Denote by C and O the set of closed and open pairs

C = {(s, t) ∈ T × T : n(s) > 0, n(t) > 0, sn(s) = tn(t),

si ̸= tj, 0 < i < n(s), 0 < j < n(t)}
O = {(s, t) ∈ T × T : ∀0 < i ⩽ n(s), 0 < j ⩽ n(t) : si ̸= tj}.

Define the concatenation as

t1 · · · tk := (t1
0, . . . , t1

n(t1), t
1
n(t1) + t2

1, . . . , t1
n(t1) + t2

n(t2), . . . , t
1
n(t1) + · · ·+ tk

n(tk)).

Decomposition of pairs

For every (s, t) ∈ T ×T there exists k ∈ N0, (s1, t1), . . . , (sk, tk) ∈ C and (so, to) ∈
O, such that

(s, t) = (s1 · · · skso, t1 · · · tkto).
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Decomposition of pairs

Note that the trivial pair is open by definition: (0, 0) ∈ O.

s1

t1

s2 s3 so

t3t2 to

Figure 1: Schematic illustration of the decomposition of a pair (s, t) ∈ T × T into finitely many
(here, three) closed pairs (s1, t1), (s2, t2), (s3, t3) and an open pair (so, to).
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Second order test functions

Definition

φ2(θ) := log
∑

(s,t)∈C

E[Ãθ/2
s Ãθ/2

t ] , θ > 0,

φ̃2(θ) := log
∑

(s,t)∈C

E[Ãθ/2
s Ãθ/2

t ]2/θ , θ > 0 .

By subadditivty we have {
(θ/2)φ̃2(θ) ⩽ φ2(θ), 0 < θ ⩽ 2,
φ2(θ) ⩽ (θ/2)φ̃2(θ), θ ⩾ 2,

Considering the closed pairs ((0, i), (0, i)), i ⩾ 1, we get

φ2(θ) ⩾ φ1(θ), θ > 0.

Applying Cauchy-Schwarz’s inquality and C ⊂ T 2 we obtain

φ̃2(θ) ⩽ 2φ̃1(θ), θ > 0.
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Second order condition of moments

Theorem (Maillard and W., 2024)
Let (Xt) satisfies the AR(∞) model with X−1 = X−2 = · · · = 0.
1 For some 0 < θ ⩽ 2

1.1 φ2(θ) < 0, φ2(θ/2) < 0 and E[Bθ] < ∞ then E[X̃θ] < ∞.
1.2 φ̃2(θ) ⩾ 0 or E[Bθ] = ∞ then E[X̃θ] = ∞.

2 For some θ ⩾ 2
2.2 φ̃2(θ) < 0, φ̃2(θ/2) < 0 and E[Bθ] < ∞ then E[X̃θ] < ∞.
2.1 φ1(θ) ⩾ 0 or E[Bθ] = ∞ then E[X̃θ] = ∞.

Notice that φ2(2) = φ̃2(2) and

φ2(2) < 0 ⇔
∑

(s,t)∈C

E[ÃsÃt] < 1

is almost a necessary and sufficient condition for the existence of second order
moments
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Proof hints

We use the decomposition

X̃2 =
∞∑

k=0

∑
(s1,t1),...,(sk,tk)∈C

∑
(so,to)∈O

Ãs1···skso B̃s1···skso Ãt1···tkto B̃t1···tkto .

The independence of Ãt,j and Ãt′,j′ for t ̸= t′ yields

E[Ãs1···skso B̃s1···skso Ãt1···tkto B̃t1···tkto ] = E[Ãs1 Ãt1 ] · · ·E[Ãsk Ãtk ]E[Ãso B̃so Ãto B̃to ].

And thus

E[X2] =

 ∑
(s,t)∈O

E[ÃsB̃sÃtB̃t]

 ∞∑
k=0

 ∑
(s,t)∈C

E[ÃsÃt]

k

.

Finally by definition of O, the sets S and T are disjoint hence Ãs and Ãt are
independent and∑

(s,t)∈O

E[ÃsB̃sÃtB̃t] = E[B2] +
∑

(s,t)∈O\(0,0)
E[Ãs]E[Ãt]E[B]2

⩽ E[B2] +
∑

s,t∈T

E[Ãs]E[Ãt]E[B]2

= E[B2] + E[X]2.
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Comparaison with Nicholls and Quinn’s condition

Consider the AR(p) model with random coefficients or equivalently the SRE

Xt =
p∑

j=1
At,jXt−j + Bt , t ∈ Z ,

Xt = AtXt−1 + Bt , t ∈ Z .

Theorem (Maillard and W. (2024))
Assume that Aj > 0 a.s. for every 1 ⩽ j ⩽ p then[∑

(s,t)∈C E[ÃsÃt] < 1 and
∑∞

j=1 E[Aj] < 1
]

if and only if ρ(E[A ⊗ A]) < 1.

Proof Hints

Check that ρ(E[A ⊗ A]) < 1 is necessary and combine with the sufficiency in Pham
(1986).
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Illustration on GARCH(1,1) volatility

Consider the equation satisfied by the volatility of the GARCH(1,1) model

Xt = 1 + β(1 + Zt)Xt−1 , t ∈ Z ,

where (Zt)t∈Z is an iid sequence of copies of a non-negative random variable Z. For
every θ > 0,

E[Xθ] < ∞ ⇐⇒ log(E[βθ(1 + Z)θ]) < 0.

The volatility of the GARCH(1,1) model also satisfies

Xt =
1

1 − β
+

∑
k⩾0

βk+1Zt−kXt−1−k , t ∈ Z ,

Setting At,j = βjZt−j+1, j ⩾ 1, t ∈ Z, we recognize an AR(∞) model with random
coefficients.
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Test functions for the GARCH(1,1) volatility

Test functions from the AR(∞) modeling

φ1(θ) = log
(βθE[Zθ]

1 − βθ

)
,

φ̃1(θ) = log
(βE[Zθ]1/θ

1 − β

)
,

φ2(θ) =

log
( βθE[Zθ]

1 − βθ(1 + 2E[Zθ/2])

)
, if βθ(1 + 2E[Zθ/2]) < 1

+∞, otherwise.

φ̃2(θ) =

log
( β2E[Zθ]2/θ

1 − β2(1 + 2E[Zθ/2]2/θ)

)
, if β2(1 + 2E[Zθ/2]2/θ) < 1

+∞, otherwise.
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Illustration
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Figure 2: Illustration of our necessary and sufficient conditions of moments applied to the marginal
solution with (Zt) iid χ2

1-distributed. Our approach is not conclusive in the grey region.

24



Conclusions and perspectives

Conclusions

- We obtain second order conditions for moments that are tractable and improve
the first order conditions of moments when θ ≈ 2,

- We were not able to extend the approach to higher orders because the
combinatorics gets more and more involved.

Perspectives

- Apply a domination argument to get a second order condition of moments on
general chains with infinite memory,

- Apply this argument to causal expressions of standard processes and use the
existence of moments to prove the asymptotic normality of Gaussian QMLE
(Bardet and W., 2009) or PQMLE (Ahmad and Francq, 2016).

Thank you for your attention!
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