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Markov chains, strict exogeneity and random environments Motivation and general setup

Motivation: time series models with strictly exogenous
covariates

Our aim is to find explicit conditions that guarantee existence of stationary
processes Y := (Yt)t∈Z defined conditionally on another stationary stochastic
process X := (Xt)t∈Z.

We will discuss the case of (conditional) Markov chains models satisfying

P (Yt ∈ A|X,Yt−1, Yt−2, . . .) = PXt−1 (Yt−1, A) , t ∈ Z. (1)

where (x, y,A) 7→ Px(y,A) is a probability kernel from F × E to E, E,F
Polish spaces.

Conditional independence property: (Xt+j)j≥0 is independent of Yt

conditionally on (Yt−j , Xt−j)j≥1.

In econometrics, the latter independence condition is often called strict
exogeneity ([Sims (1972), Chamberlain (1982)]).

In probability theory, (1) refers to Markov chain in random environments.
See [Cogburn (1984), Orey (1991), Kifer (1995), Stenflo (2001)]. Discrete
state spaces or very strong assumptions are mainly used for existence of
stationary laws.
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Markov chains, strict exogeneity and random environments Motivation and general setup

How to construct stationary laws for MCRE ?

P (Yt ∈ A|X,Yt−1, Yt−2, . . .) = PXt−1
(Yt−1, A) , t ∈ Z.

If a stationary solution exists, the (conditional) marginal distribution Yt|X,
denoted by πt, satisfies the invariance equations πtPXt

= πt+1 a.s.

Since πt = πt−1PXt−1
= πt−2PXt−1

PXt
= · · · = πt−nPXt−n

· · ·PXt−1
, natural

candidates for πt are given by the almost sure limits of the backward iterations
of the chain

lim
n→∞

µPXt−n
· · ·PXt−1

.

Studying the almost sure limits of the backward iterations of such
time-inhomogeneous Markov chains (t = 0 is sufficient) is one possibility to
construct stationary laws (with a topology to find...).
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Markov chains, strict exogeneity and random environments Motivation and general setup

Constructive results for MCRE: Kifer (1995)

Let (Xt)t∈Z be a stationary process.

Theorem 1

Suppose that there exist a positive integer N , a probability kernel (x,A) 7→ νx(A)
from FN to E and a measurable mapping η : FN → (0,∞) such that a.s.,

PX−N
· · ·PX−1

(y,A) ≥ η (X−N , . . . , X−1) νX−N ,...,X−1
(A), (y,A) ∈ E × B(E).

There then exists a random probability measure πX−
−1

and two random variables

L : Ω → (0,∞) and κ : Ω ∈ (0, 1) such that a.s.

sup
y∈E

sup
A∈B(E)

∣∣∣δyPX−n
· · ·PX−1

(A)− πX−
−1
(A)

∣∣∣ ≤ Lκn.

The integer N can be also a random variable.

Existence and uniqueness of a stationary process (Yt, Xt)t∈Z easily follows
from this result. Moreover, (Xt)t∈Z ergodic implies (Yt, Xt)t∈Z ergodic.

This random Doeblin’s type condition (uniform minorization of the transition
probabilities) is mainly interesting for bounded state spaces E.
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Markov chains, strict exogeneity and random environments Motivation and general setup

Constructive results for MCRE: Lovas and Rásonyi (2021)

In order to relax the uniform minorization condition, drift type conditions can
be used.

Assume the existence of V : E → (0,∞) s.t. for any x ∈ F ,
PxV ≤ λ(x)V + b(x) (drift condition) with a long-time contractivity
condition:

lim sup
n

E1/n

[
b(X0)

n∏
k=1

λ(Xk)

]
< 1.

Assume furthermore the minorization condition on a level set {V ≤ R(x)},
i.e. Px(y,A) ≥ η(x)νx(A) when V (y) ≤ R(x), with the smallness condition:

lim
n→∞

E1/nθ

[(1− η(X0))
n] = 0 for some θ ∈ (0, 1).

If R(x) is ”large enough”, one can derive existence and uniqueness of a
compatible stationary process as well as some weak laws of large numbers for
the MCRE (Y y

n )n≥0 arbitrarily initialized with Y y
0 = y and a convergence rate

for PY y
n
towards a universal measure not depending on y.
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Markov chains, strict exogeneity and random environments Existence of stationary measures via a coupling method

Assumptions used in the rest of the talk

A1 The environment (Xt)t∈Z is stationary and ergodic.

A2 There exist three measurable mappings V : E → (0,∞) and
λ, b : F → (0,∞) s.t. for all x ∈ F , PxV ≤ λ(x)V + b(x).
Moreover

E log+ (b(X0)) , E log+ (λ(X0)) , E log (λ(X0)) < 0.

A3 There exist a measurable mapping η : (0,∞)× F → (0, 1) such that
for any R > 0, one can find a probability kernel νR from F to E
such that

Px(y,A) ≥ η(R, x)νR(x,A), (x, y,A) ∈ F × V −1([0, R])× B(E).
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Markov chains, strict exogeneity and random environments Existence of stationary measures via a coupling method

Main result

Theorem 2

Assume A1-A3. The following assertions hold true.

1 The sequence
(
δzPX−n

· · ·PX−1

)
n≥0

is converging P−almost surely in total

variation towards a random probability measure πX−
−1

not depending on z.

Moreover, for some random variables L : Ω → (0,∞) and κ : Ω → (0, 1) s.t.
P−a.s.,

dTV

(
δzPX−n

· · ·PX−1
, πX−

−1

)
≤ L (1 + V (z))κn. (2)

2 For any t ∈ Z, if πt = πX−
t
, we have πt−1PXt

= πt a.s.

3 If (νt)t∈Z is a sequence of identically distributed random probability measures
such that νt−1PXt

= νt a.s., then ν0 = πX−
0

a.s.

4 We have for any t ∈ Z, πtV < ∞ a.s.

Existence and uniqueness of a stationary law easily follows from this result. It can
be also extended when the drift/small set conditions are obtained after iteration.
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Markov chains, strict exogeneity and random environments Existence of stationary measures via a coupling method

Key lemma for the proof of Theorem 2

Proposition 1

Assume A1-A3. There exist two random variables L : Ω → (0,∞) and
κ : Ω → (0, 1) s.t. P−a.s.,

dTV

(
δy′PX−n · · ·PX−1 , δyPX−n · · ·PX−1

)
≤ L (1 + V (y) + V (y′))κn.

To get an upper bound of the total variation distance is to construct a
coupling (Yt, Y

′
t )t≥−n of two chains with Y−n = y, Y ′

−n = y′ and conditionally
on X, both processes are time-inhomogeneous Markov chains with transition
kernels PX−n

, PX−n+1
, . . ..

There exist some related bounds in the literature but with quite stringent
conditions on the drift parameters (e.g. [Douc, Moulines and Rosenthal
(2004)]).
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Markov chains, strict exogeneity and random environments Existence of stationary measures via a coupling method

Prerequisites: a standard coupling scheme for
homogeneous Markov chains

When PV ≤ λV + b and P (y,A) ≥ ην(A) if V (y) ≤ R, [Rosenthal (1995)]
uses a specific coupling scheme for approximating the invariant probability
measure by the marginal law of the chain in the context of geometric
ergodicity.

Set Y0 = y, Y ′
0 = y′.

On the event {Yt−1 = Y ′
t−1}, set

P
(
Yt ∈ A, Y ′

t ∈ A′|Yt−1, Y
′
t−1

)
= P

(
Yt−1, A ∩A′) .

On the event {Yt−1 ̸= Y ′
t−1, V (Yt−1) ∨ V (Y ′

t−1) > R}, we set

P
(
Yt ∈ A, Y ′

t ∈ A′|Yt−1, Y
′
t−1

)
= P (Yt−1, A)P

(
Y ′
t−1, A

′) .
On the event {Yt−1 ̸= Y ′

t−1, V (Yt−1) ∨ V (Y ′
t−1) ≤ R}, set

P
(
Yt ∈ A, Y ′

t ∈ A′|Yt−1, Y
′
t−1

)
= η · ν

(
A ∩A′)

+ (1− η)Q (Yt−1, A)Q
(
Y ′
t−1, A

′) ,
with Q(y,A) = P (y,A)−η·ν(A)

1−η .
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Markov chains, strict exogeneity and random environments Existence of stationary measures via a coupling method

Prerequisites: a standard coupling scheme for
homogeneous Markov chains

Let Ti, i ≥ 1, the successive random times such that V (YTi
) + V

(
Y ′
Ti

)
≤ R

a.s.

For an arbitrary integer m < n,

P (Yn ̸= Y ′
n) ≤ P (Tm ≥ n) + P (Tm < n, Yn ̸= Y ′

n) .

On the event {Tm < n}, we have a probability smaller than (1− η)m to not
get a coalescence of the two paths, we deduce that

P (Y0 ̸= Y ′
0) ≤ P (Tm ≥ n) + (1− η)m.

It then remains to bound the probability P (Tm ≥ n)

13 / 43



Markov chains, strict exogeneity and random environments Existence of stationary measures via a coupling method

Prerequisites: a standard coupling scheme for
homogeneous Markov chains

Lemma 1

Set ρj = Tj − Tj−1, ζ = 2
1+λ , R = 2b+2

1−λ and D = 1 + b+λR
1−λ . We have the two

following bounds.

1 If V (y) + V (y′) > R, we have E (ζρ1) ≤ V (y) + V (y′).

2 For any j ≥ 2,
E
(
ζρj |FTj−1

)
≤ Dζ.

We then get P (Tm ≥ n) ≤ Dm (V (y) + V (y′)) ζ−n+m. Optimizing w.r.t. m, for
some explicit constants:

dTV (δyP
n, δy′Pn) ≤ L(1 + V (y) + V (y′))κn.
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Markov chains, strict exogeneity and random environments Existence of stationary measures via a coupling method

Extension to random environments

We study the effect of the same coupling for MCRE conditionally on the
environment (at time t = 0 and starting with Y−n = y, Y ′

−n = y′).

A first issue is to choose the radius R of the level set for V .

We will try to avoid the ”storms”. For many time indices, the drift parameters
can be large and it is complicated to control the return time of the chain in a
level set {V ≤ R}. The probability η(R, x) to stick the path can be also
arbitrarily small.

The main idea is to to define some random times τi only depending on the
environment and such that

(
Yτi , Y

′
τi

)
i
have some drift parameters under

control. At the same time, the probability to stick the paths at time τi + 1
should be kept under control.

Notations Pω and Eω are used to stress the ”conditionally on the
environment” expectations.
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Markov chains, strict exogeneity and random environments Existence of stationary measures via a coupling method

A key intermediate result

Lemma 2

There exist two positive real numbers C1, C2 and an increasing sequence of random
times (τi)i∈Z, τi : Ω → Z such that the following statements are valid.

1 τ−1 ≤ −1, τ0 ≥ 0 and for i ∈ Z, τi − τi−1 ≥ C1, P−a.s.

2 If ω ∈ Ω, We then have

Eω

[
V
(
Yτi(ω)

)
|Yτi−1(ω)

]
≤ (1− 1/C1)V

(
Yτi−1(ω)

)
+ C1,

Eω

[
V
(
Y ′
τi(ω)

)
|Y ′

τi−1(ω)

]
≤ (1− 1/C1)V

(
Y ′
τi−1(ω)

)
+ C1.

3 Setting R = 2C1(2C1 + 1), we have η (R,Xτi) ≥ 1/C2, P−a.s.

4 limi→∞ τi = ∞ and limi→−∞ τi = −∞ a.s. Moreover if
Ln = sup {i ≥ 1 : τ−i ≥ −n}, then

lim
n→∞

Ln

n
> 0 P-a.s.
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Markov chains, strict exogeneity and random environments Existence of stationary measures via a coupling method

Ideas for the proof of Lemma 2

We have

Eω (V (Yt)|Yt−j) ≤
j∏

s=1

λ (Xt−s(ω))V (Yt−j) + b (Xt−1(ω))

+
∑
k≥2

k−1∏
s=1

λ (Xt−s(ω)) b (Xt−k(ω)) .

Choose then C1 > 0 in order to get P (X ∈ A1,C1) > 0, A1,C1 being the set of
x ∈ FZ s.t.

sup
j≥C1

j∏
i=1

λ(x−i) ≤ 1− 1/C1 and

b(x−1) +
∑
i≥2

i−1∏
k=1

λ(x−k)b(x−i) ≤ C1.

Choose next C2 > 0 such that P (X ∈ A1,C1 ∩A2,C2) > 0 with

A2,C2
=

{
x ∈ FZ : η (2C1(2C1 + 1), x0) ≥ 1/C2

}
.
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Markov chains, strict exogeneity and random environments Existence of stationary measures via a coupling method

Ideas for the proof of Lemma 2

Setting AC = A1,C1 ∩A2,C2 , from the ergodic theorem (set θx = (xi+j)j∈Z):

lim
n→∞

1

n

n∑
t=1

1AC

(
θtX

)
= lim

n→∞

1

n

n∑
t=1

1AC

(
θ−tX

)
= P (X ∈ AC) > 0.

Denote by 0 ≤ τ̃0 < τ̃1 < · · · and −1 ≥ τ̃−1 > τ̃−2 > · · · the successive time
points t such that θtX ∈ AC or θ−tX ∈ AC .

Take τi = τ̃1+(i+1)C1
for i ≥ 0 and τ−i = τ̃1−(i−1)C1

for i ≥ 1.

The last point of the result is a consequence of the ergodic theorem. Extension
to stationary non-ergodic environments is possible, in this case C1, C2 and R
are random...
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Markov chains, strict exogeneity and random environments Existence of stationary measures via a coupling method

End of the proof for Proposition 1

We denote by Tω,i, i ≥ 1, the successive return times of the Markov chain(
Zω,i, Z

′
ω,i

)
:=

(
Yτi(ω), Y

′
τi(ω)

)
in the set{

(y, y′) ∈ E2 : V (y) + V (y′) ≤ R := 2C1(2C1 + 1)
}
.

We get the bound

Pω (Y0 ̸= Y ′
0) ≤ inf

1≤m≤Ln(ω)

{
(1− 1/C2)

m +Dm (1 + V (y) + V (y′)) ζm−Ln(ω)
}
.

The required bound is obtained if m ∼ Ln(ω)/k with (Dζ)1/k/ζ < 1. Finally,
we remember that Ln(ω) is of order n.
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Markov chains, strict exogeneity and random environments Ergodic properties

Ergodic properties of the unique stationary solution

A direct proof of ergodicity of the unique stationary solution can be obtained
from our main result.

To this end, we work on the canonical space EN × FZ and denote by γ the
probability distribution of the pair ((Yt)t∈N, X).

We denote by γω the distribution of (Yt)t∈N conditionally on the environment
path. We simply have

γ (A×B) =

∫
B

γω(A)dP(ω).

Denoting by τ := (θ∗, θ) .(y, ω) = (θ∗y, θω), with θ∗y = (yt+1)t∈N. Ergodicity
of τ for γ means γ(I) ∈ {0, 1} if τ−1I = I.
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Markov chains, strict exogeneity and random environments Ergodic properties

A key lemma entailing ergodicity

Lemma 3

For P−almost ω ∈ FZ, there exists a sequence ni = ni(ω) → ∞ s.t. for any
A ∈ B

(
EN),
lim
i→∞

sup
B∈B(EN)

∣∣∣γω
(
A ∩ θ

−ni(ω)
∗ B

)
− γω(A)γω

(
θ
−ni(ω)
∗ B

)∣∣∣ = 0.

Proof of the lemma. Take a cylinder set A =
∏k

i=0 Ai × E × E · · · . It can be
easily shown that ∣∣γω

(
A ∩ θ−n

∗ B
)
− γω(A)γω

(
θ−n
∗ B

)∣∣
≤

∫
E

πω−
k−1

(dyk) (1 + V (yk))L (θnω)κ (θnω)
n−k

.

Define n1 < n2 < · · · such that L ◦ θni ≤ c and κ ◦ θni ≤ 1− 1/c P−a.s. with a
constant c > 0 such that P (L < c, κ < 1− 1/c) > 0. For an arbitrarily
A ∈ B

(
EN), one can approximate A by a finite union of disjoints cylinder sets (for

γω).
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Markov chains, strict exogeneity and random environments Ergodic properties

Example of an autoregressive process with threshold

Consider an Rd−valued stationary and ergodic process (Xt)t∈Z independent
from a real-valued i.i.d. sequence (εt)t∈Z.

For ai, bi, r : Rd → R, assume that

Yt = [b1(Xt−1) + a1(Xt−1)Yt−1]1Yt−1≤r(Xt−1)

+ [b2(Xt−1) + a2(Xt−1)Yt−1]1Yt−1>r(Xt−1) + εt.

Set λ(x) = max (|a1(x)|, |a2(x)|).

Proposition 2

Assume that E|ε0| < ∞, the distribution ε0 has a positive density f lower-bounded
on any compact subset of R,

E log+ ai(X0),E log+ bi(X0) < ∞, E log λ(X0) < 0.

There then exists a unique stationary and ergodic solution ((Yt, Xt))t∈Z satisfying
this dynamic.
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Observation-driven models and random environments Model formulation

Observation-driven models

Yt|(λt−j , Yt−j−1)j≥0 ∼ p (·|λt) , λt = f (λt−1, Yt−1) .

(s,A) ∈ F × B(E) 7→ p(A|s) is a probability kernel and E,F Borel subsets of
Rk,Rℓ.

Both processes (λt)t≥0 and (Yt, λt)t≥0 form a Markov chain

Such examples contain many time series models used in Econometrics (e.g.

GARCH models Yt = εt
√
λt with νs =

1√
s
fε

(
·√
s

)
).
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Observation-driven models and random environments Model formulation

Irreducibility problem for discrete-valued time series

Yt|λt ∼ P(λt), λt = c+ bλt−1 + aYt−1.

Recursions imply that λt = btλ0 +
∑t−1

j=0 b
j (c+ aYt−j−1).

Since the Y ′
t s take integer values, λt|λ0 = s and λt|λ0 = s′ can have disjoint

discrete supports (e.g. s, a, b, c ∈ Q and s′ /∈ Q).

Small set conditions on the Markov chain λt are not possible.

There exist alternative criteria for studying existence and uniqueness of
stationary probability measures. See Douc, Doukhan and Moulines [SPA,
2013], Doukhan and Neummann [JoAP, 2019]

27 / 43



Observation-driven models and random environments Model formulation

Observation-driven models with covariates

We consider models with strictly exogenous regressors defined by conditional
distributions

P (Yt ∈ A|(Xs, Yu, λu−1); s ∈ Z, u ≤ t− 1) = p (A|λt) ,

λt = f (λt−1, Yt−1, Xt−1) .

This class of models, called observation-driven, are widely used by the
practitioners but probabilistic guarantees (e.g. existence of stationary paths)
have been mainly obtained without exogenous regressors.

Examples of one-parameter probability distributions p are

Poisson, p(k|s) = exp(−s)sk/k!,
Bernoulli of parameter F (s) = (1 + exp(−s))−1 (logistic link function) or
F (s) = (2π)−1/2

∫ s

−∞ exp(−u2/2)du (probit link function),

p(A|s) =
∫
A
s−1/2f

(
s−1/2u

)
du, corresponding to a GARCH process

Yt = εt
√
λt and f probability density of ε.
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Observation-driven models and random environments Model formulation

The latent process MCRE

For a stationary and ergodic process X, our aim is to study processes defined by

P (Yt ∈ A|(Xs, Yu, λu−1); s ∈ Z, u ≤ t− 1) = p (A|λt) ,

λt = f (λt−1, Yt−1, Xt−1) .

Conditional on X, the process (λt)t is a non-homogeneous Markov chain with
(random) transition kernels

PXt
h(s) =

∫
h ◦ f (s, y,Xt) p (dy|s) .

The bivariate process (Yt, λt)t is also a Markov chain in random environments.
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Observation-driven models and random environments Existence of stationary solutions under semi-contractivity conditions

Structure of the latent process λt

Our aim is to define complex models such as threshold models, the mapping
y 7→ f(s, y, x) is not necessarily continuous.

For deterministic environments, [Doukhan, Douc & Moulines (2013)], [Wang,
Liu, Yao, Davis & Li (2014)] or [Doukhan & Neumann (2019)] already studied
this problem of threshold for Poisson autoregressions.

For deterministic environments, the Markov chain (λt)t does not satisfy the
standard irreducibility assumption when (Yt)t is discrete. Techniques based on
coupling or the theory of T−chains have been used.
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Observation-driven models and random environments Existence of stationary solutions under semi-contractivity conditions

Assumptions

A1 There exists a measurable function κ : Rd → R+ such that
E log+ κ(X0) < ∞, E log κ(X0) < 0 and for all y ∈ R, s, s′ ∈ R and
x ∈ Rd,

|f(s, y, x)− f(s′, y, x)| ≤ κ(x)|s− s′|.

A2 There exist three measurable functions γ, δ, V and α ∈ (0, 1] such
that E log+ δ(X0) < ∞, E log+ γ(X0) < ∞, E log γ(X0) < 0,
V (s) ≥ |s|α for s ∈ L and

PxV (s) ≤ γ(x)V (s) + δ(x).

A3 There exists a polynomial function ϕ, with positive coefficients,
vanishing at 0 and such that for every (s, s′) ∈ R2,

dTV (p(·|s), p(·|s′)) ≤ 1− exp (−ϕ (|s− s′|)) .
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Observation-driven models and random environments Existence of stationary solutions under semi-contractivity conditions

Result

Theorem 3 (Doukhan, Neumann, T. (2023))

Let Assumptions A1-A3 hold true. There then exists a stationary and ergodic
process (Yt, λt, Xt)t∈Z solution of the recursions. The distribution of such process
is unique.

Assumption A2 is satisfied with V (s) = 1 + |s| if there exist functions
δj : Rd → R+, 1 ≤ j ≤ 3 s.t. E log+ δj(X0) < ∞, E log (δ1(X0) + δ2(X0)) < 0
and

|f(s, y, x)| ≤ δ1(x)|s|+ δ2(x)|y|i + δ3(x)

and
∫
|y|ip(dy|s) ≤ |s|+ Cte.
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Observation-driven models and random environments Existence of stationary solutions under semi-contractivity conditions

Sketch of the proof. Maximal coupling

The first step is to adapt the proof of [Doukhan & Neumann (2019)] based on
the maximal coupling.

We define two processes ((Yt, λt))t≥0 and ((Y ′
t , λ

′
t))t≥0 and a probability

measure Pω such that λ0 = s, λ′
0 = s′ and for t ≥ 0,

Pω (Yt ̸= Y ′
t |λt, λ

′
t) = dTV [p (·|λt) , p (·|λ′

t)] .

We then define

λt+1 = f (λt, Yt−1, Xt−1(ω)) , λ′
t+1 = f

(
λ′
t, Y

′
t−1, Xt−1(ω)

)
.

For deterministic environments, the drift condition allows to control the tail
probability of the return times of the process (λt, λ

′
t)t≥0 in the center (say a

ball C) of the state space.

When at a given time t, (λt, λ
′
t) ∈ C, Assumptions A1 and A3 ensure a

positive lower bound for the probability of fastening the paths, i.e. of the event
Yt+i = Y ′

t+i for i ≥ 0 which in turn provides a decreasing upper bound for∣∣λt+i − λ′
t+i

∣∣.
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Sketch of the proof. Subsampling the chain for stabilizing
the environment effect

We carefully adapt the previous argument by studying the effect of the
coupling near ”favorable” random time points 0 < τ1(ω) < τ2(ω) < · · · only
depending on the covariate process (Xt(ω))t.

These random time points are chosen so that the sub-Markov chain(
λτi(ω), λ

′
τi(ω)

)
i
satisfies a drift condition with non-random constants.

Moreover the random time points are chosen to get a non-random lower bound
for fastening the paths, i.e. the probability of getting an equality

Yτi(ω)+j = Y ′
τi(ω)+j for j ≥ 0, when the

(
λτi(ω), λ

′
τi(ω)

)
goes back to the

center of the state space.
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Sketch of the proof. Upper bound for a Wasserstein metric

W1 (µ, ν) = inf

{∫
(|s− s′| ∧ 1) γ(ds, ds′)

}
,

where the infimum is on the set of probability measures γ with marginals µ and ν.

Proposition 3

There exist C > 0 and ρ ∈ (0, 1) s.t. for all s, s′,

W1

(
δsPX0(ω) · · ·PXn−1(ω), δs′PX0(ω) · · ·PXn−1(ω)

)
≤ C (1 + V (s) + V (s′)) ρ

√
Mn(ω),

where Mn(ω) denotes the number of random points τi(ω) between time t = 0 and
time t = n.
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Sketch of the proof. Almost sure convergence of the
backward iterations

Recall the definition of the two Markov kernels,

PXt(ω)h(s) =

∫
h (f (s, y,Xt(ω))) p(dy|s),

RXt(ω)h(y, s) =

∫
h (y′, f (s, y,Xt(ω))) p (dy

′|f (s, y,Xt(ω))) .

Proposition 4

Let Assumptions A1-A3 hold true.

1 There then exists a unique process (πt)t∈Z of identically distributed random
probability measures such that and such that πtPXt

= πt+1 a.s. Moreover,
almost surely, for any s,

lim
n→∞

W1

(
δsPXt−n

· · ·PXt−1
, πt

)
= 0.

2 As a consequence, νt(dy, ds) = p(dy|s)πt(ds) is the unique process of
identically distributed random measures s.t. νtRXt

= νt+1 a.s.

Existence of a unique stationary path and ergodic properties can be obtained.
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Poisson autoregressions

p(k|s) = exp(−s)sk/k!, λt = f (λt−1, Yt−1, Xt−1) .

The result applies as soon as

|f(s, y, x)− f(s′, y, x)| ≤ κ(x) |s− s′| ,

|f(s, y, x)| ≤ κ(x)|s|+ κ̃(x)y + γ(x)

and the required conditions on log-moments hold true.

The example f(s, y, x) = κ(x)s+ κ̃1(x)y1y≤c(x) + κ̃2(x)y1y>c(x) + δ(x)
generalizes the threshold Poisson models discussed in previous references.
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Binary time series

p (1|s) = F (s), λt = f (λt−1, Yt−1, Xt−1) .

The results apply to the logistic (i.e. F (s) = (1 + exp(−s))
−1) or the probit

(i.e. F c.d.f. of N (0, 1)).

For the simple model f(s, y, x) = κ(x)s+ κ̃(x)y + δ(x), only the condition
E log |κ(X0)| < 0 is necessary (up to existence of others log-moments).

The result applies to models used in econometrics [Kauppi and Saikkonnen
(2008)], [Russell and Engle (2005)], [Rydberg and Shephard (2003)] and
extend or sharpen existing results for such models [Fokianos and Moyssiadis
(2014)], [Fokianos and Truquet (2019)], [Truquet (2020)].
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GARCH-type processes

Yt = εt
√
λt, λt = f (λt−1, Yt−1, Xt−1) .

The ε′ts are i.i.d. (0, 1). The probability density of ε0 is non-decreasing on
(−∞, 0] and non-increasing on [0,∞).

The mapping f is lower-bounded by a positive constant and satisfies the
structural assumptions,

|f(s, y, x)− f(s′, y, x)| ≤ κ(x) |s− s′| ,

|f(s, y, x)| ≤ κ(x)|s|+ κ̃(x)y2 + γ(x).
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Extensions and perspectives

The approach based on the ”Markov chains in random environments” setup
and the control of the backward iterations is interesting for extending the
classical theory of non-linear autoregressive time series.

Other type of results could be possible (e.g. using other coupling techniques
for time-inhomogeneous Markov chains) .

Mixing type conditions for (Xt, Yt)t have been only derived for Doeblin’s type
chain. General case (?)

Quenched central limit theorems (?)
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