Multitask ECODEP Conference
 Paris, IHP, 202402 12-14

Fractionally integrated spatial models and statistical applications

Donatas Surgailis (Vilnius University)

Contents:

(1) Fractional integration in dimension $\nu=1$. LRD \& fractional processes

Contents:

(1) Fractional integration in dimension $\nu=1$. LRD \& fractional processes
(2) Fractional integration on lattice \mathbb{Z}^{ν}. Examples

Contents:

(1) Fractional integration in dimension $\nu=1$. LRD \& fractional processes
(2) Fractional integration on lattice \mathbb{Z}^{ν}. Examples
(3) Stationary fractionally integrated random fields on \mathbb{R}^{ν}

Contents:

(1) Fractional integration in dimension $\nu=1$. LRD \& fractional processes
(2) Fractional integration on lattice \mathbb{Z}^{ν}. Examples
(3) Stationary fractionally integrated random fields on \mathbb{R}^{ν}
(9) Scaling limits and LRD

Contents:

(1) Fractional integration in dimension $\nu=1$. LRD \& fractional processes
(2) Fractional integration on lattice \mathbb{Z}^{ν}. Examples
(3) Stationary fractionally integrated random fields on \mathbb{R}^{ν}
(9) Scaling limits and LRD
(5) Nonlinear functionals and empirical processes

Contents:

(1) Fractional integration in dimension $\nu=1$. LRD \& fractional processes
(2) Fractional integration on lattice \mathbb{Z}^{ν}. Examples
(3) Stationary fractionally integrated random fields on \mathbb{R}^{ν}
(9) Scaling limits and LRD
(3) Nonlinear functionals and empirical processes
*Gaussianity is not assumed, only 2nd moments,

Contents:

(1) Fractional integration in dimension $\nu=1$. LRD \& fractional processes
(2) Fractional integration on lattice \mathbb{Z}^{ν}. Examples
(3) Stationary fractionally integrated random fields on \mathbb{R}^{ν}
(9) Scaling limits and LRD
(3) Nonlinear functionals and empirical processes
*Gaussianity is not assumed, only 2nd moments, Extensions to infinite variance feasible

Contents:

(1) Fractional integration in dimension $\nu=1$. LRD \& fractional processes
(2) Fractional integration on lattice \mathbb{Z}^{ν}. Examples
(3) Stationary fractionally integrated random fields on \mathbb{R}^{ν}
(9) Scaling limits and LRD
(3) Nonlinear functionals and empirical processes
*Gaussianity is not assumed, only 2nd moments, Extensions to infinite variance feasible **Regularity of trajectories is not discussed

1. Fractional integration in dimension 1. LRD \& fractional processes

1. Fractional integration in dimension 1. LRD \& fractional processes

- Discrete time: $\operatorname{Tg}(t)=g(t-1), t \in \mathbb{Z}$: backward shift

1. Fractional integration in dimension 1. LRD \& fractional processes

- Discrete time: $\operatorname{Tg}(t)=g(t-1), t \in \mathbb{Z}$: backward shift
- fractional 'derivative' $(I-T)^{d}(0<d<1)$ interpolates between identity and 'discrete derivative' $(I-T) g(t)=g(t)-g(t-1)$

1. Fractional integration in dimension 1. LRD \& fractional processes

- Discrete time: $\operatorname{Tg}(t)=g(t-1), t \in \mathbb{Z}$: backward shift
- fractional 'derivative' $(I-T)^{d}(0<d<1)$ interpolates between identity and 'discrete derivative' $(I-T) g(t)=g(t)-g(t-1)$
- fractional 'integral' $(I-T)^{d}(-1<d<0)$ interpolates between identity and 'discrete integral': $(I-T)^{-1} g(t)=\sum_{s=-\infty}^{t} g(s)$

1. Fractional integration in dimension 1. LRD \& fractional processes

- Discrete time: $\operatorname{Tg}(t)=g(t-1), t \in \mathbb{Z}$: backward shift
- fractional 'derivative' $(I-T)^{d}(0<d<1)$ interpolates between identity and 'discrete derivative' $(I-T) g(t)=g(t)-g(t-1)$
- fractional 'integral' $(I-T)^{d}(-1<d<0)$ interpolates between identity and 'discrete integral': $(I-T)^{-1} g(t)=\sum_{s=-\infty}^{t} g(s)$
- The operators $(I-T)^{d}(-1<d<1)$ defined through binomial expansion:

$$
(1-z)^{d}=\sum_{j=0}^{\infty} \psi_{j}(d) z^{j}, \quad \psi_{j}(d):=\frac{\Gamma(j-d)}{\Gamma(j+1) \Gamma(-d)}, \quad z \in \mathbb{C},|z|<1
$$

1. Fractional integration in dimension 1. LRD \& fractional processes

- Discrete time: $\operatorname{Tg}(t)=g(t-1), t \in \mathbb{Z}$: backward shift
- fractional 'derivative' $(I-T)^{d}(0<d<1)$ interpolates between identity and 'discrete derivative' $(I-T) g(t)=g(t)-g(t-1)$
- fractional 'integral' $(I-T)^{d}(-1<d<0)$ interpolates between identity and 'discrete integral': $(I-T)^{-1} g(t)=\sum_{s=-\infty}^{t} g(s)$
- The operators $(I-T)^{d}(-1<d<1)$ defined through binomial expansion:

$$
(1-z)^{d}=\sum_{j=0}^{\infty} \psi_{j}(d) z^{j}, \quad \psi_{j}(d):=\frac{\Gamma(j-d)}{\Gamma(j+1) \Gamma(-d)}, \quad z \in \mathbb{C},|z|<1
$$

Namely,

$$
(I-T)^{d} g(t):=\sum_{j=0}^{\infty} \psi_{j}(d) T^{j} g(t)=\sum_{j=0}^{\infty} \psi_{j}(d) g(t-j), \quad t \in \mathbb{Z}
$$

1. Fractional integration in dimension 1. LRD \& fractional processes

- Discrete time: $\operatorname{Tg}(t)=g(t-1), t \in \mathbb{Z}$: backward shift
- fractional 'derivative' $(I-T)^{d}(0<d<1)$ interpolates between identity and 'discrete derivative' $(I-T) g(t)=g(t)-g(t-1)$
- fractional 'integral' $(I-T)^{d}(-1<d<0)$ interpolates between identity and 'discrete integral': $(I-T)^{-1} g(t)=\sum_{s=-\infty}^{t} g(s)$
- The operators $(I-T)^{d}(-1<d<1)$ defined through binomial expansion:

$$
(1-z)^{d}=\sum_{j=0}^{\infty} \psi_{j}(d) z^{j}, \quad \psi_{j}(d):=\frac{\Gamma(j-d)}{\Gamma(j+1) \Gamma(-d)}, \quad z \in \mathbb{C},|z|<1
$$

Namely,

$$
(I-T)^{d} g(t):=\sum_{j=0}^{\infty} \psi_{j}(d) T^{j} g(t)=\sum_{j=0}^{\infty} \psi_{j}(d) g(t-j), \quad t \in \mathbb{Z}
$$

- Commutative group: $(I-T)^{d_{1}}(I-T)^{d_{2}}=(I-T)^{d_{1}+d_{2}}\left(\left|d_{1}\right|,\left|d_{2}\right|,\left|d_{1}+d_{2}\right|<1\right)$, $(I-T)^{d}(I-T)^{-d}=I$

1. Fractional integration in dimension 1. LRD \& fractional processes

- Discrete time: $\operatorname{Tg}(t)=g(t-1), t \in \mathbb{Z}$: backward shift
- fractional 'derivative' $(I-T)^{d}(0<d<1)$ interpolates between identity and 'discrete derivative' $(I-T) g(t)=g(t)-g(t-1)$
- fractional 'integral' $(I-T)^{d}(-1<d<0)$ interpolates between identity and 'discrete integral': $(I-T)^{-1} g(t)=\sum_{s=-\infty}^{t} g(s)$
- The operators $(I-T)^{d}(-1<d<1)$ defined through binomial expansion:

$$
(1-z)^{d}=\sum_{j=0}^{\infty} \psi_{j}(d) z^{j}, \quad \psi_{j}(d):=\frac{\Gamma(j-d)}{\Gamma(j+1) \Gamma(-d)}, \quad z \in \mathbb{C},|z|<1
$$

Namely,

$$
(I-T)^{d} g(t):=\sum_{j=0}^{\infty} \psi_{j}(d) T^{j} g(t)=\sum_{j=0}^{\infty} \psi_{j}(d) g(t-j), \quad t \in \mathbb{Z}
$$

- Commutative group: $(I-T)^{d_{1}}(I-T)^{d_{2}}=(I-T)^{d_{1}+d_{2}}\left(\left|d_{1}\right|,\left|d_{2}\right|,\left|d_{1}+d_{2}\right|<1\right)$, $(I-T)^{d}(I-T)^{-d}=I$

1. Fractional integration in dimension 1. LRD \& fractional processes

1. Fractional integration in dimension 1. LRD \& fractional processes

- Properties of binomial coefficients: $\psi_{0}(d)=1$,

$$
\psi_{j}(d)<0 \quad(j \geq 1), \quad \sum_{j=0}^{\infty} \psi_{j}(d)=0, \quad 0<d<1,
$$

1. Fractional integration in dimension 1. LRD \& fractional processes

- Properties of binomial coefficients: $\psi_{0}(d)=1$,

$$
\begin{array}{ll}
\psi_{j}(d)<0 & (j \geq 1), \quad \sum_{j=0}^{\infty} \psi_{j}(d)=0, \quad 0<d<1, \\
\psi_{j}(d)>0 & (j \geq 1), \quad \sum_{j=0}^{\infty} \psi_{j}(d)=\infty, \quad-1<d<0,
\end{array}
$$

1. Fractional integration in dimension 1. LRD \& fractional processes

- Properties of binomial coefficients: $\psi_{0}(d)=1$,

$$
\begin{gathered}
\psi_{j}(d)<0 \quad(j \geq 1), \quad \sum_{j=0}^{\infty} \psi_{j}(d)=0, \quad 0<d<1, \\
\psi_{j}(d)>0 \quad(j \geq 1), \quad \sum_{j=0}^{\infty} \psi_{j}(d)=\infty, \quad-1<d<0, \\
\psi_{j}(d) \sim \Gamma(-d)^{-1} j^{-d-1}, \quad j \rightarrow \infty, \quad 0<|d|<1,
\end{gathered}
$$

1. Fractional integration in dimension 1. LRD \& fractional processes

- Properties of binomial coefficients: $\psi_{0}(d)=1$,

$$
\begin{aligned}
& \psi_{j}(d)<0 \quad(j \geq 1), \quad \sum_{j=0}^{\infty} \psi_{j}(d)=0, \quad 0<d<1, \\
& \psi_{j}(d)>0 \quad(j \geq 1), \quad \sum_{j=0}^{\infty} \psi_{j}(d)=\infty, \quad-1<d<0, \\
& \psi_{j}(d) \sim \Gamma(-d)^{-1} j^{-d-1}, \quad j \rightarrow \infty, \quad 0<|d|<1,
\end{aligned}, \begin{aligned}
& \sum_{j=0}^{\infty} \psi_{j}(d)^{2} \quad \begin{cases}<\infty, & -1 / 2<d<0, \\
=\infty, & d \leq-1 / 2 .\end{cases}
\end{aligned}
$$

1. Fractional integration in dimension 1. LRD \& fractional processes

- Properties of binomial coefficients: $\psi_{0}(d)=1$,

$$
\begin{aligned}
& \psi_{j}(d)<0 \quad(j \geq 1), \quad \sum_{j=0}^{\infty} \psi_{j}(d)=0, \quad 0<d<1 \\
& \psi_{j}(d)>0 \quad(j \geq 1), \quad \sum_{j=0}^{\infty} \psi_{j}(d)=\infty, \quad-1<d<0 \\
& \psi_{j}(d) \sim \Gamma(-d)^{-1} j^{-d-1}, \quad j \rightarrow \infty, \quad 0<|d|<1 \\
& \sum_{j=0}^{\infty} \psi_{j}(d)^{2} \quad \begin{cases}<\infty, & -1 / 2<d<0 \\
=\infty, & d \leq-1 / 2\end{cases}
\end{aligned}
$$

- Autoregressive fractionally integrated moving-average (ARFIMA ($0, d, 0$)) process $X=\{X(t) ; t \in \mathbb{Z}\}$ defined as the solution of the stochastic difference equation

$$
\begin{equation*}
(I-T)^{d} X(t)=\sum_{j=0}^{\infty} \psi_{j}(d) X(t-j)=\varepsilon(t), \quad t \in \mathbb{Z} \tag{1}
\end{equation*}
$$

where $\{\varepsilon(t) ; t \in \mathbb{Z}\}$ is an i.i.d. (white noise), with zero mean and finite variance.

1. Fractional integration in dimension 1. LRD \& fractional processes

- Properties of binomial coefficients: $\psi_{0}(d)=1$,

$$
\begin{aligned}
& \psi_{j}(d)<0 \quad(j \geq 1), \quad \sum_{j=0}^{\infty} \psi_{j}(d)=0, \quad 0<d<1 \\
& \psi_{j}(d)>0 \quad(j \geq 1), \quad \sum_{j=0}^{\infty} \psi_{j}(d)=\infty, \quad-1<d<0 \\
& \psi_{j}(d) \sim \Gamma(-d)^{-1} j^{-d-1}, \quad j \rightarrow \infty, \quad 0<|d|<1 \\
& \sum_{j=0}^{\infty} \psi_{j}(d)^{2} \quad \begin{cases}<\infty, & -1 / 2<d<0 \\
=\infty, & d \leq-1 / 2\end{cases}
\end{aligned}
$$

- Autoregressive fractionally integrated moving-average (ARFIMA ($0, d, 0$)) process $X=\{X(t) ; t \in \mathbb{Z}\}$ defined as the solution of the stochastic difference equation

$$
\begin{equation*}
(I-T)^{d} X(t)=\sum_{j=0}^{\infty} \psi_{j}(d) X(t-j)=\varepsilon(t), \quad t \in \mathbb{Z} \tag{1}
\end{equation*}
$$

where $\{\varepsilon(t) ; t \in \mathbb{Z}\}$ is an i.i.d. (white noise), with zero mean and finite variance. For $d \in(-1 / 2,1 / 2), d \neq 0$ the unique stationary solution of (1) or ARFIMA $(0, d, 0)$ process writes as MA process:

$$
X(t)=(I-T)^{-d} \varepsilon(t)=\sum_{j=0}^{\infty} \psi_{j}(-d) \varepsilon(t-j)
$$

1. Fractional integration in dimension 1. LRD \& fractional processes

1. Fractional integration in dimension 1. LRD \& fractional processes

- ARFIMA $(0, d, 0)$ has explicit covariance function \& spectral density and long-range dependence (LRD) for $0<d<1 / 2$ and negative dependence (ND) for $-1 / 2<d<0$:

1. Fractional integration in dimension 1. LRD \& fractional processes

- ARFIMA $(0, d, 0)$ has explicit covariance function \& spectral density and long-range dependence (LRD) for $0<d<1 / 2$ and negative dependence (ND) for $-1 / 2<d<0$:

$$
\operatorname{Cov}(X(0), X(t)) \sim c_{d} t^{-1+2 d}, \quad t \rightarrow \infty, \quad c_{d}=\Gamma(1-2 d) / \Gamma(d) \Gamma(1-d)
$$

1. Fractional integration in dimension 1. LRD \& fractional processes

- ARFIMA $(0, d, 0)$ has explicit covariance function \& spectral density and long-range dependence (LRD) for $0<d<1 / 2$ and negative dependence (ND) for $-1 / 2<d<0$:

$$
\operatorname{Cov}(X(0), X(t)) \sim c_{d} t^{-1+2 d}, \quad t \rightarrow \infty, \quad c_{d}=\Gamma(1-2 d) / \Gamma(d) \Gamma(1-d)
$$

- $\sum_{t \in \mathbb{Z}}|\operatorname{Cov}(X(0), X(t))|=\infty(0<d<1 / 2)$ (LRD), $\sum_{t \in \mathbb{Z}} \operatorname{Cov}(X(0), X(t))=0(-1 / 2<d<0)(N D)$

1. Fractional integration in dimension 1. LRD \& fractional processes

- ARFIMA $(0, d, 0)$ has explicit covariance function \& spectral density and long-range dependence (LRD) for $0<d<1 / 2$ and negative dependence (ND) for $-1 / 2<d<0$:

$$
\operatorname{Cov}(X(0), X(t)) \sim c_{d} t^{-1+2 d}, \quad t \rightarrow \infty, \quad c_{d}=\Gamma(1-2 d) / \Gamma(d) \Gamma(1-d)
$$

- $\sum_{t \in \mathbb{Z}}|\operatorname{Cov}(X(0), X(t))|=\infty(0<d<1 / 2)$ (LRD), $\sum_{t \in \mathbb{Z}} \operatorname{Cov}(X(0), X(t))=0(-1 / 2<d<0)(N D)$
- Partial sums of ARFIMA ($0, d, 0$) converge to Fractional Brownian Motion (FBM) with Hurst parameter $H=d+1 / 2 \in(0,1)$ under normalization $n^{d+1 / 2}$

1. Fractional integration in dimension 1. LRD \& fractional processes

- ARFIMA $(0, d, 0)$ has explicit covariance function \& spectral density and long-range dependence (LRD) for $0<d<1 / 2$ and negative dependence (ND) for $-1 / 2<d<0$:

$$
\operatorname{Cov}(X(0), X(t)) \sim c_{d} t^{-1+2 d}, \quad t \rightarrow \infty, \quad c_{d}=\Gamma(1-2 d) / \Gamma(d) \Gamma(1-d)
$$

- $\sum_{t \in \mathbb{Z}}|\operatorname{Cov}(X(0), X(t))|=\infty(0<d<1 / 2)$ (LRD), $\sum_{t \in \mathbb{Z}} \operatorname{Cov}(X(0), X(t))=0(-1 / 2<d<0)(N D)$
- Partial sums of ARFIMA ($0, d, 0$) converge to Fractional Brownian Motion (FBM) with Hurst parameter $H=d+1 / 2 \in(0,1)$ under normalization $n^{d+1 / 2}$
- ARFIMA $(0, d, 0)$ is the basic LRD parametric model in large sample statistical inference

1. Fractional integration in dimension 1. LRD \& fractional processes

- ARFIMA $(0, d, 0)$ has explicit covariance function \& spectral density and long-range dependence (LRD) for $0<d<1 / 2$ and negative dependence (ND) for $-1 / 2<d<0$:

$$
\operatorname{Cov}(X(0), X(t)) \sim c_{d} t^{-1+2 d}, \quad t \rightarrow \infty, \quad c_{d}=\Gamma(1-2 d) / \Gamma(d) \Gamma(1-d)
$$

- $\sum_{t \in \mathbb{Z}}|\operatorname{Cov}(X(0), X(t))|=\infty(0<d<1 / 2)$ (LRD), $\sum_{t \in \mathbb{Z}} \operatorname{Cov}(X(0), X(t))=0(-1 / 2<d<0)(N D)$
- Partial sums of ARFIMA $(0, d, 0)$ converge to Fractional Brownian Motion (FBM) with Hurst parameter $H=d+1 / 2 \in(0,1)$ under normalization $n^{d+1 / 2}$
- ARFIMA $(0, d, 0)$ is the basic LRD parametric model in large sample statistical inference
- Double-sided T (e.g. $T g(t)=(1 / 2)(g(t+1)+g(t-1))$) lead to double-sided (noncausal) process $X(t)=(I-T)^{-d} \varepsilon(t)$

1. Fractional integration in dimension 1. LRD \& fractional processes

- ARFIMA $(0, d, 0)$ has explicit covariance function \& spectral density and long-range dependence (LRD) for $0<d<1 / 2$ and negative dependence (ND) for $-1 / 2<d<0$:

$$
\operatorname{Cov}(X(0), X(t)) \sim c_{d} t^{-1+2 d}, \quad t \rightarrow \infty, \quad c_{d}=\Gamma(1-2 d) / \Gamma(d) \Gamma(1-d)
$$

- $\sum_{t \in \mathbb{Z}}|\operatorname{Cov}(X(0), X(t))|=\infty(0<d<1 / 2)$ (LRD), $\sum_{t \in \mathbb{Z}} \operatorname{Cov}(X(0), X(t))=0(-1 / 2<d<0)(N D)$
- Partial sums of ARFIMA $(0, d, 0)$ converge to Fractional Brownian Motion (FBM) with Hurst parameter $H=d+1 / 2 \in(0,1)$ under normalization $n^{d+1 / 2}$
- ARFIMA $(0, d, 0)$ is the basic LRD parametric model in large sample statistical inference
- Double-sided T (e.g. $T g(t)=(1 / 2)(g(t+1)+g(t-1))$) lead to double-sided (noncausal) process $X(t)=(I-T)^{-d} \varepsilon(t)$

1. Fractional integration in dimension 1. LRD \& fractional processes

1. Fractional integration in dimension 1. LRD \& fractional processes

- Continuous time $t \in \mathbb{R}:(I-T) g(t)=\mathrm{d} g(t) / \mathrm{d} t$: derivative, $(I-T)^{-1} g(t)=\int_{-\infty}^{t} g(s) \mathrm{d} s:$ integral

1. Fractional integration in dimension 1. LRD \& fractional processes

- Continuous time $t \in \mathbb{R}:(I-T) g(t)=\mathrm{d} g(t) / \mathrm{d} t$: derivative, $(I-T)^{-1} g(t)=\int_{-\infty}^{t} g(s) \mathrm{d} s:$ integral
- Liouville fractional operators: $(D g)(t):=\mathrm{d} g(t) / \mathrm{d} t,(\lg)(t):=\int_{-\infty}^{t} g(s) \mathrm{d} s$, $\alpha \in(0,1)$:

$$
\begin{aligned}
& \left(D^{\alpha} g\right)(t):=\frac{\mathrm{d}}{\mathrm{~d} t} \frac{1}{\Gamma(1-\alpha)} \int_{-\infty}^{t} g(s)(t-s)^{-\alpha} \mathrm{d} s, \\
& \left(I^{\alpha} g\right)(t):=\frac{1}{\Gamma(\alpha)} \int_{-\infty}^{t} g(s)(t-s)^{\alpha-1} \mathrm{~d} s
\end{aligned}
$$

1. Fractional integration in dimension 1. LRD \& fractional processes

- Continuous time $t \in \mathbb{R}:(I-T) g(t)=\mathrm{d} g(t) / \mathrm{d} t$: derivative, $(I-T)^{-1} g(t)=\int_{-\infty}^{t} g(s) \mathrm{d} s:$ integral
- Liouville fractional operators: $(D g)(t):=\mathrm{d} g(t) / \mathrm{d} t,(\lg)(t):=\int_{-\infty}^{t} g(s) \mathrm{d} s$, $\alpha \in(0,1)$:

$$
\begin{aligned}
& \left(D^{\alpha} g\right)(t):=\frac{\mathrm{d}}{\mathrm{~d} t} \frac{1}{\Gamma(1-\alpha)} \int_{-\infty}^{t} g(s)(t-s)^{-\alpha} \mathrm{d} s, \\
& \left(I^{\alpha} g\right)(t):=\frac{1}{\Gamma(\alpha)} \int_{-\infty}^{t} g(s)(t-s)^{\alpha-1} \mathrm{~d} s
\end{aligned}
$$

1. Fractional integration in dimension 1. LRD \& fractional processes

- Continuous time $t \in \mathbb{R}:(I-T) g(t)=\mathrm{d} g(t) / \mathrm{d} t$: derivative, $(I-T)^{-1} g(t)=\int_{-\infty}^{t} g(s) \mathrm{d} s:$ integral
- Liouville fractional operators: $(D g)(t):=\mathrm{d} g(t) / \mathrm{d} t,(\lg)(t):=\int_{-\infty}^{t} g(s) \mathrm{d} s$, $\alpha \in(0,1)$:

$$
\begin{aligned}
& \left(D^{\alpha} g\right)(t):=\frac{\mathrm{d}}{\mathrm{~d} t} \frac{1}{\Gamma(1-\alpha)} \int_{-\infty}^{t} g(s)(t-s)^{-\alpha} \mathrm{d} s, \\
& \left(I^{\alpha} g\right)(t):=\frac{1}{\Gamma(\alpha)} \int_{-\infty}^{t} g(s)(t-s)^{\alpha-1} \mathrm{~d} s
\end{aligned}
$$

- $D^{\alpha} I^{\alpha}=I$

1. Fractional integration in dimension 1. LRD \& fractional processes

- Continuous time $t \in \mathbb{R}:(I-T) g(t)=\mathrm{d} g(t) / \mathrm{d} t$: derivative, $(I-T)^{-1} g(t)=\int_{-\infty}^{t} g(s) \mathrm{d} s:$ integral
- Liouville fractional operators: $(D g)(t):=\mathrm{d} g(t) / \mathrm{d} t,(\lg)(t):=\int_{-\infty}^{t} g(s) \mathrm{d} s$, $\alpha \in(0,1)$:

$$
\begin{aligned}
& \left(D^{\alpha} g\right)(t):=\frac{\mathrm{d}}{\mathrm{~d} t} \frac{1}{\Gamma(1-\alpha)} \int_{-\infty}^{t} g(s)(t-s)^{-\alpha} \mathrm{d} s \\
& \left(I^{\alpha} g\right)(t):=\frac{1}{\Gamma(\alpha)} \int_{-\infty}^{t} g(s)(t-s)^{\alpha-1} \mathrm{~d} s
\end{aligned}
$$

- $D^{\alpha} I^{\alpha}=I$
- Fractionally integrated white noise $\dot{B}(t):=\mathrm{d} B(t) / \mathrm{d} t$ is FBM with $H=\alpha+1 / 2 \in(0,1)$

$$
X(t):= \begin{cases}\int_{0}^{t}\left(I^{\alpha} \dot{B}\right)(s) \mathrm{ds}, & 0<\alpha<1 / 2 \\ \int_{0}^{t}\left(D^{\alpha} \dot{B}\right)(s) \mathrm{d} s, & -1 / 2<\alpha<0\end{cases}
$$

2. Fractional integration on \mathbb{Z}^{ν}. Examples

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- Pipiras \& Taqqu $(2003,2017)$, ...

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- Pipiras \& Taqqu $(2003,2017)$, ...
- generalizations and extensions of fractional integration in dimension 1:

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- Pipiras \& Taqqu $(2003,2017)$, ...
- generalizations and extensions of fractional integration in dimension 1:
- time varying fractional parameter d: Philippe, S. \& Viano $(2006,2008)$ (dicrete time), S. (2008) (continuous time)
- tempered fractional operators (ARTFIMA, TFBM): Meerschaert \& Sabzikar $(2013,2014,2016)$, Sabzikar \& S. $(2017,2018)$

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- Pipiras \& Taqqu $(2003,2017)$, ...
- generalizations and extensions of fractional integration in dimension 1:
- time varying fractional parameter d: Philippe, S. \& Viano $(2006,2008)$ (dicrete time), S. (2008) (continuous time)
- tempered fractional operators (ARTFIMA, TFBM): Meerschaert \& Sabzikar $(2013,2014,2016)$, Sabzikar \& S. $(2017,2018)$

2. Fractional integration on \mathbb{Z}^{ν}. Examples

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- Pipiras \& Taqqu $(2003,2017)$, ...
- generalizations and extensions of fractional integration in dimension 1:
- time varying fractional parameter d: Philippe, S. \& Viano $(2006,2008)$ (dicrete time), S. (2008) (continuous time)
- tempered fractional operators (ARTFIMA, TFBM): Meerschaert \& Sabzikar $(2013,2014,2016)$, Sabzikar \& S. $(2017,2018)$

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- $\operatorname{Tg}(\boldsymbol{t}):=\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} g(\boldsymbol{s}) p(\boldsymbol{t}-\boldsymbol{s}), \boldsymbol{t} \in \mathbb{Z}^{\nu}:$ transition operator of a random walk (RW) $S_{j}, j \geq 0$ on \mathbb{Z}^{ν} with 1-step probabilities $\mathrm{P}\left(S_{1}=\boldsymbol{s} \mid S_{0}=\mathbf{0}\right)=: p(\boldsymbol{s})$

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- Pipiras \& Taqqu $(2003,2017)$, ...
- generalizations and extensions of fractional integration in dimension 1:
- time varying fractional parameter d: Philippe, S. \& Viano $(2006,2008)$ (dicrete time), S. (2008) (continuous time)
- tempered fractional operators (ARTFIMA, TFBM): Meerschaert \& Sabzikar $(2013,2014,2016)$, Sabzikar \& S. $(2017,2018)$

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- $\operatorname{Tg}(\boldsymbol{t}):=\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} g(\boldsymbol{s}) p(\boldsymbol{t}-\boldsymbol{s}), \boldsymbol{t} \in \mathbb{Z}^{\nu}:$ transition operator of a random walk (RW) $S_{j}, j \geq 0$ on \mathbb{Z}^{ν} with 1-step probabilities $\mathrm{P}\left(S_{1}=\boldsymbol{s} \mid S_{0}=\mathbf{0}\right)=: p(\boldsymbol{s})$
$T^{j} g(\boldsymbol{t})=\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} g(\boldsymbol{s}) p_{j}(\boldsymbol{t}-\boldsymbol{s}), j=0,1, \cdots, p_{j}(\boldsymbol{s})=j$-step probabilities

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- Pipiras \& Taqqu $(2003,2017)$, ...
- generalizations and extensions of fractional integration in dimension 1:
- time varying fractional parameter d: Philippe, S. \& Viano $(2006,2008)$ (dicrete time), S. (2008) (continuous time)
- tempered fractional operators (ARTFIMA, TFBM): Meerschaert \& Sabzikar (2013,2014,2016), Sabzikar \& S. $(2017,2018)$

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- $\operatorname{Tg}(\boldsymbol{t}):=\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} g(\boldsymbol{s}) p(\boldsymbol{t}-\boldsymbol{s}), \boldsymbol{t} \in \mathbb{Z}^{\nu}:$ transition operator of a random walk (RW) $S_{j}, j \geq 0$ on \mathbb{Z}^{ν} with 1-step probabilities $\mathrm{P}\left(S_{1}=\boldsymbol{s} \mid S_{0}=\mathbf{0}\right)=: p(\boldsymbol{s})$ $T^{j} g(\boldsymbol{t})=\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} g(\boldsymbol{s}) p_{j}(\boldsymbol{t}-\boldsymbol{s}), j=0,1, \cdots, p_{j}(\boldsymbol{s})=j$-step probabilities
- Fractional powers $(I-T)^{d},-1<d<1$ can be defined similarly to $\nu=1$ through binomial expansion $(1-z)^{d}=\sum_{j=0}^{\infty} \psi_{j}(d) z^{j},|z|<1$:

$$
\begin{align*}
(I-T)^{d} g(\boldsymbol{t}):= & \sum_{j=0}^{\infty} \psi_{j}(d) T^{j} g(\boldsymbol{t})=\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} \tau(\boldsymbol{s} ; d) g(\boldsymbol{t}-\boldsymbol{s}), \quad \text { where } \\
& \tau(\boldsymbol{s} ; d):=\sum_{j=0}^{\infty} \psi_{j}(d) p_{j}(\boldsymbol{s}), \quad \boldsymbol{s} \in \mathbb{Z}^{\nu} \tag{2}
\end{align*}
$$

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- Pipiras \& Taqqu $(2003,2017)$, ...
- generalizations and extensions of fractional integration in dimension 1:
- time varying fractional parameter d: Philippe, S. \& Viano $(2006,2008)$ (dicrete time), S. (2008) (continuous time)
- tempered fractional operators (ARTFIMA, TFBM): Meerschaert \& Sabzikar (2013,2014,2016), Sabzikar \& S. $(2017,2018)$

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- $\operatorname{Tg}(\boldsymbol{t}):=\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} g(\boldsymbol{s}) p(\boldsymbol{t}-\boldsymbol{s}), \boldsymbol{t} \in \mathbb{Z}^{\nu}:$ transition operator of a random walk (RW) $S_{j}, j \geq 0$ on \mathbb{Z}^{ν} with 1-step probabilities $\mathrm{P}\left(S_{1}=\boldsymbol{s} \mid S_{0}=\mathbf{0}\right)=: p(\boldsymbol{s})$ $T^{j} g(\boldsymbol{t})=\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} g(\boldsymbol{s}) p_{j}(\boldsymbol{t}-\boldsymbol{s}), j=0,1, \cdots, p_{j}(\boldsymbol{s})=j$-step probabilities
- Fractional powers $(I-T)^{d},-1<d<1$ can be defined similarly to $\nu=1$ through binomial expansion $(1-z)^{d}=\sum_{j=0}^{\infty} \psi_{j}(d) z^{j},|z|<1$:

$$
\begin{align*}
(I-T)^{d} g(\boldsymbol{t}):= & \sum_{j=0}^{\infty} \psi_{j}(d) T^{j} g(\boldsymbol{t})=\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} \tau(\boldsymbol{s} ; d) g(\boldsymbol{t}-\boldsymbol{s}), \quad \text { where } \\
& \tau(\boldsymbol{s} ; d):=\sum_{j=0}^{\infty} \psi_{j}(d) p_{j}(\boldsymbol{s}), \quad \boldsymbol{s} \in \mathbb{Z}^{\nu} \tag{2}
\end{align*}
$$

2. Fractional integration on \mathbb{Z}^{ν}. Examples

2. Fractional integration on \mathbb{Z}^{ν}. Examples

Example 1. $\nu=1, \operatorname{ARFIMA}(0, d, 0): T^{j} g(t)=g(t-j), S_{j}=j=$ deterministic RW on \mathbb{Z}

2. Fractional integration on \mathbb{Z}^{ν}. Examples

Example 1. $\nu=1, \operatorname{ARFIMA}(0, d, 0): T^{j} g(t)=g(t-j), S_{j}=j=$ deterministic RW on \mathbb{Z} Example 2. $\nu \geq 1$, fractional Laplacian $(I-T)^{d}=(-\Delta)^{d}$:

$$
\Delta g(\boldsymbol{t})=(T-l) g(\boldsymbol{t}):=\frac{1}{2 \nu} \sum_{j=1}^{\nu}\left(g\left(\boldsymbol{t}+\boldsymbol{e}_{j}\right)+g\left(\boldsymbol{t}-\boldsymbol{e}_{j}\right)-2 g(\boldsymbol{t})\right)
$$

corresponds to simple nearest-neighbor RW $p\left(\pm \boldsymbol{e}_{j}\right)=1 / 2 \nu$, $\boldsymbol{e}_{j}:=(0, \cdots, 0,1,0, \cdots, 0) \in \mathbb{Z}^{\nu}, j=1, \cdots, \nu$

2. Fractional integration on \mathbb{Z}^{ν}. Examples

Example 1. $\nu=1, \operatorname{ARFIMA}(0, d, 0): T^{j} g(t)=g(t-j), S_{j}=j=$ deterministic RW on \mathbb{Z} Example 2. $\nu \geq 1$, fractional Laplacian $(I-T)^{d}=(-\Delta)^{d}$:

$$
\Delta g(\boldsymbol{t})=(T-l) g(\boldsymbol{t}):=\frac{1}{2 \nu} \sum_{j=1}^{\nu}\left(g\left(\boldsymbol{t}+\boldsymbol{e}_{j}\right)+g\left(\boldsymbol{t}-\boldsymbol{e}_{j}\right)-2 g(\boldsymbol{t})\right)
$$

corresponds to simple nearest-neighbor RW $p\left(\pm \boldsymbol{e}_{j}\right)=1 / 2 \nu$, $\boldsymbol{e}_{j}:=(0, \cdots, 0,1,0, \cdots, 0) \in \mathbb{Z}^{\nu}, j=1, \cdots, \nu$
Example 3. $\nu \geq 2$, fractional heat operator $(I-T)^{d}=\left(\Delta_{1,2}\right)^{d}$:

$$
\begin{aligned}
\Delta_{1,2} g(\boldsymbol{t}) & :=(1-\theta)\left(g(\boldsymbol{t})-g\left(\boldsymbol{t}-\boldsymbol{e}_{1}\right)\right) \\
& -\frac{\theta}{2(\nu-1)} \sum_{j=2}^{\nu}\left(g\left(\boldsymbol{t}-\boldsymbol{e}_{1}+\boldsymbol{e}_{j}\right)+g\left(\boldsymbol{t}-\boldsymbol{e}_{1}-\boldsymbol{e}_{j}\right)-2 g(\boldsymbol{t})\right) .
\end{aligned}
$$

corresponds to the random walk on \mathbb{Z}^{ν} with
$p\left(-\boldsymbol{e}_{1}\right)=1-\theta, p\left(-\boldsymbol{e}_{1} \pm \boldsymbol{e}_{j}\right)=\frac{\theta}{2(\nu-1)}, j=2, \cdots, \nu$ with shift in one direction \boldsymbol{e}_{1}

2. Fractional integration on \mathbb{Z}^{ν}. Examples

Example 1. $\nu=1, \operatorname{ARFIMA}(0, d, 0): T^{j} g(t)=g(t-j), S_{j}=j=$ deterministic RW on \mathbb{Z} Example 2. $\nu \geq 1$, fractional Laplacian $(I-T)^{d}=(-\Delta)^{d}$:

$$
\Delta g(\boldsymbol{t})=(T-l) g(\boldsymbol{t}):=\frac{1}{2 \nu} \sum_{j=1}^{\nu}\left(g\left(\boldsymbol{t}+\boldsymbol{e}_{j}\right)+g\left(\boldsymbol{t}-\boldsymbol{e}_{j}\right)-2 g(\boldsymbol{t})\right)
$$

corresponds to simple nearest-neighbor RW $p\left(\pm \boldsymbol{e}_{j}\right)=1 / 2 \nu$, $\boldsymbol{e}_{j}:=(0, \cdots, 0,1,0, \cdots, 0) \in \mathbb{Z}^{\nu}, j=1, \cdots, \nu$
Example 3. $\nu \geq 2$, fractional heat operator $(I-T)^{d}=\left(\Delta_{1,2}\right)^{d}$:

$$
\begin{aligned}
\Delta_{1,2} g(\boldsymbol{t}) & :=(1-\theta)\left(g(\boldsymbol{t})-g\left(\boldsymbol{t}-\boldsymbol{e}_{1}\right)\right) \\
& -\frac{\theta}{2(\nu-1)} \sum_{j=2}^{\nu}\left(g\left(\boldsymbol{t}-\boldsymbol{e}_{1}+\boldsymbol{e}_{j}\right)+g\left(\boldsymbol{t}-\boldsymbol{e}_{1}-\boldsymbol{e}_{j}\right)-2 g(\boldsymbol{t})\right) .
\end{aligned}
$$

corresponds to the random walk on \mathbb{Z}^{ν} with
$p\left(-\boldsymbol{e}_{1}\right)=1-\theta, p\left(-\boldsymbol{e}_{1} \pm \boldsymbol{e}_{j}\right)=\frac{\theta}{2(\nu-1)}, j=2, \cdots, \nu$ with shift in one direction \boldsymbol{e}_{1}
Example 4. Unilateral fractional operators $\left(I-T_{1}\right)^{d_{1}} \cdots\left(I-T_{\nu}\right)^{d_{\nu}}, T_{j} g(\boldsymbol{t}):=g\left(\boldsymbol{t}-\boldsymbol{e}_{j}\right)$, $j=1, \cdots, \nu$

2. Fractional integration on \mathbb{Z}^{ν}. Examples

2. Fractional integration on \mathbb{Z}^{ν}. Examples

Main object: Fractionally integrated random field (RF) X defined as solution of

$$
\begin{equation*}
(I-T)^{d} X(\boldsymbol{t})=\varepsilon(\boldsymbol{t}), \quad \boldsymbol{t} \in \mathbb{Z}^{\nu} \tag{3}
\end{equation*}
$$

with i.i.d. white noise $\{\varepsilon(\boldsymbol{t})\}$ written as MA

$$
\begin{equation*}
X(\boldsymbol{t})=(I-T)^{-d} \varepsilon(\boldsymbol{t})=\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} \tau(\boldsymbol{s} ;-d) \varepsilon(\boldsymbol{t}-\boldsymbol{s}), \quad \boldsymbol{t} \in \mathbb{Z}^{\nu} . \tag{4}
\end{equation*}
$$

2. Fractional integration on \mathbb{Z}^{ν}. Examples

Main object: Fractionally integrated random field (RF) X defined as solution of

$$
\begin{equation*}
(I-T)^{d} X(\boldsymbol{t})=\varepsilon(\boldsymbol{t}), \quad \boldsymbol{t} \in \mathbb{Z}^{\nu} \tag{3}
\end{equation*}
$$

with i.i.d. white noise $\{\varepsilon(\boldsymbol{t})\}$ written as MA

$$
\begin{equation*}
X(\boldsymbol{t})=(I-T)^{-d} \varepsilon(\boldsymbol{t})=\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} \tau(\boldsymbol{s} ;-d) \varepsilon(\boldsymbol{t}-\boldsymbol{s}), \quad \boldsymbol{t} \in \mathbb{Z}^{\nu} . \tag{4}
\end{equation*}
$$

- The series in (3) and (4) converge in mean square

2. Fractional integration on \mathbb{Z}^{ν}. Examples

Main object: Fractionally integrated random field (RF) X defined as solution of

$$
\begin{equation*}
(I-T)^{d} X(\boldsymbol{t})=\varepsilon(\boldsymbol{t}), \quad \boldsymbol{t} \in \mathbb{Z}^{\nu} \tag{3}
\end{equation*}
$$

with i.i.d. white noise $\{\varepsilon(\boldsymbol{t})\}$ written as MA

$$
\begin{equation*}
X(\boldsymbol{t})=(I-T)^{-d} \varepsilon(\boldsymbol{t})=\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} \tau(\boldsymbol{s} ;-d) \varepsilon(\boldsymbol{t}-\boldsymbol{s}), \quad \boldsymbol{t} \in \mathbb{Z}^{\nu} . \tag{4}
\end{equation*}
$$

- The series in (3) and (4) converge in mean square
- The existence and LRD properties of X in (3)-(4) depend on fractional coefficients

$$
\tau(\boldsymbol{s} ; d)=\sum_{j=0}^{\infty} \psi_{j}(d) p_{j}(\boldsymbol{s}), \quad \boldsymbol{s} \in \mathbb{Z}^{\nu}
$$

2. Fractional integration on \mathbb{Z}^{ν}. Examples

Main object: Fractionally integrated random field (RF) X defined as solution of

$$
\begin{equation*}
(I-T)^{d} X(\boldsymbol{t})=\varepsilon(\boldsymbol{t}), \quad \boldsymbol{t} \in \mathbb{Z}^{\nu} \tag{3}
\end{equation*}
$$

with i.i.d. white noise $\{\varepsilon(\boldsymbol{t})\}$ written as MA

$$
\begin{equation*}
X(\boldsymbol{t})=(I-T)^{-d} \varepsilon(\boldsymbol{t})=\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} \tau(\boldsymbol{s} ;-d) \varepsilon(\boldsymbol{t}-\boldsymbol{s}), \quad \boldsymbol{t} \in \mathbb{Z}^{\nu} \tag{4}
\end{equation*}
$$

- The series in (3) and (4) converge in mean square
- The existence and LRD properties of X in (3)-(4) depend on fractional coefficients

$$
\tau(\boldsymbol{s} ; d)=\sum_{j=0}^{\infty} \psi_{j}(d) p_{j}(\boldsymbol{s}), \quad \boldsymbol{s} \in \mathbb{Z}^{\nu}
$$

(kernel of operator $(I-T)^{d}$)

2. Fractional integration on \mathbb{Z}^{ν}. Examples

Main object: Fractionally integrated random field (RF) X defined as solution of

$$
\begin{equation*}
(I-T)^{d} X(\boldsymbol{t})=\varepsilon(\boldsymbol{t}), \quad \boldsymbol{t} \in \mathbb{Z}^{\nu} \tag{3}
\end{equation*}
$$

with i.i.d. white noise $\{\varepsilon(\boldsymbol{t})\}$ written as MA

$$
\begin{equation*}
X(\boldsymbol{t})=(I-T)^{-d} \varepsilon(\boldsymbol{t})=\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} \tau(\boldsymbol{s} ;-d) \varepsilon(\boldsymbol{t}-\boldsymbol{s}), \quad \boldsymbol{t} \in \mathbb{Z}^{\nu} . \tag{4}
\end{equation*}
$$

- The series in (3) and (4) converge in mean square
- The existence and LRD properties of X in (3)-(4) depend on fractional coefficients

$$
\tau(\boldsymbol{s} ; d)=\sum_{j=0}^{\infty} \psi_{j}(d) p_{j}(\boldsymbol{s}), \quad s \in \mathbb{Z}^{\nu}
$$

(kernel of operator $(I-T)^{d}$) which are determined by d and RW probabilities $p(s)$

2. Fractional integration on \mathbb{Z}^{ν}. Examples

Main object: Fractionally integrated random field (RF) X defined as solution of

$$
\begin{equation*}
(I-T)^{d} X(\boldsymbol{t})=\varepsilon(\boldsymbol{t}), \quad \boldsymbol{t} \in \mathbb{Z}^{\nu} \tag{3}
\end{equation*}
$$

with i.i.d. white noise $\{\varepsilon(\boldsymbol{t})\}$ written as MA

$$
\begin{equation*}
X(\boldsymbol{t})=(I-T)^{-d} \varepsilon(\boldsymbol{t})=\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} \tau(\boldsymbol{s} ;-d) \varepsilon(\boldsymbol{t}-\boldsymbol{s}), \quad \boldsymbol{t} \in \mathbb{Z}^{\nu} . \tag{4}
\end{equation*}
$$

- The series in (3) and (4) converge in mean square
- The existence and LRD properties of X in (3)-(4) depend on fractional coefficients

$$
\tau(\boldsymbol{s} ; d)=\sum_{j=0}^{\infty} \psi_{j}(d) p_{j}(\boldsymbol{s}), \quad \boldsymbol{s} \in \mathbb{Z}^{\nu}
$$

(kernel of operator $(I-T)^{d}$) which are determined by d and RW probabilities $p(s)$

- Thm 1 provides conditions for existence of X via characteristic function of RW:

$$
\widehat{p}(\boldsymbol{x}):=\mathrm{E} \exp \left\{\mathrm{i}\left\langle\boldsymbol{x}, S_{1}\right\rangle\right\}, \quad \boldsymbol{x} \in[-\pi, \pi]^{\nu}=: \Pi^{\nu}
$$

1-dim case:
Giraitis, S. \& Škarnulis. Stationary integrated $\operatorname{ARCH}(\infty)$ and $\operatorname{AR}(\infty)$ processes with finite variance. (2018, Econometric Th.)

2. Fractional integration on \mathbb{Z}^{ν}. Examples

Main object: Fractionally integrated random field (RF) X defined as solution of

$$
\begin{equation*}
(I-T)^{d} X(\boldsymbol{t})=\varepsilon(\boldsymbol{t}), \quad \boldsymbol{t} \in \mathbb{Z}^{\nu} \tag{3}
\end{equation*}
$$

with i.i.d. white noise $\{\varepsilon(\boldsymbol{t})\}$ written as MA

$$
\begin{equation*}
X(\boldsymbol{t})=(I-T)^{-d} \varepsilon(\boldsymbol{t})=\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} \tau(\boldsymbol{s} ;-d) \varepsilon(\boldsymbol{t}-\boldsymbol{s}), \quad \boldsymbol{t} \in \mathbb{Z}^{\nu} . \tag{4}
\end{equation*}
$$

- The series in (3) and (4) converge in mean square
- The existence and LRD properties of X in (3)-(4) depend on fractional coefficients

$$
\tau(\boldsymbol{s} ; d)=\sum_{j=0}^{\infty} \psi_{j}(d) p_{j}(\boldsymbol{s}), \quad \boldsymbol{s} \in \mathbb{Z}^{\nu}
$$

(kernel of operator $(I-T)^{d}$) which are determined by d and RW probabilities $p(s)$

- Thm 1 provides conditions for existence of X via characteristic function of RW:

$$
\widehat{p}(\boldsymbol{x}):=\mathrm{E} \exp \left\{\mathrm{i}\left\langle\boldsymbol{x}, S_{1}\right\rangle\right\}, \quad \boldsymbol{x} \in[-\pi, \pi]^{\nu}=: \Pi^{\nu}
$$

1-dim case:
Giraitis, S. \& Škarnulis. Stationary integrated $\operatorname{ARCH}(\infty)$ and $\operatorname{AR}(\infty)$ processes with finite variance. (2018, Econometric Th.)

2. Fractional integration on \mathbb{Z}^{ν}. Examples

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- LRD asymptotics of $\tau(\boldsymbol{s} ; \boldsymbol{d}),|\boldsymbol{s}| \rightarrow \infty$ ('if' conditions) using local CLT for RW: Lawler \& Limic (2012) Random Walk: A Modern Introduction. Cambridge Univ.

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- LRD asymptotics of $\tau(\boldsymbol{s} ; \boldsymbol{d}),|\boldsymbol{s}| \rightarrow \infty$ ('if' conditions) using local CLT for RW: Lawler \& Limic (2012) Random Walk: A Modern Introduction. Cambridge Univ.
- Examples 2 (fractional Laplacian) and 3 (fractional heat operator), $\nu=2$: Koul \& S. (2016), Pilipauskaite \& S. (2017), S. (2020)

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- LRD asymptotics of $\tau(\boldsymbol{s} ; \boldsymbol{d}),|\boldsymbol{s}| \rightarrow \infty$ ('if' conditions) using local CLT for RW: Lawler \& Limic (2012) Random Walk: A Modern Introduction. Cambridge Univ.
- Examples 2 (fractional Laplacian) and 3 (fractional heat operator), $\nu=2$: Koul \& S. (2016), Pilipauskaite \& S. (2017), S. (2020)

Theorem (1)

(i) Let $-1<d<1$. Fractionally integrated X in (3)-(4) exists if

$$
\begin{equation*}
\int_{\Pi^{\nu}}|1-\widehat{p}(x)|^{-2|d|} \mathrm{d} x<\infty \tag{5}
\end{equation*}
$$

Condition (5) is equivalent to

$$
\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} \tau(\boldsymbol{s} ;-|d|)^{2}<\infty .
$$

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- LRD asymptotics of $\tau(\boldsymbol{s} ; \boldsymbol{d}$), $|\boldsymbol{s}| \rightarrow \infty$ ('if' conditions) using local CLT for RW: Lawler \& Limic (2012) Random Walk: A Modern Introduction. Cambridge Univ.
- Examples 2 (fractional Laplacian) and 3 (fractional heat operator), $\nu=2$: Koul \& S. (2016), Pilipauskaite \& S. (2017), S. (2020)

Theorem (1)

(i) Let $-1<d<1$. Fractionally integrated X in (3)-(4) exists if

$$
\begin{equation*}
\int_{\Pi^{\nu}}|1-\widehat{p}(x)|^{-2|d|} \mathrm{d} x<\infty \tag{5}
\end{equation*}
$$

Condition (5) is equivalent to

$$
\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} \tau(\boldsymbol{s} ;-|d|)^{2}<\infty .
$$

(ii) Let $0<d<1$ and (5) hold. Then X is $L R D: \sum_{\boldsymbol{t} \in \mathbb{Z}^{\nu}} \operatorname{Cov}(X(\mathbf{0}), X(\boldsymbol{t}))=\infty$.

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- LRD asymptotics of $\tau(\boldsymbol{s} ; \boldsymbol{d}),|\boldsymbol{s}| \rightarrow \infty$ ('if' conditions) using local CLT for RW: Lawler \& Limic (2012) Random Walk: A Modern Introduction. Cambridge Univ.
- Examples 2 (fractional Laplacian) and 3 (fractional heat operator), $\nu=2$: Koul \& S. (2016), Pilipauskaite \& S. (2017), S. (2020)

Theorem (1)

(i) Let $-1<d<1$. Fractionally integrated X in (3)-(4) exists if

$$
\begin{equation*}
\int_{\Pi^{\nu}}|1-\widehat{p}(x)|^{-2|d|} \mathrm{d} \boldsymbol{x}<\infty \tag{5}
\end{equation*}
$$

Condition (5) is equivalent to

$$
\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} \tau(\boldsymbol{s} ;-|d|)^{2}<\infty
$$

(ii) Let $0<d<1$ and (5) hold. Then X is $L R D: \sum_{\boldsymbol{t} \in \mathbb{Z}^{\nu}} \operatorname{Cov}(X(\mathbf{0}), X(\boldsymbol{t}))=\infty$.
(iii) Let $-1<d<0$ and (5) hold. Then X is $N D: \sum_{\boldsymbol{t} \in \mathbb{Z}^{\nu}} \operatorname{Cov}(X(\mathbf{0}), X(\boldsymbol{t}))=0$.

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- LRD asymptotics of $\tau(\boldsymbol{s} ; \boldsymbol{d}),|\boldsymbol{s}| \rightarrow \infty$ ('if' conditions) using local CLT for RW: Lawler \& Limic (2012) Random Walk: A Modern Introduction. Cambridge Univ.
- Examples 2 (fractional Laplacian) and 3 (fractional heat operator), $\nu=2$: Koul \& S. (2016), Pilipauskaite \& S. (2017), S. (2020)

Theorem (1)

(i) Let $-1<d<1$. Fractionally integrated X in (3)-(4) exists if

$$
\begin{equation*}
\int_{\Pi^{\nu}}|1-\widehat{p}(x)|^{-2|d|} \mathrm{d} \boldsymbol{x}<\infty \tag{5}
\end{equation*}
$$

Condition (5) is equivalent to

$$
\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} \tau(\boldsymbol{s} ;-|d|)^{2}<\infty
$$

(ii) Let $0<d<1$ and (5) hold. Then X is $L R D: \sum_{\boldsymbol{t} \in \mathbb{Z}^{\nu}} \operatorname{Cov}(X(\mathbf{0}), X(\boldsymbol{t}))=\infty$.
(iii) Let $-1<d<0$ and (5) hold. Then X is $N D: \sum_{\boldsymbol{t} \in \mathbb{Z}^{\nu}} \operatorname{Cov}(X(\mathbf{0}), X(\boldsymbol{t}))=0$.

2. Fractional integration on \mathbb{Z}^{ν}. Examples

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- $\nu=1, \operatorname{ARFIMA}(0, d, 0): 1-\widehat{p}(x)=1-\mathrm{e}^{-\mathrm{i} x} \sim \mathrm{i} x(x \rightarrow 0)$

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- $\nu=1, \operatorname{ARFIMA}(0, d, 0): 1-\widehat{p}(x)=1-\mathrm{e}^{-\mathrm{i} x} \sim \mathrm{i} x(x \rightarrow 0)$ $\int_{-\pi}^{\pi}|1-\widehat{p}(x)|^{-2|d|} \mathrm{d} x<\infty$ or (5) equivalent to $|d|<\frac{1}{2}$

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- $\nu=1, \operatorname{ARFIMA}(0, d, 0): 1-\widehat{p}(x)=1-\mathrm{e}^{-\mathrm{i} x} \sim \mathrm{ix}(x \rightarrow 0)$ $\int_{-\pi}^{\pi}|1-\widehat{p}(x)|^{-2|d|} \mathrm{d} x<\infty$ or (5) equivalent to $|d|<\frac{1}{2}$
- Fractional Laplacian (simple RW on \mathbb{Z}^{ν}):

$$
1-\widehat{p}(\boldsymbol{x})=\frac{1}{\nu} \sum_{j=1}^{\nu}\left(1-\cos \left(x_{j}\right)\right) \sim(1 / 2 \nu)|\boldsymbol{x}|^{2}, \quad|\boldsymbol{x}| \rightarrow 0
$$

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- $\nu=1, \operatorname{ARFIMA}(0, d, 0): 1-\widehat{p}(x)=1-\mathrm{e}^{-\mathrm{i} x} \sim \mathrm{ix}(x \rightarrow 0)$ $\int_{-\pi}^{\pi}|1-\widehat{p}(x)|^{-2|d|} \mathrm{d} x<\infty$ or (5) equivalent to $|d|<\frac{1}{2}$
- Fractional Laplacian (simple RW on \mathbb{Z}^{ν}):

$$
1-\widehat{p}(\boldsymbol{x})=\frac{1}{\nu} \sum_{j=1}^{\nu}\left(1-\cos \left(x_{j}\right)\right) \sim(1 / 2 \nu)|\boldsymbol{x}|^{2}, \quad|\boldsymbol{x}| \rightarrow 0
$$

(5) equivalent to $|d|<\frac{\nu}{4}$

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- $\nu=1, \operatorname{ARFIMA}(0, d, 0): 1-\widehat{p}(x)=1-\mathrm{e}^{-\mathrm{i} x} \sim \mathrm{ix}(x \rightarrow 0)$
$\int_{-\pi}^{\pi}|1-\widehat{p}(x)|^{-2|d|} \mathrm{d} x<\infty$ or (5) equivalent to $|d|<\frac{1}{2}$
- Fractional Laplacian (simple RW on \mathbb{Z}^{ν}):

$$
1-\widehat{p}(\boldsymbol{x})=\frac{1}{\nu} \sum_{j=1}^{\nu}\left(1-\cos \left(x_{j}\right)\right) \sim(1 / 2 \nu)|\boldsymbol{x}|^{2}, \quad|\boldsymbol{x}| \rightarrow 0
$$

(5) equivalent to $|d|<\frac{\nu}{4}$

- Fractional heat operator (drift in $\mathrm{e}_{1}+$ simple RW on $\mathbb{Z}^{\nu-1}$):

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- $\nu=1, \operatorname{ARFIMA}(0, d, 0): 1-\widehat{p}(x)=1-\mathrm{e}^{-\mathrm{i} x} \sim \mathrm{ix}(x \rightarrow 0)$
$\int_{-\pi}^{\pi}|1-\widehat{p}(x)|^{-2|d|} \mathrm{d} x<\infty$ or (5) equivalent to $|d|<\frac{1}{2}$
- Fractional Laplacian (simple RW on \mathbb{Z}^{ν}):

$$
1-\widehat{p}(\boldsymbol{x})=\frac{1}{\nu} \sum_{j=1}^{\nu}\left(1-\cos \left(x_{j}\right)\right) \sim(1 / 2 \nu)|\boldsymbol{x}|^{2}, \quad|\boldsymbol{x}| \rightarrow 0
$$

(5) equivalent to $|d|<\frac{\nu}{4}$

- Fractional heat operator (drift in $\mathrm{e}_{1}+$ simple RW on $\mathbb{Z}^{\nu-1}$):

$$
\left.|1-\widehat{p}(\boldsymbol{x})|^{2} \sim\left(\frac{\theta}{2(\nu-1)}\right)^{2} \right\rvert\, \tilde{x^{4}}+(1-\theta) x_{1}^{2}, \quad \boldsymbol{x} \rightarrow \mathbf{0}, \quad \tilde{\boldsymbol{x}}:=\left(0, x_{2}, \cdots, x_{\nu}\right) .
$$

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- $\nu=1, \operatorname{ARFIMA}(0, d, 0): 1-\widehat{p}(x)=1-\mathrm{e}^{-\mathrm{i} x} \sim \mathrm{ix}(x \rightarrow 0)$
$\int_{-\pi}^{\pi}|1-\widehat{p}(x)|^{-2|d|} \mathrm{d} x<\infty$ or (5) equivalent to $|d|<\frac{1}{2}$
- Fractional Laplacian (simple RW on \mathbb{Z}^{ν}):

$$
1-\widehat{p}(\boldsymbol{x})=\frac{1}{\nu} \sum_{j=1}^{\nu}\left(1-\cos \left(x_{j}\right)\right) \sim(1 / 2 \nu)|\boldsymbol{x}|^{2}, \quad|\boldsymbol{x}| \rightarrow 0
$$

(5) equivalent to $|d|<\frac{\nu}{4}$

- Fractional heat operator (drift in $\mathrm{e}_{1}+$ simple RW on $\mathbb{Z}^{\nu-1}$):

$$
|1-\widehat{p}(\boldsymbol{x})|^{2} \sim\left(\frac{\theta}{2(\nu-1)}\right)^{2}|\tilde{\mid}|^{4}+(1-\theta) x_{1}^{2}, \quad \boldsymbol{x} \rightarrow \mathbf{0}, \quad \tilde{\boldsymbol{x}}:=\left(0, x_{2}, \cdots, x_{\nu}\right) .
$$

(5) equivalent to $|d|<\frac{\nu+1}{4}$

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- $\nu=1, \operatorname{ARFIMA}(0, d, 0): 1-\widehat{p}(x)=1-\mathrm{e}^{-\mathrm{i} x} \sim \mathrm{ix}(x \rightarrow 0)$
$\int_{-\pi}^{\pi}|1-\widehat{p}(x)|^{-2|d|} \mathrm{d} x<\infty$ or (5) equivalent to $|d|<\frac{1}{2}$
- Fractional Laplacian (simple RW on \mathbb{Z}^{ν}):

$$
1-\widehat{p}(\boldsymbol{x})=\frac{1}{\nu} \sum_{j=1}^{\nu}\left(1-\cos \left(x_{j}\right)\right) \sim(1 / 2 \nu)|\boldsymbol{x}|^{2}, \quad|\boldsymbol{x}| \rightarrow 0
$$

(5) equivalent to $|d|<\frac{\nu}{4}$

- Fractional heat operator (drift in $\mathrm{e}_{1}+$ simple RW on $\mathbb{Z}^{\nu-1}$):

$$
|1-\widehat{p}(\boldsymbol{x})|^{2} \sim\left(\frac{\theta}{2(\nu-1)}\right)^{2}|\tilde{\mid}|^{4}+(1-\theta) x_{1}^{2}, \quad \boldsymbol{x} \rightarrow \mathbf{0}, \quad \tilde{\boldsymbol{x}}:=\left(0, x_{2}, \cdots, x_{\nu}\right) .
$$

(5) equivalent to $|d|<\frac{\nu+1}{4}$

LRD asymptotics of fractional coefficients $\tau(\boldsymbol{s} ; \boldsymbol{d}),|\boldsymbol{s}| \rightarrow \infty$. Assume 'typical' conditions for local CLT:

$$
\begin{equation*}
\mathrm{Ee}^{c\left|S_{1}\right|}<\infty \quad(\exists c>0) \quad \text { and }\left\{S_{j}\right\} \text { is zero mean, aperiodic, irreducible. } \tag{6}
\end{equation*}
$$

2. Fractional integration on \mathbb{Z}^{ν}. Examples

- $\nu=1, \operatorname{ARFIMA}(0, d, 0): 1-\hat{p}(x)=1-\mathrm{e}^{-\mathrm{i} x} \sim \mathrm{i} x(x \rightarrow 0)$
$\int_{-\pi}^{\pi}|1-\widehat{p}(x)|^{-2|d|} \mathrm{d} x<\infty$ or (5) equivalent to $|d|<\frac{1}{2}$
- Fractional Laplacian (simple RW on \mathbb{Z}^{ν}):

$$
1-\widehat{p}(\boldsymbol{x})=\frac{1}{\nu} \sum_{j=1}^{\nu}\left(1-\cos \left(x_{j}\right)\right) \sim(1 / 2 \nu)|\boldsymbol{x}|^{2}, \quad|\boldsymbol{x}| \rightarrow 0
$$

(5) equivalent to $|d|<\frac{\nu}{4}$

- Fractional heat operator (drift in $\mathrm{e}_{1}+$ simple RW on $\mathbb{Z}^{\nu-1}$):

$$
|1-\widehat{p}(\boldsymbol{x})|^{2} \sim\left(\frac{\theta}{2(\nu-1)}\right)^{2}|\tilde{\boldsymbol{x}}|^{4}+(1-\theta) x_{1}^{2}, \quad \boldsymbol{x} \rightarrow \mathbf{0}, \quad \tilde{\boldsymbol{x}}:=\left(0, x_{2}, \cdots, x_{\nu}\right)
$$

(5) equivalent to $|d|<\frac{\nu+1}{4}$

LRD asymptotics of fractional coefficients $\tau(\boldsymbol{s} ; \boldsymbol{d}),|\boldsymbol{s}| \rightarrow \infty$. Assume 'typical' conditions for local CLT:

$$
\begin{equation*}
\mathrm{Ee}^{c\left|S_{1}\right|}<\infty \quad(\exists c>0) \quad \text { and }\left\{S_{j}\right\} \text { is zero mean, aperiodic, irreducible. } \tag{6}
\end{equation*}
$$

(6) imply that RW has invertible covariance matrix

$$
\Gamma:=\mathrm{E} S_{1} S_{1}^{\prime}=\Lambda \Lambda^{\prime}
$$

and $\Lambda^{-1} S_{1}$ has unit covariance matrix.

Fractional integration on \mathbb{Z}^{ν}. Examples

Fractional integration on \mathbb{Z}^{ν}. Examples

Theorem (2)

Let (6) hold. Then $\tau(s ; d)$ are well-defined for any $-\left(1 \wedge \frac{\nu}{2}\right)<d<1, d \neq 0$ and satisfy

$$
\tau(\boldsymbol{s} ; \boldsymbol{d})=\left(B_{1}(d)+o(1)\right)\left(\boldsymbol{s} \cdot \Gamma^{-1} \boldsymbol{s}\right)^{-(\nu / 2)-d}, \quad|\boldsymbol{s}| \rightarrow \infty
$$

where $B_{1}(d):=\frac{2^{d} \Gamma\left(d+\frac{\nu}{2}\right)}{\pi^{\nu / 2} \Gamma(-d) \sqrt{\operatorname{det} \Gamma}}$.

Fractional integration on \mathbb{Z}^{ν}. Examples

Theorem (2)

Let (6) hold. Then $\tau(s ; d)$ are well-defined for any $-\left(1 \wedge \frac{\nu}{2}\right)<d<1, d \neq 0$ and satisfy

$$
\tau(\boldsymbol{s} ; \boldsymbol{d})=\left(B_{1}(d)+o(1)\right)\left(\boldsymbol{s} \cdot \Gamma^{-1} \boldsymbol{s}\right)^{-(\nu / 2)-d}, \quad|\boldsymbol{s}| \rightarrow \infty
$$

where $B_{1}(d):=\frac{2^{d} \Gamma\left(d+\frac{\nu}{2}\right)}{\pi^{\nu / 2} \Gamma(-d) \sqrt{\operatorname{det} \Gamma}}$.

- 「 unit matrix: isotropic decay $\tau(\boldsymbol{s} ; \boldsymbol{d}) \sim$ const. $|\boldsymbol{s}|^{-\nu-2 d}$

Fractional integration on \mathbb{Z}^{ν}. Examples

Theorem (2)

Let (6) hold. Then $\tau(\boldsymbol{s} ; d)$ are well-defined for any $-\left(1 \wedge \frac{\nu}{2}\right)<d<1, d \neq 0$ and satisfy

$$
\tau(\boldsymbol{s} ; \boldsymbol{d})=\left(B_{1}(d)+o(1)\right)\left(\boldsymbol{s} \cdot \Gamma^{-1} \boldsymbol{s}\right)^{-(\nu / 2)-d}, \quad|\boldsymbol{s}| \rightarrow \infty
$$

where $B_{1}(d):=\frac{2^{d} \Gamma\left(d+\frac{\nu}{2}\right)}{\pi^{\nu / 2} \Gamma(-d) \sqrt{\operatorname{det} \Gamma}}$.

- 「 unit matrix: isotropic decay $\tau(\boldsymbol{s} ; \boldsymbol{d}) \sim$ const. $|\boldsymbol{s}|^{-\nu-2 d}$
- Thm does not apply to $\operatorname{ARFIMA}(0, d, 0)$ and fractional heat operator because of nonzero mean RW

Fractional integration on \mathbb{Z}^{ν}. Examples

Theorem (2)

Let (6) hold. Then $\tau(\boldsymbol{s} ; d)$ are well-defined for any $-\left(1 \wedge \frac{\nu}{2}\right)<d<1, d \neq 0$ and satisfy

$$
\tau(\boldsymbol{s} ; \boldsymbol{d})=\left(B_{1}(d)+o(1)\right)\left(\boldsymbol{s} \cdot \Gamma^{-1} \boldsymbol{s}\right)^{-(\nu / 2)-d}, \quad|\boldsymbol{s}| \rightarrow \infty
$$

where $B_{1}(d):=\frac{2^{d} \Gamma\left(d+\frac{\nu}{2}\right)}{\pi^{\nu / 2} \Gamma(-d) \sqrt{\operatorname{det} \Gamma}}$.

- 「 unit matrix: isotropic decay $\tau(\boldsymbol{s} ; \boldsymbol{d}) \sim$ const. $|\boldsymbol{s}|^{-\nu-2 d}$
- Thm does not apply to $\operatorname{ARFIMA}(0, d, 0)$ and fractional heat operator because of nonzero mean RW
- fractional heat operator $\tau(\boldsymbol{s} ; \boldsymbol{d})$ satisfy anisotropic asymptotics

$$
\tau(\boldsymbol{s} ; d)=\frac{s_{1}^{-d-\frac{1+\nu}{2}}}{\Gamma(d)(2 \pi \theta)^{(\nu-1) / 2} \sqrt{\operatorname{det} \tilde{\Gamma}}} \exp \left\{-\frac{\tilde{\boldsymbol{s}}^{(} \cdot \tilde{\Gamma}-1 \tilde{\boldsymbol{s}}}{2 \theta s_{1}}\right\}(1+o(1)), \quad \boldsymbol{s}=\left(s_{1}, \tilde{\boldsymbol{s}}\right) \in \mathbb{Z}^{\nu}
$$

Pilipauskaitė \& S. (2017), S. (2020)

3. Fractionally integrated RFs on \mathbb{R}^{ν}

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- I-T a local (differential) operator

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- I-T a local (differential) operator
- Fractional operators $(I-T)^{d}$ can be defined via Fourier transform as pseudo-differential operators
Leonenko, Ruiz-Medina \& Taqqu, Fractional elliptic, hyperbolic and parabolic random fields (2011, Electronic J. Probab.)

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- I-T a local (differential) operator
- Fractional operators $(I-T)^{d}$ can be defined via Fourier transform as pseudo-differential operators
Leonenko, Ruiz-Medina \& Taqqu, Fractional elliptic, hyperbolic and parabolic random fields (2011, Electronic J. Probab.)
Applies to Gaussian or harmonizable RFs

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- I-T a local (differential) operator
- Fractional operators $(I-T)^{d}$ can be defined via Fourier transform as pseudo-differential operators
Leonenko, Ruiz-Medina \& Taqqu, Fractional elliptic, hyperbolic and parabolic random fields (2011, Electronic J. Probab.)
Applies to Gaussian or harmonizable RFs
- Explicit fractional kernels are known for some classical differential operators (Laplace, Helmholtz, heat operator)

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- I-T a local (differential) operator
- Fractional operators $(I-T)^{d}$ can be defined via Fourier transform as pseudo-differential operators
Leonenko, Ruiz-Medina \& Taqqu, Fractional elliptic, hyperbolic and parabolic random fields (2011, Electronic J. Probab.)
Applies to Gaussian or harmonizable RFs
- Explicit fractional kernels are known for some classical differential operators (Laplace, Helmholtz, heat operator)
- These special explicit kernels give rise to important (isotropic or anisotropic) RFs indexed by $\boldsymbol{t} \in \mathbb{R}^{\nu}$ with fractal local properties but are either nonstationary or stationary and SRD

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- I-T a local (differential) operator
- Fractional operators $(I-T)^{d}$ can be defined via Fourier transform as pseudo-differential operators
Leonenko, Ruiz-Medina \& Taqqu, Fractional elliptic, hyperbolic and parabolic random fields (2011, Electronic J. Probab.)
Applies to Gaussian or harmonizable RFs
- Explicit fractional kernels are known for some classical differential operators (Laplace, Helmholtz, heat operator)
- These special explicit kernels give rise to important (isotropic or anisotropic) RFs indexed by $\boldsymbol{t} \in \mathbb{R}^{\nu}$ with fractal local properties but are either nonstationary or stationary and SRD

Example 5. (Nonstationary) Fractional Brownian/Lévy RF with parameter $H \in(0,1), H \neq \nu / 2$ is usually defined as stochastic integral

$$
\mathcal{B}_{H}(\boldsymbol{t}):=\int_{\mathbb{R}^{\nu}}\left(|\boldsymbol{t}+\boldsymbol{u}|^{H-\frac{\nu}{2}}-|\boldsymbol{u}|^{H-\frac{\nu}{2}}\right) M(\mathrm{~d} \boldsymbol{u}), \quad \boldsymbol{t} \in \mathbb{R}^{\nu}
$$

w.r.t. Gaussian/Lévy random measure $M(\mathrm{~d} \boldsymbol{u})$ with zero mean and finite variance

3. Fractionally integrated RFs on \mathbb{R}^{ν}

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- $E \mathcal{B}_{H}(\boldsymbol{t}) \mathcal{B}_{H}(\boldsymbol{s})=$ const. $\left(|\boldsymbol{t}|^{2 H}+|\boldsymbol{s}|^{2 H}-|\boldsymbol{t}-\boldsymbol{s}|^{2 H}\right)$

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- $E \mathcal{B}_{H}(\boldsymbol{t}) \mathcal{B}_{H}(\boldsymbol{s})=$ const. $\left(|\boldsymbol{t}|^{2 H}+|\boldsymbol{s}|^{2 H}-|\boldsymbol{t}-\boldsymbol{s}|^{2 H}\right)$
- Solves $(-\Delta)^{\frac{H}{2}+\frac{\nu}{4}} \mathcal{B}_{H}(\boldsymbol{t})=$ const. $\dot{M}(\boldsymbol{t})$ with fractional Laplacian, $M(\boldsymbol{t})=M(\mathrm{~d} \boldsymbol{t}) / \mathrm{d} \boldsymbol{t}$

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- $E \mathcal{B}_{H}(\boldsymbol{t}) \mathcal{B}_{H}(\boldsymbol{s})=$ const. $\left(|\boldsymbol{t}|^{2 H}+|\boldsymbol{s}|^{2 H}-|\boldsymbol{t}-\boldsymbol{s}|^{2 H}\right)$
- Solves $(-\Delta)^{\frac{H}{2}+\frac{\nu}{4}} \mathcal{B}_{H}(\boldsymbol{t})=$ const. $\dot{M}(\boldsymbol{t})$ with fractional Laplacian, $\dot{M}(\boldsymbol{t})=M(\mathrm{~d} \boldsymbol{t}) / \mathrm{d} \boldsymbol{t}$
- Fractional Brownian RF (M Gaussian) is H -self-similar

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- $E \mathcal{B}_{H}(\boldsymbol{t}) \mathcal{B}_{H}(\boldsymbol{s})=$ const. $\left(|\boldsymbol{t}|^{2 H}+|\boldsymbol{s}|^{2 H}-|\boldsymbol{t}-\boldsymbol{s}|^{2 H}\right)$
- Solves $(-\Delta)^{\frac{H}{2}+\frac{\nu}{4}} \mathcal{B}_{H}(\boldsymbol{t})=$ const. $\dot{M}(\boldsymbol{t})$ with fractional Laplacian, $M(\boldsymbol{t})=M(\mathrm{~d} \boldsymbol{t}) / \mathrm{d} \boldsymbol{t}$
- Fractional Brownian RF (M Gaussian) is H -self-similar
- Lodhia, Scheffield, Sun \& Watson (2016) Fractional Gaussian fields: A survey. Probability Surveys 13, 1-56.

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- $\mathrm{E} \mathcal{B}_{H}(\boldsymbol{t}) \mathcal{B}_{H}(\boldsymbol{s})=$ const. $\left(|\boldsymbol{t}|^{2 H}+|\boldsymbol{s}|^{2 H}-|\boldsymbol{t}-\boldsymbol{s}|^{2 H}\right)$
- Solves $(-\Delta)^{\frac{H}{2}+\frac{\nu}{4}} \mathcal{B}_{H}(\boldsymbol{t})=$ const. $\dot{M}(\boldsymbol{t})$ with fractional Laplacian, $\dot{M}(\boldsymbol{t})=M(\mathrm{~d} \boldsymbol{t}) / \mathrm{d} \boldsymbol{t}$
- Fractional Brownian RF (M Gaussian) is H-self-similar
- Lodhia, Scheffield, Sun \& Watson (2016) Fractional Gaussian fields: A survey. Probability Surveys 13, 1-56.

Example 6. (Stationary) Matérn RF with parameters c, $H>0$ defined as

$$
\mathcal{M}_{c, H}(\boldsymbol{t}):=\int_{\mathbb{R}^{\nu}} m_{c, H}(\boldsymbol{t}-\boldsymbol{u}) M(\mathrm{~d} \boldsymbol{u}), \quad \boldsymbol{t} \in \mathbb{R}^{\nu}
$$

where

$$
m_{c, H}(\boldsymbol{t}):=\text { const. }|c \boldsymbol{t}|^{\frac{H}{2}-\frac{\nu}{4}} K_{\frac{H}{2}-\frac{\nu}{4}}(c|\boldsymbol{t}|), \quad \boldsymbol{t} \in \mathbb{R}^{\nu},
$$

$K_{\tau}=$ modified Bessel function, M the same as in Example 5

3. Fractionally integrated RFs on \mathbb{R}^{ν}

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- (Matérn) covariance function:

$$
\mathrm{E} \mathcal{M}_{c, H}(\mathbf{0}) \mathcal{M}_{c, H}(\boldsymbol{t})=\text { const. }(c|\boldsymbol{t}|)^{H} K_{H}(c|\boldsymbol{t}|), \quad \boldsymbol{t} \in \mathbb{R}^{\nu}
$$

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- (Matérn) covariance function:

$$
\mathrm{E} \mathcal{M}_{c, H}(\mathbf{0}) \mathcal{M}_{c, H}(\boldsymbol{t})=\text { const. }(c|\boldsymbol{t}|)^{H} K_{H}(c|\boldsymbol{t}|), \quad \boldsymbol{t} \in \mathbb{R}^{\nu}
$$

- widely used in spatial applications (numerous references)

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- (Matérn) covariance function:

$$
\mathrm{E} \mathcal{M}_{c, H}(\mathbf{0}) \mathcal{M}_{c, H}(\boldsymbol{t})=\text { const. }(c|\boldsymbol{t}|)^{H} K_{H}(c|\boldsymbol{t}|), \quad \boldsymbol{t} \in \mathbb{R}^{\nu}
$$

- widely used in spatial applications (numerous references)
- solves $\left(c^{2}-\Delta\right)^{\frac{H}{2}+\frac{\nu}{4}} \mathcal{M}_{c, H}(\boldsymbol{t})=$ const. $\dot{M}(\boldsymbol{t})$

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- (Matérn) covariance function:

$$
\mathrm{E} \mathcal{M}_{c, H}(\mathbf{0}) \mathcal{M}_{c, H}(\boldsymbol{t})=\text { const. }(c|\boldsymbol{t}|)^{H} K_{H}(c|\boldsymbol{t}|), \quad \boldsymbol{t} \in \mathbb{R}^{\nu}
$$

- widely used in spatial applications (numerous references)
- solves $\left(c^{2}-\Delta\right)^{\frac{H}{2}+\frac{\nu}{4}} \mathcal{M}_{c, H}(\boldsymbol{t})=$ const. $\dot{M}(\boldsymbol{t})$
- bounded spectral density $f(z)=$ const. $\left(c^{2}+|z|^{2}\right)^{-H-\frac{\nu}{2}}, \quad z \in \mathbb{R}^{\nu}$

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- (Matérn) covariance function:

$$
\mathrm{E} \mathcal{M}_{c, H}(\mathbf{0}) \mathcal{M}_{c, H}(\boldsymbol{t})=\text { const. }(c|\boldsymbol{t}|)^{H} K_{H}(c|\boldsymbol{t}|), \quad \boldsymbol{t} \in \mathbb{R}^{\nu}
$$

- widely used in spatial applications (numerous references)
- solves $\left(c^{2}-\Delta\right)^{\frac{H}{2}+\frac{\nu}{4}} \mathcal{M}_{c, H}(\boldsymbol{t})=$ const. $\dot{M}(\boldsymbol{t})$
- bounded spectral density $f(z)=$ const. $\left(c^{2}+|z|^{2}\right)^{-H-\frac{\nu}{2}}, \quad z \in \mathbb{R}^{\nu}$
- Matérn RF is SRD

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- (Matérn) covariance function:

$$
\mathrm{E} \mathcal{M}_{c, H}(\mathbf{0}) \mathcal{M}_{c, H}(\boldsymbol{t})=\text { const. }(c|\boldsymbol{t}|)^{H} K_{H}(c|\boldsymbol{t}|), \quad \boldsymbol{t} \in \mathbb{R}^{\nu}
$$

- widely used in spatial applications (numerous references)
- solves $\left(c^{2}-\Delta\right)^{\frac{H}{2}+\frac{\nu}{4}} \mathcal{M}_{c, H}(\boldsymbol{t})=$ const. $\dot{M}(\boldsymbol{t})$
- bounded spectral density $f(\boldsymbol{z})=$ const. $\left(c^{2}+|\boldsymbol{z}|^{2}\right)^{-H-\frac{\nu}{2}}, \quad \boldsymbol{z} \in \mathbb{R}^{\nu}$
- Matérn RF is SRD

Example 7. (Stationary) fractional heat operator $R F$ with parameters $c>0, d>\frac{\nu+1}{4}$:

$$
\mathcal{H}_{c, d}(\boldsymbol{t}):=\int_{\mathbb{R}^{\nu}} h_{c, d}(\boldsymbol{t}-\boldsymbol{u}) M(\mathrm{~d} \boldsymbol{u}), \quad \boldsymbol{t} \in \mathbb{R}^{\nu},
$$

is defined in Kelbert, Leonenko \& Ruiz-Medina (2005) as the RF with spectral density

$$
f(\boldsymbol{z})=\left|\widehat{h}_{c, d}(\boldsymbol{z})\right|^{2}=\frac{1}{\left(z_{1}^{2}+\left(c+|\dot{\boldsymbol{Z}}|^{2}\right)^{2}\right)^{d}}, \quad \boldsymbol{z}=\left(z_{1}, \tilde{\boldsymbol{z}}\right) \in \mathbb{R}^{\nu},
$$

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- (Matérn) covariance function:

$$
\mathrm{E} \mathcal{M}_{c, H}(\mathbf{0}) \mathcal{M}_{c, H}(\boldsymbol{t})=\text { const. }(c|\boldsymbol{t}|)^{H} K_{H}(c|\boldsymbol{t}|), \quad \boldsymbol{t} \in \mathbb{R}^{\nu}
$$

- widely used in spatial applications (numerous references)
- solves $\left(c^{2}-\Delta\right)^{\frac{H}{2}+\frac{\nu}{4}} \mathcal{M}_{c, H}(\boldsymbol{t})=$ const. $\dot{M}(\boldsymbol{t})$
- bounded spectral density $f(z)=$ const. $\left(c^{2}+|z|^{2}\right)^{-H-\frac{\nu}{2}}, \quad z \in \mathbb{R}^{\nu}$
- Matérn RF is SRD

Example 7. (Stationary) fractional heat operator $R F$ with parameters $c>0, d>\frac{\nu+1}{4}$:

$$
\mathcal{H}_{c, d}(\boldsymbol{t}):=\int_{\mathbb{R}^{\nu}} h_{c, d}(\boldsymbol{t}-\boldsymbol{u}) M(\mathrm{~d} \boldsymbol{u}), \quad \boldsymbol{t} \in \mathbb{R}^{\nu}
$$

is defined in Kelbert, Leonenko \& Ruiz-Medina (2005) as the RF with spectral density

$$
f(\boldsymbol{z})=\left|\widehat{h}_{c, d}(\boldsymbol{z})\right|^{2}=\frac{1}{\left(z_{1}^{2}+\left(c+|\tilde{\boldsymbol{z}}|^{2}\right)^{2}\right)^{d}}, \quad \boldsymbol{z}=\left(z_{1}, \tilde{\boldsymbol{z}}\right) \in \mathbb{R}^{\nu}
$$

The MA kernel $h_{c, d}(\boldsymbol{t})$ was recently found in Pilipauskaite \& S. (2022, Bernoulli):

$$
\begin{equation*}
h_{c, d}(\boldsymbol{t})=\text { const. } t_{1}^{d-\frac{1+\nu}{2}} \exp \left\{-c t_{1}-\frac{|\tilde{\boldsymbol{t}}|^{2}}{4 t_{1}}\right\} \mathbf{1}\left(t_{1}>0\right), \quad \boldsymbol{t}=\left(t_{1}, \tilde{\boldsymbol{t}}\right) \in \mathbb{R}^{\nu} \tag{7}
\end{equation*}
$$

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- (Matérn) covariance function:

$$
\mathrm{E} \mathcal{M}_{c, H}(\mathbf{0}) \mathcal{M}_{c, H}(\boldsymbol{t})=\text { const. }(c|\boldsymbol{t}|)^{H} K_{H}(c|\boldsymbol{t}|), \quad \boldsymbol{t} \in \mathbb{R}^{\nu}
$$

- widely used in spatial applications (numerous references)
- solves $\left(c^{2}-\Delta\right)^{\frac{H}{2}+\frac{\nu}{4}} \mathcal{M}_{c, H}(\boldsymbol{t})=$ const. $\dot{M}(\boldsymbol{t})$
- bounded spectral density $f(z)=$ const. $\left(c^{2}+|z|^{2}\right)^{-H-\frac{\nu}{2}}, \quad z \in \mathbb{R}^{\nu}$
- Matérn RF is SRD

Example 7. (Stationary) fractional heat operator $R F$ with parameters $c>0, d>\frac{\nu+1}{4}$:

$$
\mathcal{H}_{c, d}(\boldsymbol{t}):=\int_{\mathbb{R}^{\nu}} h_{c, d}(\boldsymbol{t}-\boldsymbol{u}) M(\mathrm{~d} \boldsymbol{u}), \quad \boldsymbol{t} \in \mathbb{R}^{\nu}
$$

is defined in Kelbert, Leonenko \& Ruiz-Medina (2005) as the RF with spectral density

$$
f(\boldsymbol{z})=\left|\widehat{h}_{c, d}(\boldsymbol{z})\right|^{2}=\frac{1}{\left(z_{1}^{2}+\left(c+|\tilde{\boldsymbol{z}}|^{2}\right)^{2}\right)^{d}}, \quad \boldsymbol{z}=\left(z_{1}, \tilde{\boldsymbol{z}}\right) \in \mathbb{R}^{\nu}
$$

The MA kernel $h_{c, d}(\boldsymbol{t})$ was recently found in Pilipauskaite \& S. (2022, Bernoulli):

$$
\begin{equation*}
h_{c, d}(\boldsymbol{t})=\text { const. } t_{1}^{d-\frac{1+\nu}{2}} \exp \left\{-c t_{1}-\frac{|\tilde{\boldsymbol{t}}|^{2}}{4 t_{1}}\right\} \mathbf{1}\left(t_{1}>0\right), \quad \boldsymbol{t}=\left(t_{1}, \tilde{\boldsymbol{t}}\right) \in \mathbb{R}^{\nu} \tag{7}
\end{equation*}
$$

3. Fractionally integrated RFs on \mathbb{R}^{ν}

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- For $d=1, h_{c, 1}(\boldsymbol{t})=$ const. $t_{1}^{-\frac{\nu-1}{2}} \exp \left\{-c t_{1}-\frac{|\tilde{\boldsymbol{t}}|^{2}}{4 t_{1}}\right\} \mathbf{1}\left(t_{1}>0\right)$ agrees with the fundamental solution of the stationary heat equation $\left(c+\partial_{1}-\widetilde{\Delta}\right) g(\boldsymbol{t})=0$, $\boldsymbol{t}=\left(t_{1}, \tilde{\boldsymbol{t}}\right), \partial_{1}:=\partial / \partial t_{1}, \widetilde{\Delta}:=\sum_{i=2}^{\nu} \partial^{2} / \partial t_{i}^{2}$

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- For $d=1, h_{c, 1}(\boldsymbol{t})=$ const. $t_{1}^{-\frac{\nu-1}{2}} \exp \left\{-c t_{1}-\frac{|\tilde{\boldsymbol{t}}|^{2}}{4 t_{1}}\right\} \mathbf{1}\left(t_{1}>0\right)$ agrees with the fundamental solution of the stationary heat equation $\left(c+\partial_{1}-\widetilde{\Delta}\right) g(\boldsymbol{t})=0$, $\boldsymbol{t}=\left(t_{1}, \tilde{\boldsymbol{t}}\right), \partial_{1}:=\partial / \partial t_{1}, \widetilde{\Delta}:=\sum_{i=2}^{\nu} \partial^{2} / \partial t_{i}^{2}$
- Solves fractional equation $\left(c+\partial_{1}-\widetilde{\Delta}\right)^{d} \mathcal{H}_{c, d}(\boldsymbol{t})=\dot{M}(\boldsymbol{t})$

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- For $d=1, h_{c, 1}(\boldsymbol{t})=$ const. $t_{1}^{-\frac{\nu-1}{2}} \exp \left\{-c t_{1}-\frac{|\tilde{\boldsymbol{t}}|^{2}}{4 t_{1}}\right\} \mathbf{1}\left(t_{1}>0\right)$ agrees with the fundamental solution of the stationary heat equation $\left(c+\partial_{1}-\widetilde{\Delta}\right) g(\boldsymbol{t})=0$, $\boldsymbol{t}=\left(t_{1}, \tilde{\boldsymbol{t}}\right), \partial_{1}:=\partial / \partial t_{1}, \widetilde{\Delta}:=\sum_{i=2}^{\nu} \partial^{2} / \partial t_{i}^{2}$
- Solves fractional equation $\left(c+\partial_{1}-\widetilde{\Delta}\right)^{d} \mathcal{H}_{c, d}(\boldsymbol{t})=\dot{M}(\boldsymbol{t})$
- Covariance?

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- For $d=1, h_{c, 1}(\boldsymbol{t})=$ const. $t_{1}^{-\frac{\nu-1}{2}} \exp \left\{-c t_{1}-\frac{|\tilde{\boldsymbol{t}}|^{2}}{4 t_{1}}\right\} \mathbf{1}\left(t_{1}>0\right)$ agrees with the fundamental solution of the stationary heat equation $\left(c+\partial_{1}-\widetilde{\Delta}\right) g(\boldsymbol{t})=0$, $\boldsymbol{t}=\left(t_{1}, \tilde{\boldsymbol{t}}\right), \partial_{1}:=\partial / \partial t_{1}, \widetilde{\Delta}:=\sum_{i=2}^{\nu} \partial^{2} / \partial t_{i}^{2}$
- Solves fractional equation $\left(c+\partial_{1}-\widetilde{\Delta}\right)^{d} \mathcal{H}_{c, d}(\boldsymbol{t})=\dot{M}(\boldsymbol{t})$
- Covariance? $c=0$ (nonstationary 'parabolic' RF)?

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- For $d=1, h_{c, 1}(\boldsymbol{t})=$ const. $t_{1}^{-\frac{\nu-1}{2}} \exp \left\{-c t_{1}-\frac{|\tilde{\boldsymbol{t}}|^{2}}{4 t_{1}}\right\} \mathbf{1}\left(t_{1}>0\right)$ agrees with the fundamental solution of the stationary heat equation $\left(c+\partial_{1}-\widetilde{\Delta}\right) g(\boldsymbol{t})=0$, $\boldsymbol{t}=\left(t_{1}, \tilde{\boldsymbol{t}}\right), \partial_{1}:=\partial / \partial t_{1}, \widetilde{\Delta}:=\sum_{i=2}^{\nu} \partial^{2} / \partial t_{i}^{2}$
- Solves fractional equation $\left(c+\partial_{1}-\widetilde{\Delta}\right)^{d} \mathcal{H}_{c, d}(\boldsymbol{t})=\dot{M}(\boldsymbol{t})$
- Covariance? $c=0$ (nonstationary 'parabolic' RF)?
- $\mathcal{H}_{c, d}(\boldsymbol{t})$ has bounded spectral density and SRD

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- For $d=1, h_{c, 1}(\boldsymbol{t})=$ const. $t_{1}^{-\frac{\nu-1}{2}} \exp \left\{-c t_{1}-\frac{|\tilde{\boldsymbol{t}}|^{2}}{4 t_{1}}\right\} \mathbf{1}\left(t_{1}>0\right)$ agrees with the fundamental solution of the stationary heat equation $\left(c+\partial_{1}-\widetilde{\Delta}\right) g(t)=0$, $\boldsymbol{t}=\left(t_{1}, \tilde{\boldsymbol{t}}\right), \partial_{1}:=\partial / \partial t_{1}, \widetilde{\Delta}:=\sum_{i=2}^{\nu} \partial^{2} / \partial t_{i}^{2}$
- Solves fractional equation $\left(c+\partial_{1}-\widetilde{\Delta}\right)^{d} \mathcal{H}_{c, d}(\boldsymbol{t})=\dot{M}(\boldsymbol{t})$
- Covariance? $c=0$ (nonstationary 'parabolic' RF)?
- $\mathcal{H}_{c, d}(\boldsymbol{t})$ has bounded spectral density and SRD

Discretely fractionally integrated RFs in \mathbb{R}^{ν}

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- For $d=1, h_{c, 1}(\boldsymbol{t})=$ const. $t_{1}^{-\frac{\nu-1}{2}} \exp \left\{-c t_{1}-\frac{|\tilde{\boldsymbol{t}}|^{2}}{4 t_{1}}\right\} \mathbf{1}\left(t_{1}>0\right)$ agrees with the fundamental solution of the stationary heat equation $\left(c+\partial_{1}-\widetilde{\Delta}\right) g(\boldsymbol{t})=0$, $\boldsymbol{t}=\left(t_{1}, \tilde{\boldsymbol{t}}\right), \partial_{1}:=\partial / \partial t_{1}, \widetilde{\Delta}:=\sum_{i=2}^{\nu} \partial^{2} / \partial t_{i}^{2}$
- Solves fractional equation $\left(c+\partial_{1}-\widetilde{\Delta}\right)^{d} \mathcal{H}_{c, d}(\boldsymbol{t})=\dot{M}(\boldsymbol{t})$
- Covariance? $c=0$ (nonstationary 'parabolic' RF)?
- $\mathcal{H}_{c, d}(\boldsymbol{t})$ has bounded spectral density and SRD

Discretely fractionally integrated RFs in \mathbb{R}^{ν}
Since fractional RFs in Examples 5-7 are SRD or nonstationary, we can define stationary LRD RFs by applying to them 'discrete' fractional integration/differentiation operators as discussed in sec. 2

3. Fractionally integrated RFs on \mathbb{R}^{ν}

- For $d=1, h_{c, 1}(\boldsymbol{t})=$ const. $t_{1}^{-\frac{\nu-1}{2}} \exp \left\{-c t_{1}-\frac{|\tilde{\boldsymbol{t}}|^{2}}{4 t_{1}}\right\} \mathbf{1}\left(t_{1}>0\right)$ agrees with the fundamental solution of the stationary heat equation $\left(c+\partial_{1}-\widetilde{\Delta}\right) g(\boldsymbol{t})=0$, $\boldsymbol{t}=\left(t_{1}, \tilde{\boldsymbol{t}}\right), \partial_{1}:=\partial / \partial t_{1}, \widetilde{\Delta}:=\sum_{i=2}^{\nu} \partial^{2} / \partial t_{i}^{2}$
- Solves fractional equation $\left(c+\partial_{1}-\widetilde{\Delta}\right)^{d} \mathcal{H}_{c, d}(\boldsymbol{t})=\dot{M}(\boldsymbol{t})$
- Covariance? $c=0$ (nonstationary 'parabolic' RF)?
- $\mathcal{H}_{c, d}(\boldsymbol{t})$ has bounded spectral density and SRD

Discretely fractionally integrated RFs in \mathbb{R}^{ν}
Since fractional RFs in Examples 5-7 are SRD or nonstationary, we can define stationary LRD RFs by applying to them 'discrete' fractional integration/differentiation operators as discussed in sec. 2

Let

$$
\begin{equation*}
T_{B} g(\boldsymbol{t}):=\int_{\mathbb{R}^{\nu}} p_{1}(\boldsymbol{s}-\boldsymbol{t}) g(\boldsymbol{s}) \mathrm{d} \boldsymbol{s}, \quad \boldsymbol{t} \in \mathbb{R}^{\nu} \tag{8}
\end{equation*}
$$

be the transition operator of a (discrete-time) standard Brownian random walk $\left\{B_{j} ; j \in \mathbb{N}\right\}$ on \mathbb{R}^{ν} with Gaussian j th step transition probabilities

$$
p_{j}(\boldsymbol{s}-\boldsymbol{t}):=(2 \pi j)^{-\nu / 2} \mathrm{e}^{-|\boldsymbol{s}-\boldsymbol{t}|^{2} / 2 j}, \quad \boldsymbol{t}, \boldsymbol{s} \in \mathbb{R}^{\nu}
$$

3. Fractionally integrated RFs on \mathbb{R}^{ν}

3. Fractionally integrated RFs on \mathbb{R}^{ν}

T_{B} in (8) is well-defined for each $g \in L^{p}\left(\mathbb{R}^{\nu}\right), p \geq 1$ and $T_{B}^{j} g(\boldsymbol{t})=\int_{\mathbb{R}^{\nu}} p_{j}(\boldsymbol{s}-\boldsymbol{t}) g(\boldsymbol{s}) \mathrm{d} \boldsymbol{s}$, $j=0,1,2, \cdots$.

3. Fractionally integrated RFs on \mathbb{R}^{ν}

T_{B} in (8) is well-defined for each $g \in L^{p}\left(\mathbb{R}^{\nu}\right), p \geq 1$ and $T_{B}^{j} g(\boldsymbol{t})=\int_{\mathbb{R}^{\nu}} p_{j}(\boldsymbol{s}-\boldsymbol{t}) g(\boldsymbol{s}) \mathrm{d} \boldsymbol{s}$, $j=0,1,2, \cdots$.
Define

$$
\begin{equation*}
\left(I-T_{B}\right)^{\kappa} g(\boldsymbol{t}):=\int_{\mathbb{R}^{\nu}} \tau_{B}(\boldsymbol{s} ; \kappa) g(\boldsymbol{s}+\boldsymbol{t}) \mathrm{d} \boldsymbol{s}, \quad \boldsymbol{t} \in \mathbb{R}^{\nu}, \tag{9}
\end{equation*}
$$

with kernel

$$
\begin{equation*}
\tau_{B}(\boldsymbol{s} ; \kappa):=\sum_{j=0}^{\infty} \psi_{j}(\kappa) p_{j}(\boldsymbol{s}), \quad \boldsymbol{s} \in \mathbb{R}^{\nu} \tag{10}
\end{equation*}
$$

involving binomial coefficients $(1-z)^{\kappa}=\sum_{j=0}^{\infty} z^{j} \psi_{j}(\kappa)$ as in sec.2.

3. Fractionally integrated RFs on \mathbb{R}^{ν}

T_{B} in (8) is well-defined for each $g \in L^{p}\left(\mathbb{R}^{\nu}\right), p \geq 1$ and $T_{B}^{j} g(\boldsymbol{t})=\int_{\mathbb{R}^{\nu}} p_{j}(\boldsymbol{s}-\boldsymbol{t}) g(\boldsymbol{s}) \mathrm{d} \boldsymbol{s}$, $j=0,1,2, \cdots$.
Define

$$
\begin{equation*}
\left(I-T_{B}\right)^{\kappa} g(\boldsymbol{t}):=\int_{\mathbb{R}^{\nu}} \tau_{B}(\boldsymbol{s} ; \kappa) g(\boldsymbol{s}+\boldsymbol{t}) \mathrm{d} \boldsymbol{s}, \quad \boldsymbol{t} \in \mathbb{R}^{\nu}, \tag{9}
\end{equation*}
$$

with kernel

$$
\begin{equation*}
\tau_{B}(\boldsymbol{s} ; \kappa):=\sum_{j=0}^{\infty} \psi_{j}(\kappa) p_{j}(\boldsymbol{s}), \quad \boldsymbol{s} \in \mathbb{R}^{\nu} \tag{10}
\end{equation*}
$$

involving binomial coefficients $(1-z)^{\kappa}=\sum_{j=0}^{\infty} z^{j} \psi_{j}(\kappa)$ as in sec.2.
The 'continuous' kernel in (10) satisfies similar LRD/ND properties as the 'discrete' one in sec.2:

$$
\begin{aligned}
& \tau_{B}(\boldsymbol{s} ; \kappa) \sim \text { const. }|\boldsymbol{s}|^{-\nu-2 \kappa}, \quad|\boldsymbol{s}| \rightarrow \infty, \quad-\left(1 \wedge \frac{\nu}{2}\right)<\kappa<1, \kappa \neq 0 \\
& \int_{\mathbb{R}^{\nu}} \tau_{B}(\boldsymbol{s} ; \kappa) \mathrm{d} \boldsymbol{s}=0, \quad \kappa>0, \\
& \tau_{B}(\boldsymbol{s} ; \kappa) \text { bdd \& isotropic in } \boldsymbol{s} \in \mathbb{R}^{\nu}
\end{aligned}
$$

Fourier tr.: $\quad \widehat{\tau}_{B}(\boldsymbol{z} ; \kappa)=\sum_{j=0}^{\infty} \psi_{j}(\kappa) \mathrm{e}^{-j|\boldsymbol{Z}|^{2} / 2}=\left(1-\mathrm{e}^{-|\boldsymbol{Z}|^{2} / 2}\right)^{\kappa}, \quad \boldsymbol{z} \in \mathbb{R}^{\nu}$.

3. Fractionally integrated RFs on \mathbb{R}^{ν}

T_{B} in (8) is well-defined for each $g \in L^{p}\left(\mathbb{R}^{\nu}\right), p \geq 1$ and $T_{B}^{j} g(\boldsymbol{t})=\int_{\mathbb{R}^{\nu}} p_{j}(\boldsymbol{s}-\boldsymbol{t}) g(\boldsymbol{s}) \mathrm{d} \boldsymbol{s}$, $j=0,1,2, \cdots$.
Define

$$
\begin{equation*}
\left(I-T_{B}\right)^{\kappa} g(\boldsymbol{t}):=\int_{\mathbb{R}^{\nu}} \tau_{B}(\boldsymbol{s} ; \kappa) g(\boldsymbol{s}+\boldsymbol{t}) \mathrm{d} \boldsymbol{s}, \quad \boldsymbol{t} \in \mathbb{R}^{\nu}, \tag{9}
\end{equation*}
$$

with kernel

$$
\begin{equation*}
\tau_{B}(\boldsymbol{s} ; \kappa):=\sum_{j=0}^{\infty} \psi_{j}(\kappa) p_{j}(\boldsymbol{s}), \quad \boldsymbol{s} \in \mathbb{R}^{\nu} \tag{10}
\end{equation*}
$$

involving binomial coefficients $(1-z)^{\kappa}=\sum_{j=0}^{\infty} z^{j} \psi_{j}(\kappa)$ as in sec.2.
The 'continuous' kernel in (10) satisfies similar LRD/ND properties as the 'discrete' one in sec.2:

$$
\begin{aligned}
& \tau_{B}(\boldsymbol{s} ; \kappa) \sim \text { const. }|\boldsymbol{s}|^{-\nu-2 \kappa}, \quad|\boldsymbol{s}| \rightarrow \infty, \quad-\left(1 \wedge \frac{\nu}{2}\right)<\kappa<1, \kappa \neq 0 \\
& \int_{\mathbb{R}^{\nu}} \tau_{B}(\boldsymbol{s} ; \kappa) \mathrm{d} \boldsymbol{s}=0, \quad \kappa>0, \\
& \tau_{B}(\boldsymbol{s} ; \kappa) \text { bdd \& isotropic in } \boldsymbol{s} \in \mathbb{R}^{\nu}
\end{aligned}
$$

Fourier tr.: $\quad \widehat{\tau}_{B}(\boldsymbol{z} ; \kappa)=\sum_{j=0}^{\infty} \psi_{j}(\kappa) \mathrm{e}^{-j|\boldsymbol{Z}|^{2} / 2}=\left(1-\mathrm{e}^{-|\boldsymbol{Z}|^{2} / 2}\right)^{\kappa}, \quad \boldsymbol{z} \in \mathbb{R}^{\nu}$.

3. Fractionally integrated RFs on \mathbb{R}^{ν}

3. Fractionally integrated RFs on \mathbb{R}^{ν}

Fractional operator $\left(I-T_{B}\right)^{\kappa}$ cannot be applied to white noise \dot{M} in \mathbb{R}^{ν} rather than to more regular RFs such as Brownian/Lévy RF or Matérn RF, yielding stationary RF with LRD:

3. Fractionally integrated RFs on \mathbb{R}^{ν}

Fractional operator $\left(I-T_{B}\right)^{\kappa}$ cannot be applied to white noise \dot{M} in \mathbb{R}^{ν} rather than to more regular RFs such as Brownian/Lévy RF or Matérn RF, yielding stationary RF with LRD:

Example 8. Discretely fractionally differenced Brownian/Lévy RF defined as

$$
\begin{equation*}
X(\boldsymbol{t}):=\left(I-T_{B}\right)^{\kappa} \mathcal{B}_{H}(\boldsymbol{t})=\int_{\mathbb{R}^{\nu}} a(\boldsymbol{t}-\boldsymbol{u}) M(\mathrm{~d} \mathbf{u}), \tag{11}
\end{equation*}
$$

where $\kappa, H>0$ and

$$
a(\boldsymbol{t}):=\int_{\mathbb{R}^{\nu}} \tau_{B}(\boldsymbol{s} ; \kappa)\left(|\boldsymbol{s}+\boldsymbol{t}|^{H-\frac{\nu}{2}}-|\boldsymbol{t}|^{H-\frac{\nu}{2}}\right) \mathrm{d} \boldsymbol{s}, \quad \boldsymbol{t} \in \mathbb{R}^{\nu} .
$$

- (11) is well-defined for any $0<H<2 \kappa<1, \nu \geq 2$, stationary, zero mean, finite variance

3. Fractionally integrated RFs on \mathbb{R}^{ν}

Fractional operator $\left(I-T_{B}\right)^{\kappa}$ cannot be applied to white noise \dot{M} in \mathbb{R}^{ν} rather than to more regular RFs such as Brownian/Lévy RF or Matérn RF, yielding stationary RF with LRD:

Example 8. Discretely fractionally differenced Brownian/Lévy RF defined as

$$
\begin{equation*}
X(\boldsymbol{t}):=\left(I-T_{B}\right)^{\kappa} \mathcal{B}_{H}(\boldsymbol{t})=\int_{\mathbb{R}^{\nu}} a(\boldsymbol{t}-\boldsymbol{u}) M(\mathrm{~d} \boldsymbol{u}), \tag{11}
\end{equation*}
$$

where $\kappa, H>0$ and

$$
a(\boldsymbol{t}):=\int_{\mathbb{R}^{\nu}} \tau_{B}(\boldsymbol{s} ; \kappa)\left(|\boldsymbol{s}+\boldsymbol{t}|^{H-\frac{\nu}{2}}-|\boldsymbol{t}|^{H-\frac{\nu}{2}}\right) \mathrm{d} \boldsymbol{s}, \quad \boldsymbol{t} \in \mathbb{R}^{\nu} .
$$

- (11) is well-defined for any $0<H<2 \kappa<1, \nu \geq 2$, stationary, zero mean, finite variance
- (11) is isotropic and LRD: $a(\boldsymbol{t}) \sim$ const. $|\boldsymbol{t}|^{H-\frac{\nu}{2}-2 \kappa},|\boldsymbol{t}| \rightarrow \infty, \int_{\mathbb{R}^{\nu}}|a(\boldsymbol{t})| \mathrm{d} \boldsymbol{t}=\infty$

3. Fractionally integrated RFs on \mathbb{R}^{ν}

Fractional operator $\left(I-T_{B}\right)^{\kappa}$ cannot be applied to white noise \dot{M} in \mathbb{R}^{ν} rather than to more regular RFs such as Brownian/Lévy RF or Matérn RF, yielding stationary RF with LRD:

Example 8. Discretely fractionally differenced Brownian/Lévy RF defined as

$$
\begin{equation*}
X(\boldsymbol{t}):=\left(I-T_{B}\right)^{\kappa} \mathcal{B}_{H}(\boldsymbol{t})=\int_{\mathbb{R}^{\nu}} a(\boldsymbol{t}-\boldsymbol{u}) M(\mathrm{~d} \boldsymbol{u}) \tag{11}
\end{equation*}
$$

where $\kappa, H>0$ and

$$
a(\boldsymbol{t}):=\int_{\mathbb{R}^{\nu}} \tau_{B}(\boldsymbol{s} ; \kappa)\left(|\boldsymbol{s}+\boldsymbol{t}|^{H-\frac{\nu}{2}}-|\boldsymbol{t}|^{H-\frac{\nu}{2}}\right) \mathrm{d} \boldsymbol{s}, \quad \boldsymbol{t} \in \mathbb{R}^{\nu} .
$$

- (11) is well-defined for any $0<H<2 \kappa<1, \nu \geq 2$, stationary, zero mean, finite variance
- (11) is isotropic and LRD: $a(\boldsymbol{t}) \sim$ const. $|\boldsymbol{t}|^{H-\frac{\nu}{2}-2 \kappa},|\boldsymbol{t}| \rightarrow \infty, \int_{\mathbb{R}^{\nu}}|a(\boldsymbol{t})| \mathrm{d} \boldsymbol{t}=\infty$
- explicit spectral density

$$
f(\boldsymbol{z})=\frac{\left(1-\mathrm{e}^{-|\boldsymbol{Z}|^{2} / 2}\right)^{2 \kappa}}{|\boldsymbol{Z}|^{\nu+2 H}} \sim 1 /|\boldsymbol{z}|^{\nu+2 H-4 \kappa} \rightarrow \infty(|\boldsymbol{z}| \rightarrow 0)
$$

3. Fractionally integrated RFs on \mathbb{R}^{ν}

3. Fractionally integrated RFs on \mathbb{R}^{ν}

Example 9. Discretely fractionally integrated Matérn RF defined as

$$
\begin{equation*}
X(\boldsymbol{t}):=\left(I-T_{B}\right)^{-\kappa} \mathcal{M}_{c, H}(\boldsymbol{t})=\int_{\mathbb{R}^{\nu}} a(\boldsymbol{t}-\boldsymbol{u}) M(\mathrm{~d} \boldsymbol{u}) \tag{12}
\end{equation*}
$$

where $c, \kappa, H>0$ and

$$
a(\boldsymbol{t}):=\text { const. } \int_{\mathbb{R}^{\nu}} \tau_{B}(\boldsymbol{t}+\boldsymbol{s} ;-\kappa)(c|\boldsymbol{s}|)^{\frac{H}{2}-\frac{\nu}{4}} K_{\frac{H}{2}-\frac{\nu}{4}}(c|\boldsymbol{s}|) \mathrm{d} \boldsymbol{s}, \quad \boldsymbol{t} \in \mathbb{R}^{\nu} .
$$

- (12) is well-defined for any $H, c>0, \quad 0<\kappa<\frac{\nu}{4}$, stationary, zero mean, finite variance

3. Fractionally integrated RFs on \mathbb{R}^{ν}

Example 9. Discretely fractionally integrated Matérn RF defined as

$$
\begin{equation*}
X(\boldsymbol{t}):=\quad\left(I-T_{B}\right)^{-\kappa} \mathcal{M}_{c, H}(\boldsymbol{t})=\int_{\mathbb{R}^{\nu}} a(\boldsymbol{t}-\boldsymbol{u}) M(\mathrm{~d} \boldsymbol{u}) \tag{12}
\end{equation*}
$$

where $c, \kappa, H>0$ and

$$
a(\boldsymbol{t}):=\text { const. } \int_{\mathbb{R}^{\nu}} \tau_{B}(\boldsymbol{t}+\boldsymbol{s} ;-\kappa)(c|\boldsymbol{s}|)^{\frac{H}{2}-\frac{\nu}{4}} K_{\frac{H}{2}-\frac{\nu}{4}}(c|\boldsymbol{s}|) \mathrm{d} \boldsymbol{s}, \quad \boldsymbol{t} \in \mathbb{R}^{\nu} .
$$

- (12) is well-defined for any $H, c>0, \quad 0<\kappa<\frac{\nu}{4}$, stationary, zero mean, finite variance
- (12) is isotropic and LRD: $a(\boldsymbol{t}) \sim$ const. $|\boldsymbol{t}|^{2 \kappa-\nu},|\boldsymbol{t}| \rightarrow \infty, \int_{\mathbb{R}^{\nu}}|a(\boldsymbol{t})| \mathrm{d} \boldsymbol{t}=\infty$

3. Fractionally integrated RFs on \mathbb{R}^{ν}

Example 9. Discretely fractionally integrated Matérn RF defined as

$$
\begin{equation*}
X(\boldsymbol{t}):=\left(I-T_{B}\right)^{-\kappa} \mathcal{M}_{c, H}(\boldsymbol{t})=\int_{\mathbb{R}^{\nu}} a(\boldsymbol{t}-\boldsymbol{u}) M(\mathrm{~d} \boldsymbol{u}), \tag{12}
\end{equation*}
$$

where $c, \kappa, H>0$ and

$$
a(\boldsymbol{t}):=\text { const. } \int_{\mathbb{R}^{\nu}} \tau_{B}(\boldsymbol{t}+\boldsymbol{s} ;-\kappa)(c|\boldsymbol{s}|)^{\frac{H}{2}-\frac{\nu}{4}} K_{\frac{H}{2}-\frac{\nu}{4}}(c|\boldsymbol{s}|) \mathrm{d} \boldsymbol{s}, \quad \boldsymbol{t} \in \mathbb{R}^{\nu} .
$$

- (12) is well-defined for any $H, c>0, \quad 0<\kappa<\frac{\nu}{4}$, stationary, zero mean, finite variance
- (12) is isotropic and LRD: $a(\boldsymbol{t}) \sim$ const. $|\boldsymbol{t}|^{2 \kappa-\nu},|\boldsymbol{t}| \rightarrow \infty, \int_{\mathbb{R}^{\nu}}|a(\boldsymbol{t})| \mathrm{d} \boldsymbol{t}=\infty$
- explicit spectral density

$$
f(z)=\frac{\text { const. }}{\left(1-\mathrm{e}^{-|\boldsymbol{Z}|^{2} / 2}\right)^{2 \kappa}\left(c^{2}+|z|^{2}\right)^{H+\frac{\nu}{2}}} \sim \text { const. }|\boldsymbol{z}|^{-4 \kappa} \rightarrow \infty \quad(|z| \rightarrow 0)
$$

4. Scaling limits and LRD

4. Scaling limits and LRD

4. Scaling limits and LRD

4. Scaling limits and LRD

4. Scaling limits and LRD

- Isotropic scaling limits for RFs often refer to the limit distribution of integrals:

$$
X_{\lambda}(\phi):=\int_{\mathbb{R}^{\nu}} X(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}, \quad \text { as } \lambda \rightarrow \infty
$$

(or respective sums in the discrete argument case), where $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{R}^{\nu}\right\}$ is a given stationary RF, for each ϕ from a linear class of (test) functions $\Phi=\left\{\phi: \mathbb{R}^{\nu} \rightarrow \mathbb{R}\right\}$

4. Scaling limits and LRD

4. Scaling limits and LRD

- Isotropic scaling limits for RFs often refer to the limit distribution of integrals:

$$
X_{\lambda}(\phi):=\int_{\mathbb{R}^{\nu}} X(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}, \quad \text { as } \lambda \rightarrow \infty
$$

(or respective sums in the discrete argument case), where $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{R}^{\nu}\right\}$ is a given stationary RF, for each ϕ from a linear class of (test) functions
$\Phi=\left\{\phi: \mathbb{R}^{\nu} \rightarrow \mathbb{R}\right\}$
Namely, we are interested in the limit in distribution:

$$
\begin{equation*}
d_{\lambda}^{-1}\left(X_{\lambda}(\phi)-\mathrm{E} X_{\lambda}(\phi)\right) \xrightarrow{\mathrm{d}} V(\phi), \quad \lambda \rightarrow \infty \tag{13}
\end{equation*}
$$

where $d_{\lambda} \rightarrow \infty$ is a normalization and $V(\phi)$ is a RF indexed by $\phi \in \Phi$

4. Scaling limits and LRD

4. Scaling limits and LRD

- Isotropic scaling limits for RFs often refer to the limit distribution of integrals:

$$
X_{\lambda}(\phi):=\int_{\mathbb{R}^{\nu}} X(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}, \quad \text { as } \lambda \rightarrow \infty
$$

(or respective sums in the discrete argument case), where $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{R}^{\nu}\right\}$ is a given stationary RF, for each ϕ from a linear class of (test) functions
$\Phi=\left\{\phi: \mathbb{R}^{\nu} \rightarrow \mathbb{R}\right\}$
Namely, we are interested in the limit in distribution:

$$
\begin{equation*}
d_{\lambda}^{-1}\left(X_{\lambda}(\phi)-\mathrm{E} X_{\lambda}(\phi)\right) \xrightarrow{\mathrm{d}} V(\phi), \quad \lambda \rightarrow \infty \tag{13}
\end{equation*}
$$

where $d_{\lambda} \rightarrow \infty$ is a normalization and $V(\phi)$ is a RF indexed by $\phi \in \Phi$

- The approach in (13) via test functions is common in the theory of generalized RFs where Φ usually is a Schwartz space of very smooth infinitely differentiable functions

4. Scaling limits and LRD

4. Scaling limits and LRD

- Isotropic scaling limits for RFs often refer to the limit distribution of integrals:

$$
X_{\lambda}(\phi):=\int_{\mathbb{R}^{\nu}} X(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}, \quad \text { as } \lambda \rightarrow \infty
$$

(or respective sums in the discrete argument case), where $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{R}^{\nu}\right\}$ is a given stationary RF, for each ϕ from a linear class of (test) functions
$\Phi=\left\{\phi: \mathbb{R}^{\nu} \rightarrow \mathbb{R}\right\}$
Namely, we are interested in the limit in distribution:

$$
\begin{equation*}
d_{\lambda}^{-1}\left(X_{\lambda}(\phi)-\mathrm{E} X_{\lambda}(\phi)\right) \xrightarrow{\mathrm{d}} V(\phi), \quad \lambda \rightarrow \infty \tag{13}
\end{equation*}
$$

where $d_{\lambda} \rightarrow \infty$ is a normalization and $V(\phi)$ is a RF indexed by $\phi \in \Phi$

- The approach in (13) via test functions is common in the theory of generalized RFs where Φ usually is a Schwartz space of very smooth infinitely differentiable functions
- In this talk, we take a much larger class

$$
\begin{equation*}
\Phi=L^{1}\left(\mathbb{R}^{\nu}\right) \cap L^{\infty}\left(\mathbb{R}^{\nu}\right) \tag{14}
\end{equation*}
$$

4. Scaling limits and LRD

4. Scaling limits and LRD

- Isotropic scaling limits for RFs often refer to the limit distribution of integrals:

$$
X_{\lambda}(\phi):=\int_{\mathbb{R}^{\nu}} X(\boldsymbol{t}) \phi(\boldsymbol{t} / \lambda) \mathrm{d} \boldsymbol{t}, \quad \text { as } \lambda \rightarrow \infty
$$

(or respective sums in the discrete argument case), where $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{R}^{\nu}\right\}$ is a given stationary RF, for each ϕ from a linear class of (test) functions $\Phi=\left\{\phi: \mathbb{R}^{\nu} \rightarrow \mathbb{R}\right\}$
Namely, we are interested in the limit in distribution:

$$
\begin{equation*}
d_{\lambda}^{-1}\left(X_{\lambda}(\phi)-\mathrm{E} X_{\lambda}(\phi)\right) \xrightarrow{\mathrm{d}} V(\phi), \quad \lambda \rightarrow \infty \tag{13}
\end{equation*}
$$

where $d_{\lambda} \rightarrow \infty$ is a normalization and $V(\phi)$ is a RF indexed by $\phi \in \Phi$

- The approach in (13) via test functions is common in the theory of generalized RFs where Φ usually is a Schwartz space of very smooth infinitely differentiable functions
- In this talk, we take a much larger class

$$
\begin{equation*}
\Phi=L^{1}\left(\mathbb{R}^{\nu}\right) \cap L^{\infty}\left(\mathbb{R}^{\nu}\right) \tag{14}
\end{equation*}
$$

which contains indicator functions $\phi(\boldsymbol{t})=\mathbb{I}(\boldsymbol{t} \in A)$ of arbitrary Borel sets of $A \subset \mathbb{R}^{\nu}, \operatorname{Leb}_{\nu}(A)<\infty$

4. Scaling limits and LRD

4. Scaling limits and LRD

- For weakly dependent RF X (stationary, 2nd moment) one expects the CLT:

$$
\begin{equation*}
\lambda^{-\nu / 2}\left(X_{\lambda}(\phi)-\mathrm{E} X_{\lambda}(\phi)\right) \xrightarrow{\mathrm{d}} \sigma^{2} W(\phi) \tag{15}
\end{equation*}
$$

4. Scaling limits and LRD

- For weakly dependent RF X (stationary, 2nd moment) one expects the CLT:

$$
\begin{equation*}
\lambda^{-\nu / 2}\left(X_{\lambda}(\phi)-\mathrm{E} X_{\lambda}(\phi)\right) \xrightarrow{\mathrm{d}} \sigma^{2} W(\phi) \tag{15}
\end{equation*}
$$

towards Gaussian white noise integral $W(\phi):=\int_{\mathbb{R}^{\nu}} \phi(\boldsymbol{t}) W(\mathrm{~d} \boldsymbol{t})$ with $\operatorname{EW}(\phi)^{2}=\int_{\mathbb{R}^{\nu}} \phi(\boldsymbol{t})^{2} \mathrm{~d} \boldsymbol{t}$ and a 'long-range variance' $\sigma^{2} \geq 0$

4. Scaling limits and LRD

- For weakly dependent RF X (stationary, 2nd moment) one expects the CLT:

$$
\begin{equation*}
\lambda^{-\nu / 2}\left(X_{\lambda}(\phi)-\mathrm{E} X_{\lambda}(\phi)\right) \xrightarrow{\mathrm{d}} \sigma^{2} W(\phi) \tag{15}
\end{equation*}
$$

towards Gaussian white noise integral $W(\phi):=\int_{\mathbb{R}^{\nu}} \phi(\boldsymbol{t}) W(\mathrm{~d} \boldsymbol{t})$ with $E W(\phi)^{2}=\int_{\mathbb{R}^{\nu}} \phi(\boldsymbol{t})^{2} \mathrm{~d} \boldsymbol{t}$ and a 'long-range variance' $\sigma^{2} \geq 0$

Dedecker, Doukhan, Lang, León, Louhichi \& Prieur (2007) Weak Dependendence. With Examples and Applications (2007, Springer) discuss (15) for the class of 'rectangles' or 'blocks'

$$
\left.\left.\left.\left.\left.\left.\Phi_{\mathrm{rec}}:=\{\phi \boldsymbol{s}(\boldsymbol{t}):=\mathbb{I}(\boldsymbol{t} \in] \mathbf{0}, \boldsymbol{s}]\right) ; \boldsymbol{s} \in \mathbb{R}_{+}^{\nu}\right\}, \quad\right] \mathbf{0}, \boldsymbol{s}\right]:=\prod_{i=1}^{\nu}\right] 0, \boldsymbol{s}_{i}\right]
$$

Then $X_{\lambda}\left(\phi_{\boldsymbol{s}}\right)=\sum_{\boldsymbol{t} \in \mathrm{0}, \lambda \boldsymbol{s}]} X(\boldsymbol{t})$ is a RF indexed by points $\boldsymbol{s} \in \mathbb{R}_{+}^{\nu}$ ν-dimensional analog of the partial sums process of time series

4. Scaling limits and LRD

- For weakly dependent RF X (stationary, 2nd moment) one expects the CLT:

$$
\begin{equation*}
\lambda^{-\nu / 2}\left(X_{\lambda}(\phi)-\mathrm{E} X_{\lambda}(\phi)\right) \xrightarrow{\mathrm{d}} \sigma^{2} W(\phi) \tag{15}
\end{equation*}
$$

towards Gaussian white noise integral $W(\phi):=\int_{\mathbb{R}^{\nu}} \phi(\boldsymbol{t}) W(\mathrm{~d} \boldsymbol{t})$ with
EW $(\phi)^{2}=\int_{\mathbb{R}^{\nu}} \phi(\boldsymbol{t})^{2} \mathrm{~d} \boldsymbol{t}$ and a 'long-range variance' $\sigma^{2} \geq 0$
Dedecker, Doukhan, Lang, León, Louhichi \& Prieur (2007) Weak Dependendence. With Examples and Applications (2007, Springer) discuss (15) for the class of 'rectangles' or 'blocks'

$$
\left.\left.\left.\left.\left.\left.\Phi_{\text {rec }}:=\{\phi \boldsymbol{s}(\boldsymbol{t}):=\mathbb{I}(\boldsymbol{t} \in] \mathbf{0}, \boldsymbol{s}]\right) ; \boldsymbol{s} \in \mathbb{R}_{+}^{\nu}\right\}, \quad\right] \mathbf{0}, \boldsymbol{s}\right]:=\prod_{i=1}^{\nu}\right] 0, \boldsymbol{s}_{i}\right]
$$

Then $X_{\lambda}\left(\phi_{\boldsymbol{s}}\right)=\sum_{\boldsymbol{t} \in \mathrm{0}, \lambda \boldsymbol{s}]} X(\boldsymbol{t})$ is a RF indexed by points $\boldsymbol{s} \in \mathbb{R}_{+}^{\nu}$ ν-dimensional analog of the partial sums process of time series

- Spatial statistics: accent on irregular (inflated) observation set $\lambda A \subset \mathbb{R}^{\nu}$ (rectangles not suffice)
Lahiri \& Robinson, Central limit theorems for long range dependent spatial linear processes (2016, Bernoulli)

4. Scaling limits and LRD

4. Scaling limits and LRD

- This talk: scaling limits (13), $\Phi=L^{1}\left(\mathbb{R}^{\nu}\right) \cap L^{\infty}\left(\mathbb{R}^{\nu}\right)$ for linear and nonlinear (subordinated) RFs X in $\mathbb{Z}^{\nu} / \mathbb{R}^{\nu}$ with LRD/ND

4. Scaling limits and LRD

- This talk: scaling limits (13), $\Phi=L^{1}\left(\mathbb{R}^{\nu}\right) \cap L^{\infty}\left(\mathbb{R}^{\nu}\right)$ for linear and nonlinear (subordinated) RFs X in $\mathbb{Z}^{\nu} / \mathbb{R}^{\nu}$ with LRD/ND
- Linear RF:

$$
\begin{align*}
X(\boldsymbol{t})=\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} a(\boldsymbol{t}-\boldsymbol{s}) \varepsilon(\boldsymbol{s}), & \text { discr. arg. } \boldsymbol{t} \in \mathbb{Z}^{\nu}, \tag{16}\\
X(\boldsymbol{t})=\int_{\mathbb{R}^{\nu}} a(\boldsymbol{t}-\boldsymbol{s}) M(\mathrm{~d} \boldsymbol{s}), & \text { cnt. arg. } \boldsymbol{t} \in \mathbb{R}^{\nu} \tag{17}
\end{align*}
$$

where:

- $a(\boldsymbol{t})$: deterministic kernel satisfying LRD/ND asymptotics as $|\boldsymbol{t}| \rightarrow \infty$;
- $\varepsilon(\boldsymbol{s}), \boldsymbol{s} \in \mathbb{Z}^{\nu}:$ standardized i.i.d.
- $M(\mathrm{~d} \boldsymbol{s})$: Lévy random measure with zero mean and $\mathrm{E} M(\mathrm{~d} \boldsymbol{u})^{2}=\mathrm{d} \boldsymbol{u}$

4. Scaling limits and LRD

- This talk: scaling limits (13), $\Phi=L^{1}\left(\mathbb{R}^{\nu}\right) \cap L^{\infty}\left(\mathbb{R}^{\nu}\right)$ for linear and nonlinear (subordinated) RFs X in $\mathbb{Z}^{\nu} / \mathbb{R}^{\nu}$ with LRD/ND
- Linear RF:

$$
\begin{align*}
X(\boldsymbol{t})=\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} a(\boldsymbol{t}-\boldsymbol{s}) \varepsilon(\boldsymbol{s}), & \text { discr. arg. } \boldsymbol{t} \in \mathbb{Z}^{\nu}, \tag{16}\\
X(\boldsymbol{t})=\int_{\mathbb{R}^{\nu}} a(\boldsymbol{t}-\boldsymbol{s}) M(\mathrm{~d} \boldsymbol{s}), & \text { cnt. arg. } \boldsymbol{t} \in \mathbb{R}^{\nu} \tag{17}
\end{align*}
$$

where:

- $a(\boldsymbol{t})$: deterministic kernel satisfying LRD/ND asymptotics as $|\boldsymbol{t}| \rightarrow \infty$;
- $\varepsilon(\boldsymbol{s}), \boldsymbol{s} \in \mathbb{Z}^{\nu}:$ standardized i.i.d.
- $M(\mathrm{~d} \boldsymbol{s})$: Lévy random measure with zero mean and $\mathrm{E} M(\mathrm{~d} \boldsymbol{u})^{2}=\mathrm{d} \boldsymbol{u}$
- (16)/(17) include most of fractionally integrated RFs discussed in sec.2-3

4. Scaling limits and LRD

- This talk: scaling limits (13), $\Phi=L^{1}\left(\mathbb{R}^{\nu}\right) \cap L^{\infty}\left(\mathbb{R}^{\nu}\right)$ for linear and nonlinear (subordinated) RFs X in $\mathbb{Z}^{\nu} / \mathbb{R}^{\nu}$ with LRD/ND
- Linear RF:

$$
\begin{align*}
X(\boldsymbol{t})=\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} a(\boldsymbol{t}-\boldsymbol{s}) \varepsilon(\boldsymbol{s}), & \text { discr. arg. } \boldsymbol{t} \in \mathbb{Z}^{\nu}, \tag{16}\\
X(\boldsymbol{t})=\int_{\mathbb{R}^{\nu}} a(\boldsymbol{t}-\boldsymbol{s}) M(\mathrm{~d} \boldsymbol{s}), & \text { cnt. arg. } \boldsymbol{t} \in \mathbb{R}^{\nu} \tag{17}
\end{align*}
$$

where:

- $a(\boldsymbol{t})$: deterministic kernel satisfying LRD/ND asymptotics as $|\boldsymbol{t}| \rightarrow \infty$;
- $\varepsilon(\boldsymbol{s}), \boldsymbol{s} \in \mathbb{Z}^{\nu}:$ standardized i.i.d.
- $M(\mathrm{~d} \boldsymbol{s})$: Lévy random measure with zero mean and $\mathrm{E} M(\mathrm{~d} \boldsymbol{u})^{2}=\mathrm{d} \boldsymbol{u}$
- (16)/(17) include most of fractionally integrated RFs discussed in sec.2-3
- Discr. arg. $X(16): X_{\lambda}(\phi)=\int_{\mathbb{R}^{\nu}} \phi(\boldsymbol{t} / \lambda) X([\boldsymbol{t}]) \mathrm{d} \boldsymbol{t}$

4. Scaling limits and LRD

- This talk: scaling limits (13), $\Phi=L^{1}\left(\mathbb{R}^{\nu}\right) \cap L^{\infty}\left(\mathbb{R}^{\nu}\right)$ for linear and nonlinear (subordinated) RFs X in $\mathbb{Z}^{\nu} / \mathbb{R}^{\nu}$ with LRD/ND
- Linear RF:

$$
\begin{align*}
X(\boldsymbol{t})=\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} a(\boldsymbol{t}-\boldsymbol{s}) \varepsilon(\boldsymbol{s}), & \text { discr. arg. } \boldsymbol{t} \in \mathbb{Z}^{\nu}, \tag{16}\\
X(\boldsymbol{t})=\int_{\mathbb{R}^{\nu}} a(\boldsymbol{t}-\boldsymbol{s}) M(\mathrm{~d} \boldsymbol{s}), & \text { cnt. arg. } \boldsymbol{t} \in \mathbb{R}^{\nu} \tag{17}
\end{align*}
$$

where:

- $a(\boldsymbol{t})$: deterministic kernel satisfying LRD/ND asymptotics as $|\boldsymbol{t}| \rightarrow \infty$;
- $\varepsilon(\boldsymbol{s}), \boldsymbol{s} \in \mathbb{Z}^{\nu}:$ standardized i.i.d.
- $M(\mathrm{~d} \boldsymbol{s})$: Lévy random measure with zero mean and $\mathrm{E} M(\mathrm{~d} \boldsymbol{u})^{2}=\mathrm{d} \boldsymbol{u}$
- (16)/(17) include most of fractionally integrated RFs discussed in sec.2-3
- Discr. arg. $X(16): X_{\lambda}(\phi)=\int_{\mathbb{R}^{\nu}} \phi(\boldsymbol{t} / \lambda) X([\boldsymbol{t}]) \mathrm{d} \boldsymbol{t}$
- Dependence properties of linear RF (16)/(17) determined by MA kernel $a(\boldsymbol{t})$

4. Scaling limits and LRD

4. Scaling limits and LRD

$d \in \mathbb{R}$ is 'memory parameter': $d>0$ (LRD), $d<0$ (ND), $d=0$ (SRD)

4. Scaling limits and LRD

$d \in \mathbb{R}$ is 'memory parameter': $d>0$ (LRD), $d<0$ (ND), $d=0$ (SRD)
Assumption (A) $\left(d ; \mathbb{Z}^{\nu}\right)$
(i) Let $0<d<\nu / 4$. Then

$$
\begin{equation*}
a(\boldsymbol{t})=\frac{1}{|\boldsymbol{t}|^{\nu-2 d}}\left(\ell\left(\frac{\boldsymbol{t}}{|\boldsymbol{t}|}\right)+o(1)\right), \quad|\boldsymbol{t}| \rightarrow \infty \tag{18}
\end{equation*}
$$

where $\ell(\boldsymbol{t}),|\boldsymbol{t}|=1$ is a continuous 'angular' function
(ii) Let $-\nu / 4<d<0$. Then (18) holds and, moreover, $\sum_{\boldsymbol{t} \in \mathbb{Z}^{\nu}} a(\boldsymbol{t})=0$.
(iii) Let $d=0$. Then $\sum_{\boldsymbol{t} \in \mathbb{Z}^{\nu}}|a(\boldsymbol{t})|<\infty$ and $\sum_{\boldsymbol{t} \in \mathbb{Z}^{\nu}} a(\boldsymbol{t}) \neq 0$.

4. Scaling limits and LRD

$d \in \mathbb{R}$ is 'memory parameter': $d>0$ (LRD), $d<0$ (ND), $d=0$ (SRD)
Assumption (A) $\left(d ; \mathbb{Z}^{\nu}\right)$
(i) Let $0<d<\nu / 4$. Then

$$
\begin{equation*}
a(\boldsymbol{t})=\frac{1}{|\boldsymbol{t}|^{\nu-2 d}}\left(\ell\left(\frac{\boldsymbol{t}}{|\boldsymbol{t}|}\right)+o(1)\right), \quad|\boldsymbol{t}| \rightarrow \infty \tag{18}
\end{equation*}
$$

where $\ell(\boldsymbol{t}),|\boldsymbol{t}|=1$ is a continuous 'angular' function
(ii) Let $-\nu / 4<d<0$. Then (18) holds and, moreover, $\sum_{\boldsymbol{t} \in \mathbb{Z}^{\nu}} a(\boldsymbol{t})=0$.
(iii) Let $d=0$. Then $\sum_{\boldsymbol{t} \in \mathbb{Z}^{\nu}}|a(\boldsymbol{t})|<\infty$ and $\sum_{\boldsymbol{t} \in \mathbb{Z}^{\nu}} a(\boldsymbol{t}) \neq 0$.

- For $\nu=1$ the usual LRD condition $a(t) \sim$ const. $. t^{d^{\prime}-1}, 0<d^{\prime}<1 / 2$ agrees with (18) with $d=d^{\prime} / 2$

4. Scaling limits and LRD

$d \in \mathbb{R}$ is 'memory parameter': $d>0$ (LRD), $d<0$ (ND), $d=0$ (SRD)
Assumption (A) $\left(d ; \mathbb{Z}^{\nu}\right)$
(i) Let $0<d<\nu / 4$. Then

$$
\begin{equation*}
a(\boldsymbol{t})=\frac{1}{|\boldsymbol{t}|^{\nu-2 d}}\left(\ell\left(\frac{\boldsymbol{t}}{|\boldsymbol{t}|}\right)+o(1)\right), \quad|\boldsymbol{t}| \rightarrow \infty \tag{18}
\end{equation*}
$$

where $\ell(\boldsymbol{t}),|\boldsymbol{t}|=1$ is a continuous 'angular' function
(ii) Let $-\nu / 4<d<0$. Then (18) holds and, moreover, $\sum_{\boldsymbol{t} \in \mathbb{Z}^{\nu}} a(\boldsymbol{t})=0$.
(iii) Let $d=0$. Then $\sum_{\boldsymbol{t} \in \mathbb{Z}^{\nu}}|a(\boldsymbol{t})|<\infty$ and $\sum_{\boldsymbol{t} \in \mathbb{Z}^{\nu}} a(\boldsymbol{t}) \neq 0$.

- For $\nu=1$ the usual LRD condition $a(t) \sim$ const. $t^{d^{\prime}-1}, 0<d^{\prime}<1 / 2$ agrees with (18) with $d=d^{\prime} / 2$
- Assumption $(\mathrm{A})\left(d ; \mathbb{R}^{\nu}\right)$ (for 'cnt. arg. $\left.a(\boldsymbol{t}), \boldsymbol{t} \in \mathbb{R}^{\nu}\right)$ is analogous with sums in (ii), (iii) replaced by integrals $\int_{\mathbb{R}^{\nu}}$, and assuming boundedness of $a(\boldsymbol{t})$

4. Scaling limits and LRD

$d \in \mathbb{R}$ is 'memory parameter': $d>0$ (LRD), $d<0$ (ND), $d=0$ (SRD)
Assumption (A) $\left(d ; \mathbb{Z}^{\nu}\right)$
(i) Let $0<d<\nu / 4$. Then

$$
\begin{equation*}
a(\boldsymbol{t})=\frac{1}{|\boldsymbol{t}|^{\nu-2 d}}\left(\ell\left(\frac{\boldsymbol{t}}{|\boldsymbol{t}|}\right)+o(1)\right), \quad|\boldsymbol{t}| \rightarrow \infty \tag{18}
\end{equation*}
$$

where $\ell(\boldsymbol{t}),|\boldsymbol{t}|=1$ is a continuous 'angular' function
(ii) Let $-\nu / 4<d<0$. Then (18) holds and, moreover, $\sum_{\boldsymbol{t} \in \mathbb{Z}^{\nu}} a(\boldsymbol{t})=0$.
(iii) Let $d=0$. Then $\sum_{\boldsymbol{t} \in \mathbb{Z}^{\nu}}|a(\boldsymbol{t})|<\infty$ and $\sum_{\boldsymbol{t} \in \mathbb{Z}^{\nu}} a(\boldsymbol{t}) \neq 0$.

- For $\nu=1$ the usual LRD condition $a(t) \sim$ const. $t^{d^{\prime}-1}, 0<d^{\prime}<1 / 2$ agrees with (18) with $d=d^{\prime} / 2$
- Assumption $(\mathrm{A})\left(d ; \mathbb{R}^{\nu}\right)$ (for 'cnt. arg. $a(\boldsymbol{t}), \boldsymbol{t} \in \mathbb{R}^{\nu}$) is analogous with sums in (ii), (iii) replaced by integrals $\int_{\mathbb{R}^{\nu}}$, and assuming boundedness of $a(\boldsymbol{t})$
- Define homogeneous limit function

$$
a_{\infty}(\boldsymbol{t}):=|\boldsymbol{t}|^{2 d-\nu} \ell\left(\frac{\boldsymbol{t}}{|\boldsymbol{t}|}\right), \quad \boldsymbol{t} \in \mathbb{R}_{0}^{\nu}:=\mathbb{R}^{\nu} \backslash\{\mathbf{0}\}
$$

4. Scaling limits and LRD

4. Scaling limits and LRD

Limit Gaussian RFs written as stochastic integrals w.r.t. Gaussian WN W ($\mathrm{d} \boldsymbol{u})$:

$$
W_{d}(\phi):= \begin{cases}\int_{\mathbb{R}^{\nu}}\left(a_{\infty} \star \phi\right)(\boldsymbol{u}) W(\mathrm{~d} \boldsymbol{u}), & 0<d<\nu / 4, \phi \in \Phi \tag{19}\\ \int_{\mathbb{R}^{\nu}}\left(a_{\infty} \star \phi\right)_{\mathrm{reg}}(\boldsymbol{u}) W(\mathrm{~d} \boldsymbol{u}), & -\nu / 4<d<0, \phi \in \Phi_{d}^{-}, \\ \int_{\mathbb{R}^{\nu}} \phi(\boldsymbol{u}) W(\mathrm{~d} \boldsymbol{u}), & d=0, \phi \in \Phi\end{cases}
$$

- $\Phi_{d}^{-}:=\left\{\phi \in \Phi, \phi(\cdot)\right.$ a.e.cnt., $\left.\int_{\mathbb{R}^{\nu}}\left(\int_{\mathbb{R}^{\nu}}|\phi(\boldsymbol{t}+\boldsymbol{s})-\phi(\boldsymbol{s})|^{2} \mathrm{~d} \boldsymbol{s}\right)^{1 / 2}|\boldsymbol{t}|^{2 d-\nu} \mathrm{d} \boldsymbol{t}<\infty\right\}$
- $\left(a_{\infty} \star \phi\right)(\boldsymbol{u})=\int_{\mathbb{R}^{\nu}} a_{\infty}(\boldsymbol{t}) \phi(\boldsymbol{t}+\boldsymbol{u}) \mathrm{d} \boldsymbol{t}$: (usual) convolution, $\left(a_{\infty} \star \phi\right)_{\mathrm{reg}}(\boldsymbol{u}):=\int_{\mathbb{R}^{\nu}} a_{\infty}(\boldsymbol{t})(\phi(\boldsymbol{t}+\boldsymbol{u})-\phi(\boldsymbol{u})) \mathrm{d} \boldsymbol{t}$ 'regularized' convolution

4. Scaling limits and LRD

Limit Gaussian RFs written as stochastic integrals w.r.t. Gaussian WN W(du):

$$
W_{d}(\phi):= \begin{cases}\int_{\mathbb{R}^{\nu}}\left(a_{\infty} \star \phi\right)(\boldsymbol{u}) W(\mathrm{~d} \boldsymbol{u}), & 0<d<\nu / 4, \phi \in \Phi \tag{19}\\ \int_{\mathbb{R}^{\nu}}\left(a_{\infty} \star \phi\right)_{\mathrm{reg}}(\boldsymbol{u}) W(\mathrm{~d} \boldsymbol{u}), & -\nu / 4<d<0, \phi \in \Phi_{d}^{-}, \\ \int_{\mathbb{R}^{\nu}} \phi(\boldsymbol{u}) W(\mathrm{~d} \boldsymbol{u}), & d=0, \phi \in \Phi,\end{cases}
$$

- $\boldsymbol{\Phi}_{d}^{-}:=\left\{\phi \in \Phi, \phi(\cdot)\right.$ a.e.cnt., $\left.\int_{\mathbb{R}^{\nu}}\left(\int_{\mathbb{R}^{\nu}}|\phi(\boldsymbol{t}+\boldsymbol{s})-\phi(\boldsymbol{s})|^{2} \mathrm{~d} \boldsymbol{s}\right)^{1 / 2}|\boldsymbol{t}|^{2 d-\nu} \mathrm{d} \boldsymbol{t}<\infty\right\}$
- $\left(a_{\infty} \star \phi\right)(\boldsymbol{u})=\int_{\mathbb{R}^{\nu}} a_{\infty}(\boldsymbol{t}) \phi(\boldsymbol{t}+\boldsymbol{u}) \mathrm{d} \boldsymbol{t}$: (usual) convolution, $\left(a_{\infty} \star \phi\right)_{\mathrm{reg}}(\boldsymbol{u}):=\int_{\mathbb{R}^{\nu}} a_{\infty}(\boldsymbol{t})(\phi(\boldsymbol{t}+\boldsymbol{u})-\phi(\boldsymbol{u})) \mathrm{d} \boldsymbol{t}$ 'regularized' convolution

Theorem (3)

Let X be a linear RF satisfying Assumption $(A)\left(d ; \mathbb{Z}^{\nu}\right) /(A)\left(d ; \mathbb{R}^{\nu}\right)$. Then

$$
\lambda^{-(\nu+4 d) / 2} X_{\lambda}(\phi) \xrightarrow{\mathrm{d}} \begin{cases}W_{d}(\phi), & 0<d<\nu / 4, \phi \in \Phi \\ W_{d}(\phi), & -\nu / 4<d<0, \phi \in \Phi_{d}^{-} \\ \sigma W_{0}(\phi), & d=0, \phi \in \Phi\end{cases}
$$

where $\sigma:=\sum_{\boldsymbol{t} \in \mathbb{Z}^{\nu}} a(\boldsymbol{t}) / \int_{\boldsymbol{t} \in \mathbb{R}^{\nu}} a(\boldsymbol{t}) \mathrm{d} \boldsymbol{t}$.

5. Nonlinear functionals and empirical processes

5. Nonlinear functionals and empirical processes

- Proof of Thm 3 essentially uses variance argument only

5. Nonlinear functionals and empirical processes

- Proof of Thm 3 essentially uses variance argument only
- ND case $d<0$ in Thm 3 more delicate. Restriction to $\phi \in \Phi_{d}^{-}$excludes 'edge effects'
'Edge effects': Lahiri \& Robinson (2016), S. (2020), Pilipauskaitè \& S. (2022) (very different and unusual limits)

5. Nonlinear functionals and empirical processes

- Proof of Thm 3 essentially uses variance argument only
- ND case $d<0$ in Thm 3 more delicate. Restriction to $\phi \in \Phi_{d}^{-}$excludes 'edge effects'
'Edge effects': Lahiri \& Robinson (2016), S. (2020), Pilipauskaitè \& S. (2022) (very different and unusual limits)

5. Nonlinear functionals and empirical processes

5. Nonlinear functionals and empirical processes

- Proof of Thm 3 essentially uses variance argument only
- ND case $d<0$ in Thm 3 more delicate. Restriction to $\phi \in \Phi_{d}^{-}$excludes 'edge effects'
'Edge effects': Lahiri \& Robinson (2016), S. (2020), Pilipauskaitė \& S. (2022) (very different and unusual limits)

5. Nonlinear functionals and empirical processes

Let $A \subset \mathbb{R}^{\nu}$ be a bounded Borel set and $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{R}^{\nu}\right\}$ be a stationary RF. Then

$$
\begin{equation*}
F_{\lambda}(y):=\frac{\int_{\lambda A} \mathbb{I}(X(\boldsymbol{t}) \leq y) \mathrm{d} \boldsymbol{t}}{\operatorname{Leb}_{\nu}(\lambda A)}, \quad y \in \mathbb{R} \tag{20}
\end{equation*}
$$

is the empirical process (empirical d.f.) of the marginal d.f. $F(y)=\mathrm{P}(X(\boldsymbol{t}) \leq y)$ from observations on a large 'inflated' set $\lambda A, \lambda \rightarrow \infty$

5. Nonlinear functionals and empirical processes

- Proof of Thm 3 essentially uses variance argument only
- ND case $d<0$ in Thm 3 more delicate. Restriction to $\phi \in \Phi_{d}^{-}$excludes 'edge effects'
'Edge effects': Lahiri \& Robinson (2016), S. (2020), Pilipauskaitė \& S. (2022) (very different and unusual limits)

5. Nonlinear functionals and empirical processes

Let $A \subset \mathbb{R}^{\nu}$ be a bounded Borel set and $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{R}^{\nu}\right\}$ be a stationary RF. Then

$$
\begin{equation*}
F_{\lambda}(y):=\frac{\int_{\lambda A} \mathbb{I}(X(\boldsymbol{t}) \leq y) \mathrm{d} \boldsymbol{t}}{\operatorname{Leb}_{\nu}(\lambda A)}, \quad y \in \mathbb{R} \tag{20}
\end{equation*}
$$

is the empirical process (empirical d.f.) of the marginal d.f. $F(y)=\mathrm{P}(X(\boldsymbol{t}) \leq y)$ from observations on a large 'inflated' set $\lambda A, \lambda \rightarrow \infty$
Unbiased estimator: $\mathrm{E} F_{\lambda}(y)=F(y)$

5. Nonlinear functionals and empirical processes

- Proof of Thm 3 essentially uses variance argument only
- ND case $d<0$ in Thm 3 more delicate. Restriction to $\phi \in \Phi_{d}^{-}$excludes 'edge effects'
'Edge effects': Lahiri \& Robinson (2016), S. (2020), Pilipauskaite \& S. (2022) (very different and unusual limits)

5. Nonlinear functionals and empirical processes

Let $A \subset \mathbb{R}^{\nu}$ be a bounded Borel set and $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{R}^{\nu}\right\}$ be a stationary RF. Then

$$
\begin{equation*}
F_{\lambda}(y):=\frac{\int_{\lambda A} \mathbb{I}(X(\boldsymbol{t}) \leq y) \mathrm{d} \boldsymbol{t}}{\operatorname{Leb}_{\nu}(\lambda A)}, \quad y \in \mathbb{R} \tag{20}
\end{equation*}
$$

is the empirical process (empirical d.f.) of the marginal d.f. $F(y)=\mathrm{P}(X(\boldsymbol{t}) \leq y)$ from observations on a large 'inflated' set $\lambda A, \lambda \rightarrow \infty$
Unbiased estimator: $\mathrm{E} F_{\lambda}(y)=F(y)$
(For discr. arg. $X(\boldsymbol{t}), \boldsymbol{t} \in \mathbb{Z}^{\nu} F_{\lambda}(y)$ is defined analogously with $\mathbb{I}(X(\boldsymbol{t}) \leq y)$ replaced by $\mathbb{I}(X([t]) \leq y))$

5. Nonlinear functionals and empirical processes

- Proof of Thm 3 essentially uses variance argument only
- ND case $d<0$ in Thm 3 more delicate. Restriction to $\phi \in \Phi_{d}^{-}$excludes 'edge effects'
'Edge effects': Lahiri \& Robinson (2016), S. (2020), Pilipauskaite \& S. (2022) (very different and unusual limits)

5. Nonlinear functionals and empirical processes

Let $A \subset \mathbb{R}^{\nu}$ be a bounded Borel set and $X=\left\{X(\boldsymbol{t}) ; \boldsymbol{t} \in \mathbb{R}^{\nu}\right\}$ be a stationary RF. Then

$$
\begin{equation*}
F_{\lambda}(y):=\frac{\int_{\lambda A} \mathbb{I}(X(\boldsymbol{t}) \leq y) \mathrm{d} \boldsymbol{t}}{\operatorname{Leb}_{\nu}(\lambda A)}, \quad y \in \mathbb{R} \tag{20}
\end{equation*}
$$

is the empirical process (empirical d.f.) of the marginal d.f. $F(y)=\mathrm{P}(X(\boldsymbol{t}) \leq y)$ from observations on a large 'inflated' set $\lambda A, \lambda \rightarrow \infty$
Unbiased estimator: $\mathrm{E} F_{\lambda}(y)=F(y)$
(For discr. arg. $X(\boldsymbol{t}), \boldsymbol{t} \in \mathbb{Z}^{\nu} F_{\lambda}(y)$ is defined analogously with $\mathbb{I}(X(\boldsymbol{t}) \leq y)$ replaced by $\mathbb{I}(X([t]) \leq y))$

5. Nonlinear functionals and empirical processes

5. Nonlinear functionals and empirical processes

- Classical problem: asymptotic distribution of empirical process

$$
\begin{equation*}
d_{\lambda}^{-1}\left(F_{\lambda}(y)-F(y)\right), \quad y \in \mathbb{R} \tag{21}
\end{equation*}
$$

5. Nonlinear functionals and empirical processes

- Classical problem: asymptotic distribution of empirical process

$$
\begin{equation*}
d_{\lambda}^{-1}\left(F_{\lambda}(y)-F(y)\right), \quad y \in \mathbb{R} \tag{21}
\end{equation*}
$$

Kolmogorov-Smirnov statistic: $\mathcal{D}_{\lambda}:=\sup _{y \in \mathbb{R}}\left|F_{\lambda}(y)-F(y)\right|$

5. Nonlinear functionals and empirical processes

- Classical problem: asymptotic distribution of empirical process

$$
\begin{equation*}
d_{\lambda}^{-1}\left(F_{\lambda}(y)-F(y)\right), \quad y \in \mathbb{R} \tag{21}
\end{equation*}
$$

Kolmogorov-Smirnov statistic: $\mathcal{D}_{\lambda}:=\sup _{y \in \mathbb{R}}\left|F_{\lambda}(y)-F(y)\right|$

- (21) behaves very differently under LRD and SRD

5. Nonlinear functionals and empirical processes

- Classical problem: asymptotic distribution of empirical process

$$
\begin{equation*}
d_{\lambda}^{-1}\left(F_{\lambda}(y)-F(y)\right), \quad y \in \mathbb{R} \tag{21}
\end{equation*}
$$

Kolmogorov-Smirnov statistic: $\mathcal{D}_{\lambda}:=\sup _{y \in \mathbb{R}}\left|F_{\lambda}(y)-F(y)\right|$

- (21) behaves very differently under LRD and SRD
- LRD time series $\nu=1, A=] 0,1]$: numerous work (including asymptotic expansions and regression estimators):
Dehling \& Taqqu (1989), Beran (1992), Ho \& Hsing (1996), Koul \& Mukherjee (1993), Wu (2003), ...

Giraitis, Koul \& S., Large Sample Inference for Long Memory Processes, 2012

5. Nonlinear functionals and empirical processes

- Classical problem: asymptotic distribution of empirical process

$$
\begin{equation*}
d_{\lambda}^{-1}\left(F_{\lambda}(y)-F(y)\right), \quad y \in \mathbb{R} \tag{21}
\end{equation*}
$$

Kolmogorov-Smirnov statistic: $\mathcal{D}_{\lambda}:=\sup _{y \in \mathbb{R}}\left|F_{\lambda}(y)-F(y)\right|$

- (21) behaves very differently under LRD and SRD
- LRD time series $\nu=1, A=] 0,1]$: numerous work (including asymptotic expansions and regression estimators):
Dehling \& Taqqu (1989), Beran (1992), Ho \& Hsing (1996), Koul \& Mukherjee (1993), Wu (2003), ...

Giraitis, Koul \& S., Large Sample Inference for Long Memory Processes, 2012

- LRD, $\nu \geq 2, A=] \mathbf{0}, \mathbf{1}] \subset \mathbb{R}^{\nu}$:

Doukhan, Lang \& S. (2002), Koul \& S. (2016)

5. Nonlinear functionals and empirical processes

- Classical problem: asymptotic distribution of empirical process

$$
\begin{equation*}
d_{\lambda}^{-1}\left(F_{\lambda}(y)-F(y)\right), \quad y \in \mathbb{R} \tag{21}
\end{equation*}
$$

Kolmogorov-Smirnov statistic: $\mathcal{D}_{\lambda}:=\sup _{y \in \mathbb{R}}\left|F_{\lambda}(y)-F(y)\right|$

- (21) behaves very differently under LRD and SRD
- LRD time series $\nu=1, A=] 0,1]$: numerous work (including asymptotic expansions and regression estimators):
Dehling \& Taqqu (1989), Beran (1992), Ho \& Hsing (1996), Koul \& Mukherjee (1993), Wu (2003), ...

Giraitis, Koul \& S., Large Sample Inference for Long Memory Processes, 2012

- LRD, $\nu \geq 2, A=] \mathbf{0}, \mathbf{1}] \subset \mathbb{R}^{\nu}$:

Doukhan, Lang \& S. (2002), Koul \& S. (2016)

- Spatial case $\nu \geq 2$ much harder due to lack of causality and martingale methods

5. Nonlinear functionals and empirical processes

5. Nonlinear functionals and empirical processes

- $\mathbb{I}(X(\boldsymbol{t}) \leq y)$ and spatial empirical process $F_{\lambda}(y)$ are nonlinear functionals of X

5. Nonlinear functionals and empirical processes

- $\mathbb{I}(X(\boldsymbol{t}) \leq y)$ and spatial empirical process $F_{\lambda}(y)$ are nonlinear functionals of X
- We extend the study of $F_{\lambda}(y)$ to more general nonlinear functionals

$$
Y_{\lambda}(\phi):=\int_{\mathbb{R}^{\nu}} \phi(\boldsymbol{t} / \lambda) Y(\boldsymbol{t}) \mathrm{d} \boldsymbol{t}, \quad \phi \in \Phi
$$

5. Nonlinear functionals and empirical processes

- $\mathbb{I}(X(t) \leq y)$ and spatial empirical process $F_{\lambda}(y)$ are nonlinear functionals of X
- We extend the study of $F_{\lambda}(y)$ to more general nonlinear functionals

$$
Y_{\lambda}(\phi):=\int_{\mathbb{R}^{\nu}} \phi(\boldsymbol{t} / \lambda) Y(\boldsymbol{t}) \mathrm{d} \boldsymbol{t}, \quad \phi \in \Phi
$$

where:

$$
Y(\boldsymbol{t}):=G(X(\boldsymbol{t})) \text { or } Y(\boldsymbol{t})=G\left(X([\boldsymbol{t}]), \boldsymbol{t} \in \mathbb{R}^{\nu}, \mathrm{E} Y(\boldsymbol{t})^{2}<\infty,\right.
$$

5. Nonlinear functionals and empirical processes

- $\mathbb{I}(X(\boldsymbol{t}) \leq y)$ and spatial empirical process $F_{\lambda}(y)$ are nonlinear functionals of X
- We extend the study of $F_{\lambda}(y)$ to more general nonlinear functionals

$$
Y_{\lambda}(\phi):=\int_{\mathbb{R}^{\nu}} \phi(\boldsymbol{t} / \lambda) Y(\boldsymbol{t}) \mathrm{d} \boldsymbol{t}, \quad \phi \in \Phi
$$

where:

$$
\begin{aligned}
& Y(\boldsymbol{t}):=G(X(\boldsymbol{t})) \text { or } Y(\boldsymbol{t})=G\left(X([\boldsymbol{t}]), \boldsymbol{t} \in \mathbb{R}^{\nu}, \mathrm{E} Y(\boldsymbol{t})^{2}<\infty,\right. \\
& G: \mathbb{R} \rightarrow \mathbb{R} \text { is a nonlinear function, }
\end{aligned}
$$

5. Nonlinear functionals and empirical processes

- $\mathbb{I}(X(\boldsymbol{t}) \leq y)$ and spatial empirical process $F_{\lambda}(y)$ are nonlinear functionals of X
- We extend the study of $F_{\lambda}(y)$ to more general nonlinear functionals

$$
Y_{\lambda}(\phi):=\int_{\mathbb{R}^{\nu}} \phi(\boldsymbol{t} / \lambda) Y(\boldsymbol{t}) \mathrm{d} \boldsymbol{t}, \quad \phi \in \Phi
$$

where:

$$
Y(\boldsymbol{t}):=G(X(\boldsymbol{t})) \text { or } Y(\boldsymbol{t})=G\left(X([\boldsymbol{t}]), \boldsymbol{t} \in \mathbb{R}^{\nu}, \mathrm{E} Y(\boldsymbol{t})^{2}<\infty,\right.
$$

$G: \mathbb{R} \rightarrow \mathbb{R}$ is a nonlinear function, $X(\boldsymbol{t})$ is a linear RF satisfying Assumption $(A)\left(d ; \mathbb{Z}^{\nu}\right) /(A)\left(d ; \mathbb{R}^{\nu}\right)$

5. Nonlinear functionals and empirical processes

- $\mathbb{I}(X(\boldsymbol{t}) \leq y)$ and spatial empirical process $F_{\lambda}(y)$ are nonlinear functionals of X
- We extend the study of $F_{\lambda}(y)$ to more general nonlinear functionals

$$
Y_{\lambda}(\phi):=\int_{\mathbb{R}^{\nu}} \phi(\boldsymbol{t} / \lambda) Y(\boldsymbol{t}) \mathrm{d} \boldsymbol{t}, \quad \phi \in \Phi
$$

where:

$$
\begin{aligned}
& Y(\boldsymbol{t}):=G(X(\boldsymbol{t})) \text { or } Y(\boldsymbol{t})=G\left(X([\boldsymbol{t}]), \boldsymbol{t} \in \mathbb{R}^{\nu}, \mathrm{E} Y(\boldsymbol{t})^{2}<\infty,\right. \\
& G: \mathbb{R} \rightarrow \mathbb{R} \text { is a nonlinear function, } \\
& X(\boldsymbol{t}) \text { is a linear } \mathrm{RF} \text { satisfying Assumption }(A)\left(d ; \mathbb{Z}^{\nu}\right) /(A)\left(d ; \mathbb{R}^{\nu}\right)
\end{aligned}
$$

- $F_{\lambda}(y)$ corresponds to bounded $G(x)=\mathbb{I}(x \leq y)$ and $\phi(\boldsymbol{t})=\mathbb{I}(\boldsymbol{t} \in A)$

5. Nonlinear functionals and empirical processes

- $\mathbb{I}(X(\boldsymbol{t}) \leq y)$ and spatial empirical process $F_{\lambda}(y)$ are nonlinear functionals of X
- We extend the study of $F_{\lambda}(y)$ to more general nonlinear functionals

$$
Y_{\lambda}(\phi):=\int_{\mathbb{R}^{\nu}} \phi(\boldsymbol{t} / \lambda) Y(\boldsymbol{t}) \mathrm{d} \boldsymbol{t}, \quad \phi \in \Phi
$$

where:

$$
\begin{aligned}
& Y(\boldsymbol{t}):=G(X(\boldsymbol{t})) \text { or } Y(\boldsymbol{t})=G\left(X([\boldsymbol{t}]), \boldsymbol{t} \in \mathbb{R}^{\nu}, \mathrm{E} Y(\boldsymbol{t})^{2}<\infty\right. \\
& G: \mathbb{R} \rightarrow \mathbb{R} \text { is a nonlinear function, } \\
& X(\boldsymbol{t}) \text { is a linear } \mathrm{RF} \text { satisfying Assumption }(A)\left(d ; \mathbb{Z}^{\nu}\right) /(A)\left(d ; \mathbb{R}^{\nu}\right)
\end{aligned}
$$

- $F_{\lambda}(y)$ corresponds to bounded $G(x)=\mathbb{I}(x \leq y)$ and $\phi(\boldsymbol{t})=\mathbb{I}(\boldsymbol{t} \in A)$
- For Gaussian RF X the limit distribution of $Y_{\lambda}(\phi)$ can be derived from Dobrushin-Major-Taqqu theory based on Hermite expansion of G
- If G has Hermite rank 1: $h_{1}:=\mathrm{E} G(X(\boldsymbol{t})) X(\boldsymbol{t}) \neq 0$ the limit of $Y_{\lambda}(\phi)$ coincides with that of $h_{1} X_{\lambda}(\phi)$ which is Gaussian

5. Nonlinear functionals and empirical processes

- $\mathbb{I}(X(\boldsymbol{t}) \leq y)$ and spatial empirical process $F_{\lambda}(y)$ are nonlinear functionals of X
- We extend the study of $F_{\lambda}(y)$ to more general nonlinear functionals

$$
Y_{\lambda}(\phi):=\int_{\mathbb{R}^{\nu}} \phi(\boldsymbol{t} / \lambda) Y(\boldsymbol{t}) \mathrm{d} \boldsymbol{t}, \quad \phi \in \Phi
$$

where:

$$
\begin{aligned}
& Y(\boldsymbol{t}):=G(X(\boldsymbol{t})) \text { or } Y(\boldsymbol{t})=G\left(X([\boldsymbol{t}]), \boldsymbol{t} \in \mathbb{R}^{\nu}, \mathrm{E} Y(\boldsymbol{t})^{2}<\infty\right. \\
& G: \mathbb{R} \rightarrow \mathbb{R} \text { is a nonlinear function, } \\
& X(\boldsymbol{t}) \text { is a linear } \mathrm{RF} \text { satisfying Assumption }(A)\left(d ; \mathbb{Z}^{\nu}\right) /(A)\left(d ; \mathbb{R}^{\nu}\right)
\end{aligned}
$$

- $F_{\lambda}(y)$ corresponds to bounded $G(x)=\mathbb{I}(x \leq y)$ and $\phi(\boldsymbol{t})=\mathbb{I}(\boldsymbol{t} \in A)$
- For Gaussian RF X the limit distribution of $Y_{\lambda}(\phi)$ can be derived from Dobrushin-Major-Taqqu theory based on Hermite expansion of G
- If G has Hermite rank 1: $h_{1}:=\mathrm{E} G(X(\boldsymbol{t})) X(\boldsymbol{t}) \neq 0$ the limit of $Y_{\lambda}(\phi)$ coincides with that of $h_{1} X_{\lambda}(\phi)$ which is Gaussian
- This talk: a similar result for nongaussian linear $\mathrm{RX} X$ with h_{1} replaced by $a_{1}=$ the first Appell coefficient of G

5. Nonlinear functionals and empirical processes

5. Nonlinear functionals and empirical processes

In Thm $4 X$ is a linear LRD RF on \mathbb{Z}^{ν} :

$$
X(\boldsymbol{t})=\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} a(\boldsymbol{t}-\boldsymbol{s}) \varepsilon(\boldsymbol{s}), \quad \boldsymbol{t} \in \mathbb{Z}^{\nu},
$$

with MA coefficients $a(\boldsymbol{t})$ satisfying Assumption $(\mathrm{A})\left(d ; \mathbb{Z}^{\nu}\right), 0<d<\nu / 4$, and i.i.d. zero mean innovations satisfying moment and regularity conditions:

$$
\begin{gather*}
\mathrm{E}|\varepsilon|^{2 p}<\infty \quad(\exists p \geq 2, p \in \mathbb{N}), \tag{22}\\
\left|\mathrm{Ee}^{\mathrm{i} \mathrm{i} \varepsilon}\right| \leq C /(1+|z|)^{\tau}, \quad z \in \mathbb{R}, \quad(\exists C, \tau>0) . \tag{23}
\end{gather*}
$$

5. Nonlinear functionals and empirical processes

In Thm $4 X$ is a linear LRD RF on \mathbb{Z}^{ν} :

$$
X(\boldsymbol{t})=\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} a(\boldsymbol{t}-\boldsymbol{s}) \varepsilon(\boldsymbol{s}), \quad \boldsymbol{t} \in \mathbb{Z}^{\nu}
$$

with MA coefficients $a(\boldsymbol{t})$ satisfying Assumption $(\mathrm{A})\left(d ; \mathbb{Z}^{\nu}\right), 0<d<\nu / 4$, and i.i.d. zero mean innovations satisfying moment and regularity conditions:

$$
\begin{gather*}
\mathrm{E}|\varepsilon|^{2 p}<\infty \quad(\exists p \geq 2, p \in \mathbb{N}), \tag{22}\\
\left|\mathrm{Ee}^{\mathrm{i} z \varepsilon}\right| \leq C /(1+|z|)^{\tau}, \quad z \in \mathbb{R}, \quad(\exists C, \tau>0) \tag{23}
\end{gather*}
$$

Theorem (4)

Let X be as above, and $G: \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function satisfying

$$
\begin{equation*}
|G(x)| \leq C(1+|x|)^{p-2}, \quad x \in \mathbb{R} . \tag{24}
\end{equation*}
$$

5. Nonlinear functionals and empirical processes

In Thm $4 X$ is a linear LRD RF on \mathbb{Z}^{ν} :

$$
X(\boldsymbol{t})=\sum_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} a(\boldsymbol{t}-\boldsymbol{s}) \varepsilon(\boldsymbol{s}), \quad \boldsymbol{t} \in \mathbb{Z}^{\nu}
$$

with MA coefficients $a(\boldsymbol{t})$ satisfying Assumption $(\mathrm{A})\left(d ; \mathbb{Z}^{\nu}\right), 0<d<\nu / 4$, and i.i.d. zero mean innovations satisfying moment and regularity conditions:

$$
\begin{gather*}
\mathrm{E}|\varepsilon|^{2 p}<\infty \quad(\exists p \geq 2, p \in \mathbb{N}) \tag{22}\\
\left|\mathrm{Ee}^{\mathrm{i} z \varepsilon}\right| \leq C /(1+|z|)^{\tau}, \quad z \in \mathbb{R}, \quad(\exists C, \tau>0) \tag{23}
\end{gather*}
$$

Theorem (4)

Let X be as above, and $G: \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function satisfying

$$
\begin{equation*}
|G(x)| \leq C(1+|x|)^{p-2}, \quad x \in \mathbb{R} \tag{24}
\end{equation*}
$$

Then X has infinitely differentiable marginal density $f(x), x \in \mathbb{R}$ and the first Appell coefficient of G

$$
a_{1}:=-\int_{\mathbb{R}} G(x) f^{\prime}(x) \mathrm{d} x
$$

is well-defined.

5. Nonlinear functionals and empirical processes

5. Nonlinear functionals and empirical processes

Theorem (4, ctnd)

5. Nonlinear functionals and empirical processes

Theorem (4, ctnd)

Moreover,

$$
\begin{equation*}
\lambda^{-(\nu+4 d) / 2} Y_{\lambda}(\phi) \xrightarrow{\mathrm{d}} a_{1} W_{d}(\phi), \quad \forall \phi \in \Phi, \tag{25}
\end{equation*}
$$

where $W_{d}(\phi)$ is Gaussian RF (the same Gaussian RF as in Thm 3) with zero mean and variance

$$
E W_{d}(\phi)^{2}=\int_{\mathbb{R}^{\nu}}\left(a_{\infty} \star \phi\right)(\boldsymbol{s})^{2} \mathrm{~d} \boldsymbol{s}
$$

5. Nonlinear functionals and empirical processes

Theorem (4, ctnd)

Moreover,

$$
\begin{equation*}
\lambda^{-(\nu+4 d) / 2} Y_{\lambda}(\phi) \xrightarrow{\mathrm{d}} a_{1} W_{d}(\phi), \quad \forall \phi \in \Phi, \tag{25}
\end{equation*}
$$

where $W_{d}(\phi)$ is Gaussian RF (the same Gaussian RF as in Thm 3) with zero mean and variance

$$
\mathrm{E} W_{d}(\phi)^{2}=\int_{\mathbb{R}^{\nu}}\left(a_{\infty} \star \phi\right)(\boldsymbol{s})^{2} \mathrm{~d} \boldsymbol{s}
$$

Thm 4 applies to empirical process $F_{\lambda}(y)=\int_{\lambda A} \mathbb{I}(X(\boldsymbol{t}) \leq y) \mathrm{d} \boldsymbol{t} / \lambda^{\nu} \operatorname{Leb}_{\nu}(A)$ with $G(x)=\mathbb{I}(x \leq y), \ell=2, \phi(\boldsymbol{t})=\mathbb{I}(\boldsymbol{t} \in A)$ and

$$
\begin{equation*}
a_{1}=-\int_{-\infty}^{y} f^{\prime}(x) \mathrm{d} x=-f(y) \tag{26}
\end{equation*}
$$

5. Nonlinear functionals and empirical processes

Theorem (4, ctnd)

Moreover,

$$
\begin{equation*}
\lambda^{-(\nu+4 d) / 2} Y_{\lambda}(\phi) \xrightarrow{\mathrm{d}} a_{1} W_{d}(\phi), \quad \forall \phi \in \Phi, \tag{25}
\end{equation*}
$$

where $W_{d}(\phi)$ is Gaussian RF (the same Gaussian RF as in Thm 3) with zero mean and variance

$$
\mathrm{E} W_{d}(\phi)^{2}=\int_{\mathbb{R}^{\nu}}\left(a_{\infty} \star \phi\right)(\boldsymbol{s})^{2} \mathrm{~d} \boldsymbol{s}
$$

Thm 4 applies to empirical process $F_{\lambda}(y)=\int_{\lambda A} \mathbb{I}(X(\boldsymbol{t}) \leq y) \mathrm{d} \boldsymbol{t} / \lambda^{\nu} \operatorname{Leb}_{\nu}(A)$ with $G(x)=\mathbb{I}(x \leq y), \ell=2, \phi(\boldsymbol{t})=\mathbb{I}(\boldsymbol{t} \in A)$ and

$$
\begin{equation*}
a_{1}=-\int_{-\infty}^{y} f^{\prime}(x) \mathrm{d} x=-f(y) \tag{26}
\end{equation*}
$$

Set

$$
\sigma_{A}^{2}:=\int_{\mathbb{R}^{\nu}}\left(\int_{A} a_{\infty}(\boldsymbol{t}-\boldsymbol{s}) \mathrm{d} \boldsymbol{t}\right)^{2} \mathrm{~d} \boldsymbol{s}
$$

5. Nonlinear functionals and empirical processes

5. Nonlinear functionals and empirical processes

Corollary (1)

Let X satisfy Thm 3 with $p=2$, and $A \subset \mathbb{R}^{\nu}$ be a bounded Borel set.

5. Nonlinear functionals and empirical processes

Corollary (1)

Let X satisfy Thm 3 with $p=2$, and $A \subset \mathbb{R}^{\nu}$ be a bounded Borel set. Then

$$
\lambda^{\frac{\nu}{2}-2 d}\left(F_{\lambda}(y)-F(y)\right) \xrightarrow{D(\overline{\mathbb{R}})}\left(\frac{\sigma_{A}}{\operatorname{Leb}_{\nu}(A)}\right) f(y) Z, \quad Z \sim N(0,1) .
$$

5. Nonlinear functionals and empirical processes

Corollary (1)

Let X satisfy Thm 3 with $p=2$, and $A \subset \mathbb{R}^{\nu}$ be a bounded Borel set. Then

$$
\lambda^{\frac{\nu}{2}-2 d}\left(F_{\lambda}(y)-F(y)\right) \xrightarrow{D(\overline{\mathbb{R}})}\left(\frac{\sigma_{A}}{\operatorname{Leb}_{\nu}(A)}\right) f(y) Z, \quad Z \sim N(0,1) .
$$

In particular, $K-S$ statistic $\mathcal{D}_{\lambda}=\sup _{y \in \mathbb{R}}\left|F_{\lambda}(y)-F(y)\right|$ satisfies

$$
\lambda^{\frac{\nu}{2}-2 d} \mathcal{D}_{\lambda} \xrightarrow{\mathrm{d}}\left(\frac{\sigma_{A}}{\operatorname{Leb}_{\nu}(A)}\right)\|f\|_{\infty}|Z|,
$$

where $\|f\|_{\infty}:=\sup _{y \in \mathbb{R}} f(y)$.

- Tightness following Dehling \& Taqqu (1989) chaining argument

5. Nonlinear functionals and empirical processes

Corollary (1)

Let X satisfy Thm 3 with $p=2$, and $A \subset \mathbb{R}^{\nu}$ be a bounded Borel set. Then

$$
\lambda^{\frac{\nu}{2}-2 d}\left(F_{\lambda}(y)-F(y)\right) \xrightarrow{D(\overline{\mathbb{R}})}\left(\frac{\sigma_{A}}{\operatorname{Leb}_{\nu}(A)}\right) f(y) Z, \quad Z \sim N(0,1) .
$$

In particular, $K-S$ statistic $\mathcal{D}_{\lambda}=\sup _{y \in \mathbb{R}}\left|F_{\lambda}(y)-F(y)\right|$ satisfies

$$
\lambda^{\frac{\nu}{2}-2 d} \mathcal{D}_{\lambda} \xrightarrow{\mathrm{d}}\left(\frac{\sigma_{A}}{\operatorname{Leb}_{\nu}(A)}\right)\|f\|_{\infty}|Z|,
$$

where $\|f\|_{\infty}:=\sup _{y \in \mathbb{R}} f(y)$.

- Tightness following Dehling \& Taqqu (1989) chaining argument
- Limit empirical process const. $f(y) Z$ degenerated (LRD effect)

5. Nonlinear functionals and empirical processes

Corollary (1)

Let X satisfy Thm 3 with $p=2$, and $A \subset \mathbb{R}^{\nu}$ be a bounded Borel set. Then

$$
\lambda^{\frac{\nu}{2}-2 d}\left(F_{\lambda}(y)-F(y)\right) \xrightarrow{D(\overline{\mathbb{R}})}\left(\frac{\sigma_{A}}{\operatorname{Leb}_{\nu}(A)}\right) f(y) Z, \quad Z \sim N(0,1) .
$$

In particular, $K-S$ statistic $\mathcal{D}_{\lambda}=\sup _{y \in \mathbb{R}}\left|F_{\lambda}(y)-F(y)\right|$ satisfies

$$
\lambda^{\frac{\nu}{2}-2 d} \mathcal{D}_{\lambda} \xrightarrow{\mathrm{d}}\left(\frac{\sigma_{A}}{\operatorname{Leb}_{\nu}(A)}\right)\|f\|_{\infty}|Z|,
$$

where $\|f\|_{\infty}:=\sup _{y \in \mathbb{R}} f(y)$.

- Tightness following Dehling \& Taqqu (1989) chaining argument
- Limit empirical process const. $f(y) Z$ degenerated (LRD effect)
- $p=2: \mathrm{E} \varepsilon^{4}<\infty, \mathrm{E} X(t)^{4}<\infty$ (bounded G)

5. Nonlinear functionals and empirical processes

Corollary (1)

Let X satisfy Thm 3 with $p=2$, and $A \subset \mathbb{R}^{\nu}$ be a bounded Borel set. Then

$$
\lambda^{\frac{\nu}{2}-2 d}\left(F_{\lambda}(y)-F(y)\right) \xrightarrow{D(\overline{\mathbb{R}})}\left(\frac{\sigma_{A}}{\operatorname{Leb}_{\nu}(A)}\right) f(y) Z, \quad Z \sim N(0,1) .
$$

In particular, $K-S$ statistic $\mathcal{D}_{\lambda}=\sup _{y \in \mathbb{R}}\left|F_{\lambda}(y)-F(y)\right|$ satisfies

$$
\lambda^{\frac{\nu}{2}-2 d} \mathcal{D}_{\lambda} \xrightarrow{\mathrm{d}}\left(\frac{\sigma_{A}}{\operatorname{Leb}_{\nu}(A)}\right)\|f\|_{\infty}|Z|,
$$

where $\|f\|_{\infty}:=\sup _{y \in \mathbb{R}} f(y)$.

- Tightness following Dehling \& Taqqu (1989) chaining argument
- Limit empirical process const. $f(y) Z$ degenerated (LRD effect)
- $p=2: \mathrm{E} \varepsilon^{4}<\infty, \mathrm{E} X(t)^{4}<\infty$ (bounded G)
- $p \geq 3, \mathrm{E} \varepsilon^{2 p}<\infty$: unbounded G and statistics

5. Nonlinear functionals and empirical processes

5. Nonlinear functionals and empirical processes

- Related/similar results obtained for nonlinear functions and empirical process of continuous argument LRD RF

$$
X(\boldsymbol{t})=\int_{\mathbb{R}^{\nu}} a(\boldsymbol{t}-\boldsymbol{s}) M(\mathrm{~d} \boldsymbol{s}), \quad \boldsymbol{t} \in \mathbb{R}^{\nu}
$$

under Assumption $(\mathrm{A})\left(d ; \mathbb{R}^{\nu}\right), 0<d<\nu / 4$

5. Nonlinear functionals and empirical processes

- Related/similar results obtained for nonlinear functions and empirical process of continuous argument LRD RF

$$
X(\boldsymbol{t})=\int_{\mathbb{R}^{\nu}} a(\boldsymbol{t}-\boldsymbol{s}) M(\mathrm{~d} \boldsymbol{s}), \quad \boldsymbol{t} \in \mathbb{R}^{\nu}
$$

under Assumption $(\mathrm{A})\left(d ; \mathbb{R}^{\nu}\right), 0<d<\nu / 4$

- Proofs of Thm 4 and Cor 1 rely on the linearization or first-order reduction principle for nonlinear functionals:

$$
Y_{\lambda}(\phi)=a_{1} X_{\lambda}(\phi)\left(1+o_{p}(1)\right)
$$

5. Nonlinear functionals and empirical processes

- Related/similar results obtained for nonlinear functions and empirical process of continuous argument LRD RF

$$
X(\boldsymbol{t})=\int_{\mathbb{R}^{\nu}} a(\boldsymbol{t}-\boldsymbol{s}) M(\mathrm{~d} \boldsymbol{s}), \quad \boldsymbol{t} \in \mathbb{R}^{\nu}
$$

under Assumption $(\mathrm{A})\left(d ; \mathbb{R}^{\nu}\right), 0<d<\nu / 4$

- Proofs of Thm 4 and Cor 1 rely on the linearization or first-order reduction principle for nonlinear functionals:

$$
Y_{\lambda}(\phi)=a_{1} X_{\lambda}(\phi)\left(1+o_{p}(1)\right)
$$

where $Y_{\lambda}(\phi)-a_{1} X_{\lambda}(\phi)=\int_{\mathbb{R}^{\nu}} \phi(\boldsymbol{t} / \lambda) \mathcal{Z}(\boldsymbol{t}) \mathrm{d} \boldsymbol{t}, \mathcal{Z}(\boldsymbol{t}):=G(X(\boldsymbol{t}))-a_{1} X(\boldsymbol{t})$

5. Nonlinear functionals and empirical processes

- Related/similar results obtained for nonlinear functions and empirical process of continuous argument LRD RF

$$
X(\boldsymbol{t})=\int_{\mathbb{R}^{\nu}} a(\boldsymbol{t}-\boldsymbol{s}) M(\mathrm{~d} \boldsymbol{s}), \quad \boldsymbol{t} \in \mathbb{R}^{\nu}
$$

under Assumption $(\mathrm{A})\left(d ; \mathbb{R}^{\nu}\right), 0<d<\nu / 4$

- Proofs of Thm 4 and Cor 1 rely on the linearization or first-order reduction principle for nonlinear functionals:

$$
Y_{\lambda}(\phi)=a_{1} X_{\lambda}(\phi)\left(1+o_{p}(1)\right)
$$

where $Y_{\lambda}(\phi)-a_{1} X_{\lambda}(\phi)=\int_{\mathbb{R}^{\nu}} \phi(\boldsymbol{t} / \lambda) \mathcal{Z}(\boldsymbol{t}) \mathrm{d} \boldsymbol{t}, \mathcal{Z}(\boldsymbol{t}):=G(X(\boldsymbol{t}))-a_{1} X(\boldsymbol{t})$ which is a consequence of

$$
\begin{equation*}
\operatorname{Cov}(\mathcal{Z}(\mathbf{0}), \mathcal{Z}(\boldsymbol{t}))=o(\operatorname{Cov}(X(\mathbf{0}), X(\boldsymbol{t}))), \quad|\boldsymbol{t}| \rightarrow \infty \tag{27}
\end{equation*}
$$

5. Nonlinear functionals and empirical processes

- Related/similar results obtained for nonlinear functions and empirical process of continuous argument LRD RF

$$
X(\boldsymbol{t})=\int_{\mathbb{R}^{\nu}} a(\boldsymbol{t}-\boldsymbol{s}) M(\mathrm{~d} \boldsymbol{s}), \quad \boldsymbol{t} \in \mathbb{R}^{\nu}
$$

under Assumption $(\mathrm{A})\left(d ; \mathbb{R}^{\nu}\right), 0<d<\nu / 4$

- Proofs of Thm 4 and Cor 1 rely on the linearization or first-order reduction principle for nonlinear functionals:

$$
Y_{\lambda}(\phi)=a_{1} X_{\lambda}(\phi)\left(1+o_{p}(1)\right)
$$

where $Y_{\lambda}(\phi)-a_{1} X_{\lambda}(\phi)=\int_{\mathbb{R}^{\nu}} \phi(\boldsymbol{t} / \lambda) \mathcal{Z}(\boldsymbol{t}) \mathrm{d} \boldsymbol{t}, \mathcal{Z}(\boldsymbol{t}):=G(X(\boldsymbol{t}))-a_{1} X(\boldsymbol{t})$ which is a consequence of

$$
\begin{equation*}
\operatorname{Cov}(\mathcal{Z}(\mathbf{0}), \mathcal{Z}(\boldsymbol{t}))=o(\operatorname{Cov}(X(\mathbf{0}), X(\boldsymbol{t}))), \quad|\boldsymbol{t}| \rightarrow \infty \tag{27}
\end{equation*}
$$

- In causal LRD time series case $(\nu=1),(27)$ is shown by telescoping $G(X(t))$ onto orthogonal subspaces generated by lagged innovations (Ho \& Hsing (1996, 1997), ...)

5. Nonlinear functionals and empirical processes

5. Nonlinear functionals and empirical processes

- This talk: asymptotic expansion of the bivariate density $f_{\boldsymbol{t}}\left(y_{1}, y_{2}\right):=\mathrm{P}\left(X(\mathbf{0}) \in \mathrm{d} y_{1}, X(\boldsymbol{t}) \in \mathrm{d} y_{2}\right) / \mathrm{d} y_{1} \mathrm{~d} y_{2}$ of $(X(\mathbf{0}), X(\boldsymbol{t}))$, $r_{X}(\boldsymbol{t}):=\operatorname{Cov}(X(\mathbf{0}), X(\boldsymbol{t})):$

5. Nonlinear functionals and empirical processes

- This talk: asymptotic expansion of the bivariate density

$$
\begin{align*}
& f_{\boldsymbol{t}}\left(y_{1}, y_{2}\right):=\mathrm{P}\left(X(\mathbf{0}) \in \mathrm{d} y_{1}, X(\boldsymbol{t}) \in \mathrm{d} y_{2}\right) / \mathrm{d} y_{1} \mathrm{~d} y_{2} \text { of }(X(\mathbf{0}), X(\boldsymbol{t})), \\
& r_{X}(\boldsymbol{t}):=\operatorname{Cov}(X(\mathbf{0}), X(\boldsymbol{t})): \\
& \quad f_{\boldsymbol{t}}\left(y_{1}, y_{2}\right) \sim f\left(y_{1}\right) f\left(y_{2}\right)+r_{X}(\boldsymbol{t}) f^{\prime}\left(y_{1}\right) f^{\prime}\left(y_{2}\right), \quad|\boldsymbol{t}| \rightarrow \infty, \tag{28}
\end{align*}
$$

5. Nonlinear functionals and empirical processes

- This talk: asymptotic expansion of the bivariate density

$$
\begin{align*}
& f_{\boldsymbol{t}}\left(y_{1}, y_{2}\right):=\mathrm{P}\left(X(\mathbf{0}) \in \mathrm{d} y_{1}, X(\boldsymbol{t}) \in \mathrm{d} y_{2}\right) / \mathrm{d} y_{1} \mathrm{~d} y_{2} \text { of }(X(\mathbf{0}), X(\boldsymbol{t})), \\
& r_{X}(\boldsymbol{t}):=\operatorname{Cov}(X(\mathbf{0}), X(\boldsymbol{t})): \\
& \qquad f_{\boldsymbol{t}}\left(y_{1}, y_{2}\right) \sim f\left(y_{1}\right) f\left(y_{2}\right)+r_{X}(\boldsymbol{t}) f^{\prime}\left(y_{1}\right) f^{\prime}\left(y_{2}\right), \quad|\boldsymbol{t}| \rightarrow \infty, \tag{28}
\end{align*}
$$

- Need a stronger result:

$$
\sup _{y_{1}, y_{2} \in \mathbb{R}}\left|f_{\boldsymbol{t}}\left(y_{1}, y_{2}\right)-f\left(y_{1}\right) f\left(y_{2}\right)+r_{x}(\boldsymbol{t}) f^{\prime}\left(y_{1}\right) f^{\prime}\left(y_{2}\right)\right| \prod_{i=1}^{2}\left(1+\left|y_{i}\right|\right)^{p}=o\left(r_{x}(\boldsymbol{t})\right)(29)
$$

5. Nonlinear functionals and empirical processes

- This talk: asymptotic expansion of the bivariate density

$$
\begin{align*}
& f_{\boldsymbol{t}}\left(y_{1}, y_{2}\right):=\mathrm{P}\left(X(\mathbf{0}) \in \mathrm{d} y_{1}, X(\boldsymbol{t}) \in \mathrm{d} y_{2}\right) / \mathrm{d} y_{1} \mathrm{~d} y_{2} \text { of }(X(\mathbf{0}), X(\boldsymbol{t})), \\
& r_{X}(\boldsymbol{t}):=\operatorname{Cov}(X(\mathbf{0}), X(\boldsymbol{t})): \\
& \quad f_{\boldsymbol{t}}\left(y_{1}, y_{2}\right) \sim f\left(y_{1}\right) f\left(y_{2}\right)+r_{X}(\boldsymbol{t}) f^{\prime}\left(y_{1}\right) f^{\prime}\left(y_{2}\right), \quad|\boldsymbol{t}| \rightarrow \infty, \tag{28}
\end{align*}
$$

- Need a stronger result:

$$
\sup _{y_{1}, y_{2} \in \mathbb{R}}\left|f_{\boldsymbol{t}}\left(y_{1}, y_{2}\right)-f\left(y_{1}\right) f\left(y_{2}\right)+r_{x}(\boldsymbol{t}) f^{\prime}\left(y_{1}\right) f^{\prime}\left(y_{2}\right)\right| \prod_{i=1}^{2}\left(1+\left|y_{i}\right|\right)^{p}=o\left(r_{x}(\boldsymbol{t})\right)(29)
$$

- For Gaussian $(X(\mathbf{0}), X(\boldsymbol{t}))$ the r.h.s. of (28) gives the two first terms of Mehler's formula

5. Nonlinear functionals and empirical processes

- This talk: asymptotic expansion of the bivariate density

$$
\begin{align*}
& f_{\boldsymbol{t}}\left(y_{1}, y_{2}\right):=\mathrm{P}\left(X(\mathbf{0}) \in \mathrm{d} y_{1}, X(\boldsymbol{t}) \in \mathrm{d} y_{2}\right) / \mathrm{d} y_{1} \mathrm{~d} y_{2} \text { of }(X(\mathbf{0}), X(\boldsymbol{t})) \\
& r_{X}(\boldsymbol{t}):=\operatorname{Cov}(X(\mathbf{0}), X(\boldsymbol{t})): \\
& \qquad f_{\boldsymbol{t}}\left(y_{1}, y_{2}\right) \sim f\left(y_{1}\right) f\left(y_{2}\right)+r_{X}(\boldsymbol{t}) f^{\prime}\left(y_{1}\right) f^{\prime}\left(y_{2}\right), \quad|\boldsymbol{t}| \rightarrow \infty \tag{28}
\end{align*}
$$

- Need a stronger result:

$$
\sup _{y_{1}, y_{2} \in \mathbb{R}}\left|f_{\boldsymbol{t}}\left(y_{1}, y_{2}\right)-f\left(y_{1}\right) f\left(y_{2}\right)+r_{X}(\boldsymbol{t}) f^{\prime}\left(y_{1}\right) f^{\prime}\left(y_{2}\right)\right| \prod_{i=1}^{2}\left(1+\left|y_{i}\right|\right)^{p}=o\left(r_{X}(\boldsymbol{t})\right) \text { (29) }
$$

- For Gaussian $(X(\mathbf{0}), X(\boldsymbol{t}))$ the r.h.s. of (28) gives the two first terms of Mehler's formula
- Proof of (29) uses characteristic functions (Fourier transform) which write as infinite products

$$
\widehat{f}(z)=\prod_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} \phi(z a(\boldsymbol{s})), \quad \widehat{f}_{\boldsymbol{t}}\left(z_{1}, z_{2}\right)=\prod_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} \phi\left(z_{1} a(\boldsymbol{s})+z_{2} a_{2}(\boldsymbol{t}+\boldsymbol{s})\right)
$$

of ch.f. $\phi(z)=\mathrm{Ee}^{\mathrm{i} z \varepsilon}$ of innovations.

5. Nonlinear functionals and empirical processes

- This talk: asymptotic expansion of the bivariate density

$$
\begin{align*}
& f_{\boldsymbol{t}}\left(y_{1}, y_{2}\right):=\mathrm{P}\left(X(\mathbf{0}) \in \mathrm{d} y_{1}, X(\boldsymbol{t}) \in \mathrm{d} y_{2}\right) / \mathrm{d} y_{1} \mathrm{~d} y_{2} \text { of }(X(\mathbf{0}), X(\boldsymbol{t})) \\
& r_{X}(\boldsymbol{t}):=\operatorname{Cov}(X(\mathbf{0}), X(\boldsymbol{t})): \\
& \qquad f_{\boldsymbol{t}}\left(y_{1}, y_{2}\right) \sim f\left(y_{1}\right) f\left(y_{2}\right)+r_{X}(\boldsymbol{t}) f^{\prime}\left(y_{1}\right) f^{\prime}\left(y_{2}\right), \quad|\boldsymbol{t}| \rightarrow \infty \tag{28}
\end{align*}
$$

- Need a stronger result:

$$
\sup _{y_{1}, y_{2} \in \mathbb{R}}\left|f_{\boldsymbol{t}}\left(y_{1}, y_{2}\right)-f\left(y_{1}\right) f\left(y_{2}\right)+r_{X}(\boldsymbol{t}) f^{\prime}\left(y_{1}\right) f^{\prime}\left(y_{2}\right)\right| \prod_{i=1}^{2}\left(1+\left|y_{i}\right|\right)^{p}=o\left(r_{X}(\boldsymbol{t})\right) \text { (29) }
$$

- For Gaussian $(X(\mathbf{0}), X(\boldsymbol{t}))$ the r.h.s. of (28) gives the two first terms of Mehler's formula
- Proof of (29) uses characteristic functions (Fourier transform) which write as infinite products

$$
\widehat{f}(z)=\prod_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} \phi(z a(\boldsymbol{s})), \quad \widehat{f}_{\boldsymbol{t}}\left(z_{1}, z_{2}\right)=\prod_{\boldsymbol{s} \in \mathbb{Z}^{\nu}} \phi\left(z_{1} a(\boldsymbol{s})+z_{2} a_{2}(\boldsymbol{t}+\boldsymbol{s})\right)
$$

of ch.f. $\phi(z)=\mathrm{Ee}^{\mathrm{i} z \varepsilon}$ of innovations. For Lévy MA RF indexed by $\boldsymbol{t} \in \mathbb{R}^{\nu}$ the ch.f. are given by Lévy-Khihchine formula.

5. Nonlinear functionals and empirical processes

5. Nonlinear functionals and empirical processes

M estimation in spatial linear regression

5. Nonlinear functionals and empirical processes

M estimation in spatial linear regression
Linear regression model:

$$
\begin{equation*}
Y_{\lambda}(\boldsymbol{t})=\left\langle\boldsymbol{\beta}, \boldsymbol{v}_{\lambda}(\boldsymbol{t})\right\rangle+X(\boldsymbol{t}), \quad \boldsymbol{t} \in \lambda A \tag{30}
\end{equation*}
$$

where:

5. Nonlinear functionals and empirical processes

M estimation in spatial linear regression

Linear regression model:

$$
\begin{equation*}
Y_{\lambda}(\boldsymbol{t})=\left\langle\boldsymbol{\beta}, \boldsymbol{v}_{\lambda}(\boldsymbol{t})\right\rangle+X(\boldsymbol{t}), \quad \boldsymbol{t} \in \lambda A \tag{30}
\end{equation*}
$$

where:

- $\beta=\left(\beta_{1}, \cdots, \beta_{q}\right) \in \mathbb{R}^{q}$ unknown vector parameter

5. Nonlinear functionals and empirical processes

M estimation in spatial linear regression

Linear regression model:

$$
\begin{equation*}
Y_{\lambda}(\boldsymbol{t})=\left\langle\boldsymbol{\beta}, \boldsymbol{v}_{\lambda}(\boldsymbol{t})\right\rangle+X(\boldsymbol{t}), \quad \boldsymbol{t} \in \lambda A \tag{30}
\end{equation*}
$$

where:

- $\beta=\left(\beta_{1}, \cdots, \beta_{q}\right) \in \mathbb{R}^{q}$ unknown vector parameter
- $A \subset \mathbb{R}^{\nu}$ is a bounded Borel set as in Corollary $1, \lambda A=$ observation set

5. Nonlinear functionals and empirical processes

M estimation in spatial linear regression

Linear regression model:

$$
\begin{equation*}
Y_{\lambda}(\boldsymbol{t})=\left\langle\boldsymbol{\beta}, \boldsymbol{v}_{\lambda}(\boldsymbol{t})\right\rangle+X(\boldsymbol{t}), \quad \boldsymbol{t} \in \lambda A \tag{30}
\end{equation*}
$$

where:

- $\beta=\left(\beta_{1}, \cdots, \beta_{q}\right) \in \mathbb{R}^{q}$ unknown vector parameter
- $A \subset \mathbb{R}^{\nu}$ is a bounded Borel set as in Corollary $1, \lambda A=$ observation set
- $\boldsymbol{v}_{\lambda}(\boldsymbol{t})=\left(v_{1, \lambda}(\boldsymbol{t}), \cdots, v_{q, \lambda}(\boldsymbol{t})\right) \in \mathbb{R}^{\boldsymbol{q}}$ a known (deterministic) vector-valued regression function

5. Nonlinear functionals and empirical processes

M estimation in spatial linear regression

Linear regression model:

$$
\begin{equation*}
Y_{\lambda}(\boldsymbol{t})=\left\langle\boldsymbol{\beta}, \boldsymbol{v}_{\lambda}(\boldsymbol{t})\right\rangle+X(\boldsymbol{t}), \quad \boldsymbol{t} \in \lambda A \tag{30}
\end{equation*}
$$

where:

- $\beta=\left(\beta_{1}, \cdots, \beta_{q}\right) \in \mathbb{R}^{q}$ unknown vector parameter
- $A \subset \mathbb{R}^{\nu}$ is a bounded Borel set as in Corollary $1, \lambda A=$ observation set
- $\boldsymbol{v}_{\lambda}(\boldsymbol{t})=\left(\mathrm{v}_{1, \lambda}(\boldsymbol{t}), \cdots, v_{q, \lambda}(\boldsymbol{t})\right) \in \mathbb{R}^{q}$ a known (deterministic) vector-valued regression function
- $X(\boldsymbol{t}), \boldsymbol{t} \in \mathbb{Z}^{\nu} / \mathbb{R}^{\nu}$ a linear (error) RF as in Thm 2 and 3

5. Nonlinear functionals and empirical processes

M estimation in spatial linear regression
Linear regression model:

$$
\begin{equation*}
Y_{\lambda}(\boldsymbol{t})=\left\langle\boldsymbol{\beta}, \boldsymbol{v}_{\lambda}(\boldsymbol{t})\right\rangle+X(\boldsymbol{t}), \quad \boldsymbol{t} \in \lambda A \tag{30}
\end{equation*}
$$

where:

- $\beta=\left(\beta_{1}, \cdots, \beta_{q}\right) \in \mathbb{R}^{q}$ unknown vector parameter
- $A \subset \mathbb{R}^{\nu}$ is a bounded Borel set as in Corollary $1, \lambda A=$ observation set
- $\boldsymbol{v}_{\lambda}(\boldsymbol{t})=\left(v_{1, \lambda}(\boldsymbol{t}), \cdots, v_{q, \lambda}(\boldsymbol{t})\right) \in \mathbb{R}^{q}$ a known (deterministic) vector-valued regression function
- $X(\boldsymbol{t}), \boldsymbol{t} \in \mathbb{Z}^{\nu} / \mathbb{R}^{\nu}$ a linear (error) RF as in Thm 2 and 3
- Regressors $v_{i, \lambda}(\boldsymbol{t})=v_{i}(\boldsymbol{t} / \lambda)$ with non-degenerate $q \times q$ 'design matrix' $\mathbf{V}:=\left(\int_{A} v_{i}(\boldsymbol{t}) v_{j}(\boldsymbol{t}) \mathrm{d} \boldsymbol{t}\right)_{i, j=1, \cdots, q}$

5. Nonlinear functionals and empirical processes

5. Nonlinear functionals and empirical processes

- Following Thm 3, the LS estimator

$$
\widetilde{\boldsymbol{\beta}}_{\lambda, \mathrm{LS}}=\mathbf{V}_{\lambda}^{-1} \int_{\lambda A} \boldsymbol{v}_{\lambda}(\boldsymbol{t}) Y_{\lambda}(\boldsymbol{t}) \mathrm{d} \boldsymbol{t}
$$

is asymptotically normal:

$$
\lambda^{(\nu-4 d) / 2}\left(\widetilde{\boldsymbol{\beta}}_{\lambda, \mathrm{LS}}-\boldsymbol{\beta}\right) \xrightarrow{\mathrm{d}} \boldsymbol{W}_{d, \boldsymbol{v}}(A):=\int_{\mathbb{R}^{\nu}}\left\{\int_{A} \mathbf{V}^{-1} \boldsymbol{v}(\boldsymbol{t}) a_{\infty}(\boldsymbol{t}-\boldsymbol{u}) \mathrm{d} \boldsymbol{t}\right\} W(\mathrm{~d} \boldsymbol{u})
$$

with Gaussian limit written as stochastic integral w.r.t. Gaussian white noise

5. Nonlinear functionals and empirical processes

- Following Thm 3, the LS estimator

$$
\widetilde{\boldsymbol{\beta}}_{\lambda, \mathrm{LS}}=\mathbf{V}_{\lambda}^{-1} \int_{\lambda A} \boldsymbol{v}_{\lambda}(\boldsymbol{t}) Y_{\lambda}(\boldsymbol{t}) \mathrm{d} \boldsymbol{t}
$$

is asymptotically normal:

$$
\lambda^{(\nu-4 d) / 2}\left(\widetilde{\boldsymbol{\beta}}_{\lambda, \mathrm{LS}}-\boldsymbol{\beta}\right) \xrightarrow{\mathrm{d}} \boldsymbol{W}_{d, \boldsymbol{v}}(A):=\int_{\mathbb{R}^{\nu}}\left\{\int_{A} \mathbf{v}^{-1} \boldsymbol{v}(\boldsymbol{t}) a_{\infty}(\boldsymbol{t}-\boldsymbol{u}) \mathrm{d} \boldsymbol{t}\right\} W(\mathrm{~d} \boldsymbol{u})
$$

with Gaussian limit written as stochastic integral w.r.t. Gaussian white noise

- Since LS $\widetilde{\boldsymbol{\beta}}_{\lambda, \mathrm{LS}}$ is sensitive to outliers, a class of robust M estimators is considered where residuals $Y_{\lambda}(\boldsymbol{t})-\left\langle\boldsymbol{z}, \boldsymbol{v}_{\lambda}(\boldsymbol{t})\right\rangle$ are discounted by a nonlinear score function $\tau(y), y \in \mathbb{R}$ with $|\tau(y)|=o(|y|),|y| \rightarrow \infty$

5. Nonlinear functionals and empirical processes

- Following Thm 3, the LS estimator

$$
\widetilde{\boldsymbol{\beta}}_{\lambda, \mathrm{LS}}=\mathbf{V}_{\lambda}^{-1} \int_{\lambda A} \boldsymbol{v}_{\lambda}(\boldsymbol{t}) Y_{\lambda}(\boldsymbol{t}) \mathrm{d} \boldsymbol{t}
$$

is asymptotically normal:

$$
\lambda^{(\nu-4 d) / 2}\left(\widetilde{\boldsymbol{\beta}}_{\lambda, \mathrm{LS}}-\boldsymbol{\beta}\right) \xrightarrow{\mathrm{d}} \boldsymbol{W}_{d, \boldsymbol{v}}(A):=\int_{\mathbb{R}^{\nu}}\left\{\int_{A} \mathbf{V}^{-1} \boldsymbol{v}(\boldsymbol{t}) a_{\infty}(\boldsymbol{t}-\boldsymbol{u}) \mathrm{d} \boldsymbol{t}\right\} W(\mathrm{~d} \boldsymbol{u})
$$

with Gaussian limit written as stochastic integral w.r.t. Gaussian white noise

- Since LS $\widetilde{\boldsymbol{\beta}}_{\lambda, \mathrm{LS}}$ is sensitive to outliers, a class of robust M estimators is considered where residuals $Y_{\lambda}(\boldsymbol{t})-\left\langle\boldsymbol{z}, \boldsymbol{v}_{\lambda}(\boldsymbol{t})\right\rangle$ are discounted by a nonlinear score function $\tau(y), y \in \mathbb{R}$ with $|\tau(y)|=o(|y|),|y| \rightarrow \infty$
- Formally, $\widetilde{\boldsymbol{\beta}}_{\lambda, \mathrm{M}}:=\operatorname{argmin}\left\{\left|\mathcal{M}_{\lambda}(\boldsymbol{z} ; \tau)\right|^{2}: \boldsymbol{z} \in \mathbb{R}^{p}\right\}$ where

$$
\mathcal{M}_{\lambda}(\boldsymbol{z} ; \tau):=\mathbf{V}_{\lambda}^{-1 / 2} \int_{\lambda A} \boldsymbol{v}_{\lambda}(\boldsymbol{t}) \tau\left(Y_{\lambda}(\boldsymbol{t})-\left\langle\boldsymbol{z}, \boldsymbol{v}_{\lambda}(\boldsymbol{t})\right\rangle\right) \mathrm{d} \boldsymbol{t}
$$

5. Nonlinear functionals and empirical processes

- Following Thm 3, the LS estimator

$$
\widetilde{\boldsymbol{\beta}}_{\lambda, \mathrm{LS}}=\mathbf{V}_{\lambda}^{-1} \int_{\lambda A} \boldsymbol{v}_{\lambda}(\boldsymbol{t}) Y_{\lambda}(\boldsymbol{t}) \mathrm{d} \boldsymbol{t}
$$

is asymptotically normal:

$$
\lambda^{(\nu-4 d) / 2}\left(\widetilde{\boldsymbol{\beta}}_{\lambda, \mathrm{LS}}-\boldsymbol{\beta}\right) \xrightarrow{\mathrm{d}} \boldsymbol{W}_{d, \boldsymbol{v}}(A):=\int_{\mathbb{R}^{\nu}}\left\{\int_{A} \mathbf{V}^{-1} \boldsymbol{v}(\boldsymbol{t}) a_{\infty}(\boldsymbol{t}-\boldsymbol{u}) \mathrm{d} \boldsymbol{t}\right\} W(\mathrm{~d} \boldsymbol{u})
$$

with Gaussian limit written as stochastic integral w.r.t. Gaussian white noise

- Since LS $\widetilde{\boldsymbol{\beta}}_{\lambda, \text { LS }}$ is sensitive to outliers, a class of robust M estimators is considered where residuals $Y_{\lambda}(\boldsymbol{t})-\left\langle\boldsymbol{z}, \boldsymbol{v}_{\lambda}(\boldsymbol{t})\right\rangle$ are discounted by a nonlinear score function $\tau(y), y \in \mathbb{R}$ with $|\tau(y)|=o(|y|),|y| \rightarrow \infty$
- Formally, $\widetilde{\boldsymbol{\beta}}_{\lambda, \mathrm{M}}:=\operatorname{argmin}\left\{\left|\mathcal{M}_{\lambda}(\boldsymbol{z} ; \tau)\right|^{2}: \boldsymbol{z} \in \mathbb{R}^{p}\right\}$ where

$$
\mathcal{M}_{\lambda}(\boldsymbol{z} ; \tau):=\mathbf{V}_{\lambda}^{-1 / 2} \int_{\lambda A} \boldsymbol{v}_{\lambda}(\boldsymbol{t}) \tau\left(Y_{\lambda}(\boldsymbol{t})-\left\langle\boldsymbol{z}, \boldsymbol{v}_{\lambda}(\boldsymbol{t})\right\rangle\right) \mathrm{d} \boldsymbol{t}
$$

- the score $\tau(y), y \in \mathbb{R}$ function is bdd, monotone and $\int_{\mathbb{R}} \tau(y) f(y) \mathrm{d} y=0$, $\int_{\mathbb{R}} \tau(y) f^{\prime}(y) \mathrm{d} y \neq 0(f(y)$ is the marginal probability density of error $\mathrm{RF} X)$

5. Nonlinear functionals and empirical processes

- Following Thm 3, the LS estimator

$$
\widetilde{\boldsymbol{\beta}}_{\lambda, \mathrm{LS}}=\mathbf{V}_{\lambda}^{-1} \int_{\lambda A} \boldsymbol{v}_{\lambda}(\boldsymbol{t}) Y_{\lambda}(\boldsymbol{t}) \mathrm{d} \boldsymbol{t}
$$

is asymptotically normal:

$$
\lambda^{(\nu-4 d) / 2}\left(\widetilde{\boldsymbol{\beta}}_{\lambda, \mathrm{LS}}-\boldsymbol{\beta}\right) \xrightarrow{\mathrm{d}} \boldsymbol{W}_{d, \boldsymbol{v}}(A):=\int_{\mathbb{R}^{\nu}}\left\{\int_{A} \mathbf{V}^{-1} \boldsymbol{v}(\boldsymbol{t}) a_{\infty}(\boldsymbol{t}-\boldsymbol{u}) \mathrm{d} \boldsymbol{t}\right\} W(\mathrm{~d} \boldsymbol{u})
$$

with Gaussian limit written as stochastic integral w.r.t. Gaussian white noise

- Since LS $\widetilde{\boldsymbol{\beta}}_{\lambda, \mathrm{LS}}$ is sensitive to outliers, a class of robust M estimators is considered where residuals $Y_{\lambda}(\boldsymbol{t})-\left\langle\boldsymbol{z}, \boldsymbol{v}_{\lambda}(\boldsymbol{t})\right\rangle$ are discounted by a nonlinear score function $\tau(y), y \in \mathbb{R}$ with $|\tau(y)|=o(|y|),|y| \rightarrow \infty$
- Formally, $\widetilde{\boldsymbol{\beta}}_{\lambda, \mathrm{M}}:=\operatorname{argmin}\left\{\left|\mathcal{M}_{\lambda}(\boldsymbol{z} ; \tau)\right|^{2}: \boldsymbol{z} \in \mathbb{R}^{p}\right\}$ where

$$
\mathcal{M}_{\lambda}(\boldsymbol{z} ; \tau):=\mathbf{V}_{\lambda}^{-1 / 2} \int_{\lambda A} \boldsymbol{v}_{\lambda}(\boldsymbol{t}) \tau\left(Y_{\lambda}(\boldsymbol{t})-\left\langle\boldsymbol{z}, \boldsymbol{v}_{\lambda}(\boldsymbol{t})\right\rangle\right) \mathrm{d} \boldsymbol{t}
$$

- the score $\tau(y), y \in \mathbb{R}$ function is bdd, monotone and $\int_{\mathbb{R}} \tau(y) f(y) \mathrm{d} y=0$, $\int_{\mathbb{R}} \tau(y) f^{\prime}(y) \mathrm{d} y \neq 0(f(y)$ is the marginal probability density of error $\operatorname{RF} X)$
- $\int_{\mathbb{R}} \tau(y) f(y) \mathrm{d} y=a_{0},-\int_{\mathbb{R}} \tau(y) f^{\prime}(y) \mathrm{d} y=a_{1}$: the two first Appell coefficients of τ

5. Nonlinear functionals and empirical processes

5. Nonlinear functionals and empirical processes

Theorem (5)

Consider the linear regression model in (30) with regressor function $\boldsymbol{v}_{\lambda}(\boldsymbol{t})=\boldsymbol{v}(\boldsymbol{t} / \lambda)$, $v(\cdot) \in L^{1}\left(\mathbb{R}^{\nu}\right) \cap L^{\infty}\left(\mathbb{R}^{\nu}\right)$ and errors X being a linear LRD RF as in Corollary 1. Then for any score function $\tau: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the above conditions, M estimator is asymptotically equivalent to $L S$ estimator:

$$
\lambda^{(\nu-4 d) / 2}\left(\widetilde{\boldsymbol{\beta}}_{\lambda, \mathrm{M}}-\boldsymbol{\beta}\right)=\lambda^{(\nu-4 d) / 2}\left(\widetilde{\boldsymbol{\beta}}_{\lambda, \mathrm{LS}}-\boldsymbol{\beta}\right)+o_{p}(1)
$$

and has the same Gaussian limit distribution.

5. Nonlinear functionals and empirical processes

Theorem (5)

Consider the linear regression model in (30) with regressor function $\boldsymbol{v}_{\lambda}(\boldsymbol{t})=\boldsymbol{v}(\boldsymbol{t} / \lambda)$, $\boldsymbol{v}(\cdot) \in L^{1}\left(\mathbb{R}^{\nu}\right) \cap L^{\infty}\left(\mathbb{R}^{\nu}\right)$ and errors X being a linear $L R D R F$ as in Corollary 1. Then for any score function $\tau: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the above conditions, M estimator is asymptotically equivalent to LS estimator:

$$
\lambda^{(\nu-4 d) / 2}\left(\widetilde{\boldsymbol{\beta}}_{\lambda, \mathrm{M}}-\boldsymbol{\beta}\right)=\lambda^{(\nu-4 d) / 2}\left(\widetilde{\boldsymbol{\beta}}_{\lambda, \mathrm{LS}}-\boldsymbol{\beta}\right)+o_{p}(1)
$$

and has the same Gaussian limit distribution.

- Related results about equivalence of M and LS estimators in LRD time series, $\nu=1$: Beran (1992), Koul \& Mukherjee (1993), Wu (2003), ...

5. Nonlinear functionals and empirical processes

Theorem (5)

Consider the linear regression model in (30) with regressor function $\boldsymbol{v}_{\lambda}(\boldsymbol{t})=\boldsymbol{v}(\boldsymbol{t} / \lambda)$, $\boldsymbol{v}(\cdot) \in L^{1}\left(\mathbb{R}^{\nu}\right) \cap L^{\infty}\left(\mathbb{R}^{\nu}\right)$ and errors X being a linear $L R D R F$ as in Corollary 1. Then for any score function $\tau: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the above conditions, M estimator is asymptotically equivalent to LS estimator:

$$
\lambda^{(\nu-4 d) / 2}\left(\widetilde{\boldsymbol{\beta}}_{\lambda, \mathrm{M}}-\boldsymbol{\beta}\right)=\lambda^{(\nu-4 d) / 2}\left(\widetilde{\boldsymbol{\beta}}_{\lambda, \mathrm{LS}}-\boldsymbol{\beta}\right)+o_{\rho}(1)
$$

and has the same Gaussian limit distribution.

- Related results about equivalence of M and LS estimators in LRD time series, $\nu=1$: Beran (1992), Koul \& Mukherjee (1993), Wu (2003), ...
- Proof of Thm 5 follows the approach in Koul, (2002) Weighted Empirical Processes in Dynamic Nonlinear Models. (2002, Springer)

5. Nonlinear functionals and empirical processes

Theorem (5)

Consider the linear regression model in (30) with regressor function $\boldsymbol{v}_{\lambda}(\boldsymbol{t})=\boldsymbol{v}(\boldsymbol{t} / \lambda)$, $\boldsymbol{v}(\cdot) \in L^{1}\left(\mathbb{R}^{\nu}\right) \cap L^{\infty}\left(\mathbb{R}^{\nu}\right)$ and errors X being a linear $L R D R F$ as in Corollary 1. Then for any score function $\tau: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the above conditions, M estimator is asymptotically equivalent to LS estimator:

$$
\lambda^{(\nu-4 d) / 2}\left(\widetilde{\boldsymbol{\beta}}_{\lambda, \mathrm{M}}-\boldsymbol{\beta}\right)=\lambda^{(\nu-4 d) / 2}\left(\widetilde{\boldsymbol{\beta}}_{\lambda, \mathrm{LS}}-\boldsymbol{\beta}\right)+o_{\rho}(1)
$$

and has the same Gaussian limit distribution.

- Related results about equivalence of M and LS estimators in LRD time series, $\nu=1$: Beran (1992), Koul \& Mukherjee (1993), Wu (2003), ...
- Proof of Thm 5 follows the approach in Koul, (2002) Weighted Empirical Processes in Dynamic Nonlinear Models. (2002, Springer)
- uniform reduction principle for weighted empirical process

