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1. Fractional integration in dimension 1. LRD & fractional processes

Discrete time: Tg(t) = g(t − 1), t ∈ Z: backward shift

fractional ‘derivative’ (I − T )d (0 < d < 1) interpolates between identity and
‘discrete derivative’ (I − T )g(t) = g(t)− g(t − 1)

fractional ‘integral’ (I − T )d (−1 < d < 0) interpolates between identity and
‘discrete integral’: (I − T )−1g(t) =

∑t
s=−∞ g(s)

The operators (I − T )d (−1 < d < 1) defined through binomial expansion:

(1− z)d =

∞∑
j=0

ψj (d)z j , ψj (d) :=
Γ(j − d)

Γ(j + 1)Γ(−d)
, z ∈ C, |z| < 1.

Namely,

(I − T )dg(t) :=

∞∑
j=0

ψj (d)T jg(t) =

∞∑
j=0

ψj (d)g(t − j), t ∈ Z

Commutative group: (I − T )d1 (I − T )d2 = (I − T )d1+d2 (|d1|, |d2|, |d1 + d2| < 1),
(I − T )d (I − T )−d = I
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1. Fractional integration in dimension 1. LRD & fractional processes

Properties of binomial coefficients: ψ0(d) = 1,
ψj (d) < 0 (j ≥ 1),

∑∞
j=0 ψj (d) = 0, 0 < d < 1,

ψj (d) > 0 (j ≥ 1),
∑∞

j=0 ψj (d) =∞, −1 < d < 0,

ψj (d) ∼ Γ(−d)−1j−d−1, j →∞, 0 < |d | < 1,∑∞
j=0 ψj (d)2

{
<∞, −1/2 < d < 0,
=∞, d ≤ −1/2.

Autoregressive fractionally integrated moving-average (ARFIMA (0, d , 0)) process
X = {X(t); t ∈ Z} defined as the solution of the stochastic difference equation

(I − T )dX(t) =

∞∑
j=0

ψj (d)X(t − j) = ε(t), t ∈ Z (1)

where {ε(t); t ∈ Z} is an i.i.d. (white noise), with zero mean and finite variance.
For d ∈ (−1/2, 1/2), d 6= 0 the unique stationary solution of (1) or ARFIMA
(0, d , 0) process writes as MA process:

X(t) = (I − T )−dε(t) =

∞∑
j=0

ψj (−d)ε(t − j)

2024 m. vasario 12 d. 4 / 35



1. Fractional integration in dimension 1. LRD & fractional processes

Properties of binomial coefficients: ψ0(d) = 1,
ψj (d) < 0 (j ≥ 1),

∑∞
j=0 ψj (d) = 0, 0 < d < 1,

ψj (d) > 0 (j ≥ 1),
∑∞

j=0 ψj (d) =∞, −1 < d < 0,

ψj (d) ∼ Γ(−d)−1j−d−1, j →∞, 0 < |d | < 1,∑∞
j=0 ψj (d)2

{
<∞, −1/2 < d < 0,
=∞, d ≤ −1/2.

Autoregressive fractionally integrated moving-average (ARFIMA (0, d , 0)) process
X = {X(t); t ∈ Z} defined as the solution of the stochastic difference equation

(I − T )dX(t) =

∞∑
j=0

ψj (d)X(t − j) = ε(t), t ∈ Z (1)

where {ε(t); t ∈ Z} is an i.i.d. (white noise), with zero mean and finite variance.
For d ∈ (−1/2, 1/2), d 6= 0 the unique stationary solution of (1) or ARFIMA
(0, d , 0) process writes as MA process:

X(t) = (I − T )−dε(t) =

∞∑
j=0

ψj (−d)ε(t − j)

2024 m. vasario 12 d. 4 / 35



1. Fractional integration in dimension 1. LRD & fractional processes

Properties of binomial coefficients: ψ0(d) = 1,
ψj (d) < 0 (j ≥ 1),

∑∞
j=0 ψj (d) = 0, 0 < d < 1,

ψj (d) > 0 (j ≥ 1),
∑∞

j=0 ψj (d) =∞, −1 < d < 0,

ψj (d) ∼ Γ(−d)−1j−d−1, j →∞, 0 < |d | < 1,∑∞
j=0 ψj (d)2

{
<∞, −1/2 < d < 0,
=∞, d ≤ −1/2.

Autoregressive fractionally integrated moving-average (ARFIMA (0, d , 0)) process
X = {X(t); t ∈ Z} defined as the solution of the stochastic difference equation

(I − T )dX(t) =

∞∑
j=0

ψj (d)X(t − j) = ε(t), t ∈ Z (1)

where {ε(t); t ∈ Z} is an i.i.d. (white noise), with zero mean and finite variance.
For d ∈ (−1/2, 1/2), d 6= 0 the unique stationary solution of (1) or ARFIMA
(0, d , 0) process writes as MA process:

X(t) = (I − T )−dε(t) =

∞∑
j=0

ψj (−d)ε(t − j)

2024 m. vasario 12 d. 4 / 35



1. Fractional integration in dimension 1. LRD & fractional processes

Properties of binomial coefficients: ψ0(d) = 1,
ψj (d) < 0 (j ≥ 1),

∑∞
j=0 ψj (d) = 0, 0 < d < 1,

ψj (d) > 0 (j ≥ 1),
∑∞

j=0 ψj (d) =∞, −1 < d < 0,

ψj (d) ∼ Γ(−d)−1j−d−1, j →∞, 0 < |d | < 1,

∑∞
j=0 ψj (d)2

{
<∞, −1/2 < d < 0,
=∞, d ≤ −1/2.

Autoregressive fractionally integrated moving-average (ARFIMA (0, d , 0)) process
X = {X(t); t ∈ Z} defined as the solution of the stochastic difference equation

(I − T )dX(t) =

∞∑
j=0

ψj (d)X(t − j) = ε(t), t ∈ Z (1)

where {ε(t); t ∈ Z} is an i.i.d. (white noise), with zero mean and finite variance.
For d ∈ (−1/2, 1/2), d 6= 0 the unique stationary solution of (1) or ARFIMA
(0, d , 0) process writes as MA process:

X(t) = (I − T )−dε(t) =

∞∑
j=0

ψj (−d)ε(t − j)

2024 m. vasario 12 d. 4 / 35



1. Fractional integration in dimension 1. LRD & fractional processes

Properties of binomial coefficients: ψ0(d) = 1,
ψj (d) < 0 (j ≥ 1),

∑∞
j=0 ψj (d) = 0, 0 < d < 1,

ψj (d) > 0 (j ≥ 1),
∑∞

j=0 ψj (d) =∞, −1 < d < 0,

ψj (d) ∼ Γ(−d)−1j−d−1, j →∞, 0 < |d | < 1,∑∞
j=0 ψj (d)2

{
<∞, −1/2 < d < 0,
=∞, d ≤ −1/2.

Autoregressive fractionally integrated moving-average (ARFIMA (0, d , 0)) process
X = {X(t); t ∈ Z} defined as the solution of the stochastic difference equation

(I − T )dX(t) =

∞∑
j=0

ψj (d)X(t − j) = ε(t), t ∈ Z (1)

where {ε(t); t ∈ Z} is an i.i.d. (white noise), with zero mean and finite variance.
For d ∈ (−1/2, 1/2), d 6= 0 the unique stationary solution of (1) or ARFIMA
(0, d , 0) process writes as MA process:

X(t) = (I − T )−dε(t) =

∞∑
j=0

ψj (−d)ε(t − j)

2024 m. vasario 12 d. 4 / 35



1. Fractional integration in dimension 1. LRD & fractional processes

Properties of binomial coefficients: ψ0(d) = 1,
ψj (d) < 0 (j ≥ 1),

∑∞
j=0 ψj (d) = 0, 0 < d < 1,

ψj (d) > 0 (j ≥ 1),
∑∞

j=0 ψj (d) =∞, −1 < d < 0,

ψj (d) ∼ Γ(−d)−1j−d−1, j →∞, 0 < |d | < 1,∑∞
j=0 ψj (d)2

{
<∞, −1/2 < d < 0,
=∞, d ≤ −1/2.

Autoregressive fractionally integrated moving-average (ARFIMA (0, d , 0)) process
X = {X(t); t ∈ Z} defined as the solution of the stochastic difference equation

(I − T )dX(t) =

∞∑
j=0

ψj (d)X(t − j) = ε(t), t ∈ Z (1)

where {ε(t); t ∈ Z} is an i.i.d. (white noise), with zero mean and finite variance.

For d ∈ (−1/2, 1/2), d 6= 0 the unique stationary solution of (1) or ARFIMA
(0, d , 0) process writes as MA process:

X(t) = (I − T )−dε(t) =

∞∑
j=0

ψj (−d)ε(t − j)

2024 m. vasario 12 d. 4 / 35



1. Fractional integration in dimension 1. LRD & fractional processes

Properties of binomial coefficients: ψ0(d) = 1,
ψj (d) < 0 (j ≥ 1),

∑∞
j=0 ψj (d) = 0, 0 < d < 1,

ψj (d) > 0 (j ≥ 1),
∑∞

j=0 ψj (d) =∞, −1 < d < 0,

ψj (d) ∼ Γ(−d)−1j−d−1, j →∞, 0 < |d | < 1,∑∞
j=0 ψj (d)2

{
<∞, −1/2 < d < 0,
=∞, d ≤ −1/2.

Autoregressive fractionally integrated moving-average (ARFIMA (0, d , 0)) process
X = {X(t); t ∈ Z} defined as the solution of the stochastic difference equation

(I − T )dX(t) =

∞∑
j=0

ψj (d)X(t − j) = ε(t), t ∈ Z (1)

where {ε(t); t ∈ Z} is an i.i.d. (white noise), with zero mean and finite variance.
For d ∈ (−1/2, 1/2), d 6= 0 the unique stationary solution of (1) or ARFIMA
(0, d , 0) process writes as MA process:

X(t) = (I − T )−dε(t) =

∞∑
j=0

ψj (−d)ε(t − j)

2024 m. vasario 12 d. 4 / 35



1. Fractional integration in dimension 1. LRD & fractional processes

ARFIMA (0, d , 0) has explicit covariance function & spectral density and
long-range dependence (LRD) for 0 < d < 1/2 and negative dependence (ND) for
−1/2 < d < 0:

Cov(X(0),X(t)) ∼ cd t−1+2d , t →∞, cd = Γ(1− 2d)/Γ(d)Γ(1− d)

∑
t∈Z |Cov(X(0),X(t))| =∞ (0 < d < 1/2) (LRD),∑
t∈Z Cov(X(0),X(t)) = 0 (−1/2 < d < 0) (ND)

Partial sums of ARFIMA (0, d , 0) converge to Fractional Brownian Motion (FBM)
with Hurst parameter H = d + 1/2 ∈ (0, 1) under normalization nd+1/2

ARFIMA (0, d , 0) is the basic LRD parametric model in large sample statistical
inference

Double-sided T (e.g. Tg(t) = (1/2)(g(t + 1) + g(t − 1))) lead to double-sided
(noncausal) process X(t) = (I − T )−dε(t)
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1. Fractional integration in dimension 1. LRD & fractional processes

Continuous time t ∈ R: (I − T )g(t) = dg(t)/dt: derivative,
(I − T )−1g(t) =

∫ t
−∞ g(s)ds: integral

Liouville fractional operators: (Dg)(t) := dg(t)/dt, (Ig)(t) :=
∫ t
−∞ g(s)ds,

α ∈ (0, 1):

(Dαg)(t) := d
dt

1
Γ(1−α)

∫ t
−∞ g(s)(t − s)−αds,

(Iαg)(t) := 1
Γ(α)

∫ t
−∞ g(s)(t − s)α−1ds

DαIα = I

Fractionally integrated white noise Ḃ(t) := dB(t)/dt is FBM with
H = α + 1/2 ∈ (0, 1)

X(t) :=

{∫ t
0 (IαḂ)(s)ds, 0 < α < 1/2,∫ t
0 (DαḂ)(s)ds, −1/2 < α < 0
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2. Fractional integration on Zν . Examples

Pipiras & Taqqu (2003, 2017), ...

generalizations and extensions of fractional integration in dimension 1:
- time varying fractional parameter d : Philippe, S. & Viano (2006, 2008) (dicrete
time), S. (2008) (continuous time)
- tempered fractional operators (ARTFIMA, TFBM): Meerschaert & Sabzikar
(2013,2014,2016), Sabzikar & S. (2017, 2018)

2. Fractional integration on Zν. Examples
Tg(t) :=

∑
s∈Zν g(s)p(t − s), t ∈ Zν : transition operator of a random walk (RW)

Sj , j ≥ 0 on Zν with 1-step probabilities P(S1 = s|S0 = 0) =: p(s)

T jg(t) =
∑

s∈Zν g(s)pj (t − s), j = 0, 1, · · · , pj (s) = j-step probabilities

Fractional powers (I − T )d ,−1 < d < 1 can be defined similarly to ν = 1 through
binomial expansion (1− z)d =

∑∞
j=0 ψj (d)z j , |z| < 1:

(I − T )dg(t) :=
∑∞

j=0 ψj (d)T jg(t) =
∑

s∈Zν τ(s; d)g(t − s), where

τ(s; d) :=
∑∞

j=0 ψj (d)pj (s), s ∈ Zν (2)
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2. Fractional integration on Zν . Examples

Example 1. ν = 1, ARFIMA(0, d , 0): T jg(t) = g(t− j),Sj = j = deterministic RW on Z

Example 2. ν ≥ 1, fractional Laplacian (I − T )d = (−∆)d :

∆g(t) = (T − I)g(t) :=
1
2ν

ν∑
j=1

(g(t + e j ) + g(t − e j )− 2g(t))

corresponds to simple nearest-neighbor RW p(±e j ) = 1/2ν,
e j := (0, · · · , 0, 1, 0, · · · , 0) ∈ Zν , j = 1, · · · , ν

Example 3. ν ≥ 2, fractional heat operator (I − T )d = (∆1,2)d :

∆1,2g(t) := (1− θ)(g(t)− g(t − e1))

− θ

2(ν − 1)

ν∑
j=2

(g(t − e1 + e j ) + g(t − e1 − e j )− 2g(t)).

corresponds to the random walk on Zν with
p(−e1) = 1− θ, p(−e1 ± e j ) = θ

2(ν−1)
, j = 2, · · · , ν with shift in one direction e1

Example 4. Unilateral fractional operators (I −T1)d1 · · · (I −Tν)dν , Tjg(t) := g(t − e j ),
j = 1, · · · , ν
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2. Fractional integration on Zν . Examples

Main object: Fractionally integrated random field (RF) X defined as solution of

(I − T )dX (t) = ε(t), t ∈ Zν , (3)

with i.i.d. white noise {ε(t)} written as MA

X (t) = (I − T )−dε(t) =
∑
s∈Zν

τ(s;−d)ε(t − s), t ∈ Zν . (4)

The series in (3) and (4) converge in mean square
The existence and LRD properties of X in (3)-(4) depend on fractional coefficients

τ(s; d) =
∑∞

j=0 ψj (d)pj (s), s ∈ Zν

(kernel of operator (I −T )d) which are determined by d and RW probabilities p(s)

Thm 1 provides conditions for existence of X via characteristic function of RW:

p̂(x) := E exp{i〈x, S1〉}, x ∈ [−π, π]ν =: Πν

1-dim case:
Giraitis, S. & Škarnulis. Stationary integrated ARCH(∞) and AR(∞) processes
with finite variance. (2018, Econometric Th.)
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2. Fractional integration on Zν . Examples

LRD asymptotics of τ(s; d), |s| → ∞ (‘if’ conditions) using local CLT for RW:
Lawler & Limic (2012) Random Walk: A Modern Introduction. Cambridge Univ.

Examples 2 (fractional Laplacian) and 3 (fractional heat operator), ν = 2: Koul &
S. (2016), Pilipauskaitė & S. (2017), S. (2020)

Theorem (1)
(i) Let −1 < d < 1. Fractionally integrated X in (3)-(4) exists if∫

Πν
|1− p̂(x)|−2|d|dx <∞ (5)

Condition (5) is equivalent to ∑
s∈Zν τ(s;−|d |)2 <∞.

(ii) Let 0 < d < 1 and (5) hold. Then X is LRD:
∑

t∈Zν Cov(X(0),X(t)) =∞.

(iii) Let −1 < d < 0 and (5) hold. Then X is ND:
∑

t∈Zν Cov(X(0),X(t)) = 0.
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2. Fractional integration on Zν . Examples

ν = 1, ARFIMA(0, d , 0): 1− p̂(x) = 1− e−ix ∼ ix (x → 0)∫ π
−π |1− p̂(x)|−2|d|dx <∞ or (5) equivalent to |d | < 1

2

Fractional Laplacian (simple RW on Zν):

1− p̂(x) = 1
ν

∑ν

j=1(1− cos(xj )) ∼ (1/2ν)|x|2, |x| → 0

(5) equivalent to |d | < ν
4

Fractional heat operator (drift in e1 + simple RW on Zν−1):

|1− p̂(x)|2 ∼
(

θ
2(ν−1)

)2|x̃|4 + (1− θ)x2
1 , x → 0, x̃ := (0, x2, · · · , xν).

(5) equivalent to |d | < ν+1
4

LRD asymptotics of fractional coefficients τ(s; d), |s| → ∞. Assume ‘typical’
conditions for local CLT:

Eec|S1| <∞ (∃ c > 0) and {Sj} is zero mean, aperiodic, irreducible. (6)

(6) imply that RW has invertible covariance matrix

Γ := ES1S ′1 = ΛΛ′

and Λ−1S1 has unit covariance matrix.
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Fractional integration on Zν . Examples

Theorem (2)
Let (6) hold. Then τ(s; d) are well-defined for any −(1 ∧ ν

2 ) < d < 1, d 6= 0 and satisfy

τ(s; d) = (B1(d) + o(1))(s · Γ−1s)−(ν/2)−d , |s| → ∞,

where B1(d) :=
2d Γ(d+ ν2 )

πν/2Γ(−d)
√

detΓ
.

Γ unit matrix: isotropic decay τ(s; d) ∼ const.|s|−ν−2d

Thm does not apply to ARFIMA(0, d , 0) and fractional heat operator because of
nonzero mean RW

fractional heat operator τ(s; d) satisfy anisotropic asymptotics

τ(s; d) =
s
−d− 1+ν

2
1

Γ(d)(2πθ)(ν−1)/2
√

detΓ̃
exp
{
− s̃·Γ̃−1s̃

2θs1

}(
1 + o(1)

)
, s = (s1, s̃) ∈ Zν

Pilipauskaitė & S. (2017), S. (2020)
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3. Fractionally integrated RFs on Rν

I − T a local (differential) operator

Fractional operators (I − T )d can be defined via Fourier transform as
pseudo-differential operators
Leonenko, Ruiz-Medina & Taqqu, Fractional elliptic, hyperbolic and parabolic
random fields (2011, Electronic J. Probab.)
Applies to Gaussian or harmonizable RFs

Explicit fractional kernels are known for some classical differential operators
(Laplace, Helmholtz, heat operator)
These special explicit kernels give rise to important (isotropic or anisotropic) RFs
indexed by t ∈ Rν with fractal local properties but are either nonstationary or
stationary and SRD

Example 5. (Nonstationary) Fractional Brownian/Lévy RF with parameter
H ∈ (0, 1),H 6= ν/2 is usually defined as stochastic integral

BH(t) :=
∫
Rν
(
|t + u|H− ν2 − |u|H− ν2

)
M(du), t ∈ Rν

w.r.t. Gaussian/Lévy random measure M(du) with zero mean and finite variance
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3. Fractionally integrated RFs on Rν

EBH(t)BH(s) = const.
(
|t|2H + |s|2H − |t − s|2H)

Solves (−∆)
H
2 + ν4 BH(t) = const.Ṁ(t) with fractional Laplacian,

Ṁ(t) = M(dt)/dt

Fractional Brownian RF (M Gaussian) is H-self-similar

Lodhia, Scheffield, Sun & Watson (2016) Fractional Gaussian fields: A survey.
Probability Surveys 13, 1–56.

Example 6. (Stationary) Matérn RF with parameters c,H > 0 defined as

Mc,H(t) :=
∫
Rν mc,H(t − u)M(du), t ∈ Rν ,

where

mc,H(t) := const.|ct| H2 − ν4 K H
2 −

ν
4

(c|t|), t ∈ Rν ,

Kτ = modified Bessel function, M the same as in Example 5
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Probability Surveys 13, 1–56.

Example 6. (Stationary) Matérn RF with parameters c,H > 0 defined as

Mc,H(t) :=
∫
Rν mc,H(t − u)M(du), t ∈ Rν ,

where

mc,H(t) := const.|ct| H2 − ν4 K H
2 −

ν
4

(c|t|), t ∈ Rν ,

Kτ = modified Bessel function, M the same as in Example 5
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3. Fractionally integrated RFs on Rν

(Matérn) covariance function:
EMc,H(0)Mc,H(t) = const.(c|t|)HKH(c|t|), t ∈ Rν

widely used in spatial applications (numerous references)

solves (c2 −∆)
H
2 + ν4Mc,H(t) = const.Ṁ(t)

bounded spectral density f (z) = const.(c2 + |z|2)−H− ν2 , z ∈ Rν

Matérn RF is SRD

Example 7. (Stationary) fractional heat operator RF with parameters c > 0, d > ν+1
4 :

Hc,d (t) :=
∫
Rν hc,d (t − u)M(du), t ∈ Rν ,

is defined in Kelbert, Leonenko & Ruiz-Medina (2005) as the RF with spectral density

f (z) = |ĥc,d (z)|2 = 1
(z2

1 +(c+|z̃ |2)2)d , z = (z1, z̃) ∈ Rν ,

The MA kernel hc,d (t) was recently found in Pilipauskaitė & S. (2022, Bernoulli):

hc,d (t) = const.td− 1+ν
2

1 exp
{
− ct1 − |t̃|

2

4t1

}
1(t1 > 0), t = (t1, t̃) ∈ Rν (7)
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f (z) = |ĥc,d (z)|2 = 1
(z2

1 +(c+|z̃ |2)2)d , z = (z1, z̃) ∈ Rν ,

The MA kernel hc,d (t) was recently found in Pilipauskaitė & S. (2022, Bernoulli):

hc,d (t) = const.td− 1+ν
2

1 exp
{
− ct1 − |t̃|

2

4t1

}
1(t1 > 0), t = (t1, t̃) ∈ Rν (7)

2024 m. vasario 12 d. 15 / 35



3. Fractionally integrated RFs on Rν

(Matérn) covariance function:
EMc,H(0)Mc,H(t) = const.(c|t|)HKH(c|t|), t ∈ Rν

widely used in spatial applications (numerous references)

solves (c2 −∆)
H
2 + ν4Mc,H(t) = const.Ṁ(t)
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3. Fractionally integrated RFs on Rν

For d = 1, hc,1(t) = const.t−
ν−1

2
1 exp

{
− ct1 − |t̃|

2

4t1

}
1(t1 > 0) agrees with the

fundamental solution of the stationary heat equation (c + ∂1 − ∆̃)g(t) = 0,
t = (t1, t̃), ∂1 := ∂/∂t1, ∆̃ :=

∑ν

i=2 ∂
2/∂t2

i

Solves fractional equation (c + ∂1 − ∆̃)dHc,d (t) = Ṁ(t)

Covariance? c = 0 (nonstationary ‘parabolic’ RF)?

Hc,d (t) has bounded spectral density and SRD

Discretely fractionally integrated RFs in Rν

Since fractional RFs in Examples 5-7 are SRD or nonstationary, we can define stationary
LRD RFs by applying to them ‘discrete’ fractional integration/differentiation operators
as discussed in sec.2
Let

TBg(t) :=
∫
Rν p1(s − t)g(s)ds, t ∈ Rν (8)

be the transition operator of a (discrete-time) standard Brownian random walk
{Bj ; j ∈ N} on Rν with Gaussian jth step transition probabilities

pj (s − t) := (2πj)−ν/2e−|s−t|2/2j , t, s ∈ Rν .
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3. Fractionally integrated RFs on Rν

TB in (8) is well-defined for each g ∈ Lp(Rν), p ≥ 1 and T j
Bg(t) =

∫
Rν pj (s − t)g(s)ds,

j = 0, 1, 2, · · · .
Define

(I − TB)κg(t) :=
∫
Rν τB(s;κ)g(s + t)ds, t ∈ Rν , (9)

with kernel

τB(s;κ) :=
∑∞

j=0 ψj (κ)pj (s), s ∈ Rν (10)

involving binomial coefficients (1− z)κ =
∑∞

j=0 z jψj (κ) as in sec.2.

The ‘continuous’ kernel in (10) satisfies similar LRD/ND properties as the ‘discrete’ one
in sec.2:

τB(s;κ) ∼ const.|s|−ν−2κ, |s| → ∞, −(1 ∧ ν2 ) < κ < 1, κ 6= 0∫
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Fourier tr.: τ̂B(z;κ) =

∞∑
j=0

ψj (κ)e−j|z |2/2 = (1− e−|z |
2/2)κ, z ∈ Rν .

2024 m. vasario 12 d. 17 / 35



3. Fractionally integrated RFs on Rν

TB in (8) is well-defined for each g ∈ Lp(Rν), p ≥ 1 and T j
Bg(t) =

∫
Rν pj (s − t)g(s)ds,

j = 0, 1, 2, · · · .

Define

(I − TB)κg(t) :=
∫
Rν τB(s;κ)g(s + t)ds, t ∈ Rν , (9)

with kernel

τB(s;κ) :=
∑∞

j=0 ψj (κ)pj (s), s ∈ Rν (10)

involving binomial coefficients (1− z)κ =
∑∞

j=0 z jψj (κ) as in sec.2.

The ‘continuous’ kernel in (10) satisfies similar LRD/ND properties as the ‘discrete’ one
in sec.2:

τB(s;κ) ∼ const.|s|−ν−2κ, |s| → ∞, −(1 ∧ ν2 ) < κ < 1, κ 6= 0∫
Rν
τB(s;κ)ds = 0, κ > 0,

τB(s;κ) bdd & isotropic in s ∈ Rν

Fourier tr.: τ̂B(z;κ) =

∞∑
j=0

ψj (κ)e−j|z |2/2 = (1− e−|z |
2/2)κ, z ∈ Rν .

2024 m. vasario 12 d. 17 / 35



3. Fractionally integrated RFs on Rν

TB in (8) is well-defined for each g ∈ Lp(Rν), p ≥ 1 and T j
Bg(t) =

∫
Rν pj (s − t)g(s)ds,

j = 0, 1, 2, · · · .
Define

(I − TB)κg(t) :=
∫
Rν τB(s;κ)g(s + t)ds, t ∈ Rν , (9)

with kernel

τB(s;κ) :=
∑∞

j=0 ψj (κ)pj (s), s ∈ Rν (10)

involving binomial coefficients (1− z)κ =
∑∞

j=0 z jψj (κ) as in sec.2.

The ‘continuous’ kernel in (10) satisfies similar LRD/ND properties as the ‘discrete’ one
in sec.2:

τB(s;κ) ∼ const.|s|−ν−2κ, |s| → ∞, −(1 ∧ ν2 ) < κ < 1, κ 6= 0∫
Rν
τB(s;κ)ds = 0, κ > 0,

τB(s;κ) bdd & isotropic in s ∈ Rν

Fourier tr.: τ̂B(z;κ) =

∞∑
j=0

ψj (κ)e−j|z |2/2 = (1− e−|z |
2/2)κ, z ∈ Rν .

2024 m. vasario 12 d. 17 / 35



3. Fractionally integrated RFs on Rν

TB in (8) is well-defined for each g ∈ Lp(Rν), p ≥ 1 and T j
Bg(t) =

∫
Rν pj (s − t)g(s)ds,

j = 0, 1, 2, · · · .
Define

(I − TB)κg(t) :=
∫
Rν τB(s;κ)g(s + t)ds, t ∈ Rν , (9)

with kernel

τB(s;κ) :=
∑∞

j=0 ψj (κ)pj (s), s ∈ Rν (10)

involving binomial coefficients (1− z)κ =
∑∞

j=0 z jψj (κ) as in sec.2.

The ‘continuous’ kernel in (10) satisfies similar LRD/ND properties as the ‘discrete’ one
in sec.2:

τB(s;κ) ∼ const.|s|−ν−2κ, |s| → ∞, −(1 ∧ ν2 ) < κ < 1, κ 6= 0∫
Rν
τB(s;κ)ds = 0, κ > 0,

τB(s;κ) bdd & isotropic in s ∈ Rν

Fourier tr.: τ̂B(z;κ) =

∞∑
j=0

ψj (κ)e−j|z |2/2 = (1− e−|z |
2/2)κ, z ∈ Rν .

2024 m. vasario 12 d. 17 / 35



3. Fractionally integrated RFs on Rν

TB in (8) is well-defined for each g ∈ Lp(Rν), p ≥ 1 and T j
Bg(t) =

∫
Rν pj (s − t)g(s)ds,

j = 0, 1, 2, · · · .
Define

(I − TB)κg(t) :=
∫
Rν τB(s;κ)g(s + t)ds, t ∈ Rν , (9)

with kernel

τB(s;κ) :=
∑∞

j=0 ψj (κ)pj (s), s ∈ Rν (10)

involving binomial coefficients (1− z)κ =
∑∞

j=0 z jψj (κ) as in sec.2.

The ‘continuous’ kernel in (10) satisfies similar LRD/ND properties as the ‘discrete’ one
in sec.2:

τB(s;κ) ∼ const.|s|−ν−2κ, |s| → ∞, −(1 ∧ ν2 ) < κ < 1, κ 6= 0∫
Rν
τB(s;κ)ds = 0, κ > 0,

τB(s;κ) bdd & isotropic in s ∈ Rν

Fourier tr.: τ̂B(z;κ) =

∞∑
j=0

ψj (κ)e−j|z |2/2 = (1− e−|z |
2/2)κ, z ∈ Rν .

2024 m. vasario 12 d. 17 / 35



3. Fractionally integrated RFs on Rν

Fractional operator (I − TB)κ cannot be applied to white noise Ṁ in Rν rather than to
more regular RFs such as Brownian/Lévy RF or Matérn RF, yielding stationary RF with
LRD:

Example 8. Discretely fractionally differenced Brownian/Lévy RF defined as

X(t) := (I − TB)κBH(t) =

∫
Rν

a(t − u)M(du), (11)

where κ,H > 0 and

a(t) :=
∫
Rν τB(s;κ)(|s + t|H− ν2 − |t|H− ν2 )ds, t ∈ Rν .

(11) is well-defined for any 0 < H < 2κ < 1, ν ≥ 2, stationary, zero mean, finite
variance

(11) is isotropic and LRD: a(t) ∼ const.|t|H− ν2 −2κ, |t| → ∞,
∫
Rν |a(t)|dt =∞

explicit spectral density

f (z) = (1−e−|z |2/2)2κ

|z |ν+2H ∼ 1/|z|ν+2H−4κ →∞ (|z| → 0)
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3. Fractionally integrated RFs on Rν

Example 9. Discretely fractionally integrated Matérn RF defined as

X(t) := (I − TB)−κMc,H(t) =

∫
Rν

a(t − u)M(du), (12)

where c, κ,H > 0 and

a(t) := const.
∫
Rν τB(t + s;−κ)(c|s|) H

2 −
ν
4 K H

2 −
ν
4

(c|s|)ds, t ∈ Rν .

(12) is well-defined for any H, c > 0, 0 < κ < ν
4 , stationary, zero mean, finite

variance

(12) is isotropic and LRD: a(t) ∼ const.|t|2κ−ν , |t| → ∞,
∫
Rν |a(t)|dt =∞

explicit spectral density

f (z) =
const.

(1− e−|z |2/2)2κ(c2 + |z|2)H+ ν2
∼ const.|z|−4κ →∞ (|z| → 0)
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4. Scaling limits and LRD

4. Scaling limits and LRD

Isotropic scaling limits for RFs often refer to the limit distribution of integrals:
Xλ(φ) :=

∫
Rν X(t)φ(t/λ)dt, as λ→∞,

(or respective sums in the discrete argument case), where X = {X(t); t ∈ Rν} is a
given stationary RF, for each φ from a linear class of (test) functions
Φ = {φ : Rν → R}
Namely, we are interested in the limit in distribution:

d−1
λ (Xλ(φ)− EXλ(φ))

d−→ V (φ), λ→∞ (13)
where dλ →∞ is a normalization and V (φ) is a RF indexed by φ ∈ Φ

The approach in (13) via test functions is common in the theory of generalized
RFs where Φ usually is a Schwartz space of very smooth infinitely differentiable
functions

In this talk, we take a much larger class
Φ = L1(Rν) ∩ L∞(Rν) (14)

which contains indicator functions φ(t) = I(t ∈ A) of arbitrary Borel sets of
A ⊂ Rν ,Lebν(A) <∞
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4. Scaling limits and LRD

For weakly dependent RF X (stationary, 2nd moment) one expects the CLT:

λ−ν/2(Xλ(φ)− EXλ(φ))
d−→ σ2W (φ) (15)

towards Gaussian white noise integral W (φ) :=
∫
Rν φ(t)W (dt) with

EW (φ)2 =
∫
Rν φ(t)2dt and a ‘long-range variance’ σ2 ≥ 0

Dedecker, Doukhan, Lang, León, Louhichi & Prieur (2007) Weak Dependendence.
With Examples and Applications (2007, Springer) discuss (15) for the class of
‘rectangles’ or ‘blocks’

Φrec := {φs (t) := I(t ∈]0, s]); s ∈ Rν+}, ]0, s] :=
∏ν

i=1]0, si ]

Then Xλ(φs ) =
∑

t∈]0,λs ]
X(t) is a RF indexed by points s ∈ Rν+

ν-dimensional analog of the partial sums process of time series

Spatial statistics: accent on irregular (inflated) observation set λA ⊂ Rν
(rectangles not suffice)
Lahiri & Robinson, Central limit theorems for long range dependent spatial linear
processes (2016, Bernoulli)
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4. Scaling limits and LRD

This talk: scaling limits (13), Φ = L1(Rν) ∩ L∞(Rν) for linear and nonlinear
(subordinated) RFs X in Zν/Rν with LRD/ND

Linear RF:

X(t) =
∑

s∈Zν a(t − s)ε(s), discr. arg. t ∈ Zν , (16)
X(t) =

∫
Rν a(t − s)M(ds), cnt. arg. t ∈ Rν (17)

where:

- a(t): deterministic kernel satisfying LRD/ND asymptotics as |t| → ∞;
- ε(s), s ∈ Zν : standardized i.i.d.
- M(ds): Lévy random measure with zero mean and EM(du)2 = du

(16)/(17) include most of fractionally integrated RFs discussed in sec.2-3

Discr. arg. X (16): Xλ(φ) =
∫
Rν φ(t/λ)X([t])dt

Dependence properties of linear RF (16)/ (17) determined by MA kernel a(t)
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4. Scaling limits and LRD

d ∈ R is ‘memory parameter’: d > 0 (LRD), d < 0 (ND), d = 0 (SRD)

Assumption (A)(d ;Zν)

(i) Let 0 < d < ν/4. Then

a(t) =
1

|t|ν−2d

(
`
( t
|t|
)

+ o(1)
)
, |t| → ∞, (18)

where `(t), |t| = 1 is a continuous ‘angular’ function
(ii) Let −ν/4 < d < 0. Then (18) holds and, moreover,

∑
t∈Zν a(t) = 0.

(iii) Let d = 0. Then
∑

t∈Zν |a(t)| <∞ and
∑

t∈Zν a(t) 6= 0.

For ν = 1 the usual LRD condition a(t) ∼ const.td′−1, 0 < d ′ < 1/2 agrees with
(18) with d = d ′/2

Assumption (A)(d ;Rν) (for ‘cnt. arg. a(t), t ∈ Rν) is analogous with sums in (ii),
(iii) replaced by integrals

∫
Rν , and assuming boundedness of a(t)

Define homogeneous limit function

a∞(t) := |t|2d−ν`
( t
|t|
)
, t ∈ Rν0 := Rν \ {0}
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4. Scaling limits and LRD

Limit Gaussian RFs written as stochastic integrals w.r.t. Gaussian WN W (du):

Wd (φ) :=


∫
Rν (a∞ ? φ)(u)W (du), 0 < d < ν/4, φ ∈ Φ∫
Rν (a∞ ? φ)reg(u)W (du), −ν/4 < d < 0, φ ∈ Φ−d ,∫
Rν φ(u)W (du), d = 0, φ ∈ Φ,

(19)

Φ−d :=
{
φ ∈ Φ, φ(·) a.e.cnt.,

∫
Rν
( ∫

Rν |φ(t + s)− φ(s)|2ds
)1/2|t|2d−νdt <∞

}
(a∞ ? φ)(u) =

∫
Rν a∞(t)φ(t + u)dt: (usual) convolution,

(a∞ ? φ)reg(u) :=
∫
Rν a∞(t)(φ(t + u)− φ(u))dt ‘regularized’ convolution

Theorem (3)
Let X be a linear RF satisfying Assumption (A)(d ;Zν)/(A)(d ;Rν). Then

λ−(ν+4d)/2Xλ(φ)
d−→


Wd (φ), 0 < d < ν/4, φ ∈ Φ,

Wd (φ), −ν/4 < d < 0, φ ∈ Φ−d ,

σW0(φ), d = 0, φ ∈ Φ,

where σ :=
∑

t∈Zν a(t)/
∫
t∈Rν a(t)dt.
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5. Nonlinear functionals and empirical processes

Proof of Thm 3 essentially uses variance argument only

ND case d < 0 in Thm 3 more delicate. Restriction to φ ∈ Φ−d excludes ‘edge
effects’
‘Edge effects’: Lahiri & Robinson (2016), S. (2020), Pilipauskaitė & S. (2022)
(very different and unusual limits)

5. Nonlinear functionals and empirical processes
Let A ⊂ Rν be a bounded Borel set and X = {X(t); t ∈ Rν} be a stationary RF. Then

Fλ(y) :=

∫
λA I(X(t) ≤ y)dt

Lebν(λA)
, y ∈ R (20)

is the empirical process (empirical d.f.) of the marginal d.f. F (y) = P(X(t) ≤ y) from
observations on a large ‘inflated’ set λA, λ→∞
Unbiased estimator: EFλ(y) = F (y)
(For discr. arg. X(t), t ∈ Zν Fλ(y) is defined analogously with I(X(t) ≤ y) replaced by
I(X([t]) ≤ y))
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5. Nonlinear functionals and empirical processes

Classical problem: asymptotic distribution of empirical process

d−1
λ (Fλ(y)− F (y)), y ∈ R (21)

Kolmogorov-Smirnov statistic: Dλ := supy∈R |Fλ(y)− F (y)|

(21) behaves very differently under LRD and SRD

LRD time series ν = 1,A =]0, 1]: numerous work (including asymptotic expansions
and regression estimators):
Dehling & Taqqu (1989), Beran (1992), Ho & Hsing (1996), Koul & Mukherjee
(1993), Wu (2003), …
Giraitis, Koul & S., Large Sample Inference for Long Memory Processes, 2012

LRD, ν ≥ 2,A =]0, 1] ⊂ Rν :
Doukhan, Lang & S. (2002), Koul & S. (2016)

Spatial case ν ≥ 2 much harder due to lack of causality and martingale methods

2024 m. vasario 12 d. 26 / 35



5. Nonlinear functionals and empirical processes

Classical problem: asymptotic distribution of empirical process

d−1
λ (Fλ(y)− F (y)), y ∈ R (21)

Kolmogorov-Smirnov statistic: Dλ := supy∈R |Fλ(y)− F (y)|

(21) behaves very differently under LRD and SRD

LRD time series ν = 1,A =]0, 1]: numerous work (including asymptotic expansions
and regression estimators):
Dehling & Taqqu (1989), Beran (1992), Ho & Hsing (1996), Koul & Mukherjee
(1993), Wu (2003), …
Giraitis, Koul & S., Large Sample Inference for Long Memory Processes, 2012

LRD, ν ≥ 2,A =]0, 1] ⊂ Rν :
Doukhan, Lang & S. (2002), Koul & S. (2016)

Spatial case ν ≥ 2 much harder due to lack of causality and martingale methods

2024 m. vasario 12 d. 26 / 35



5. Nonlinear functionals and empirical processes

Classical problem: asymptotic distribution of empirical process

d−1
λ (Fλ(y)− F (y)), y ∈ R (21)

Kolmogorov-Smirnov statistic: Dλ := supy∈R |Fλ(y)− F (y)|

(21) behaves very differently under LRD and SRD

LRD time series ν = 1,A =]0, 1]: numerous work (including asymptotic expansions
and regression estimators):
Dehling & Taqqu (1989), Beran (1992), Ho & Hsing (1996), Koul & Mukherjee
(1993), Wu (2003), …
Giraitis, Koul & S., Large Sample Inference for Long Memory Processes, 2012

LRD, ν ≥ 2,A =]0, 1] ⊂ Rν :
Doukhan, Lang & S. (2002), Koul & S. (2016)

Spatial case ν ≥ 2 much harder due to lack of causality and martingale methods

2024 m. vasario 12 d. 26 / 35



5. Nonlinear functionals and empirical processes

Classical problem: asymptotic distribution of empirical process

d−1
λ (Fλ(y)− F (y)), y ∈ R (21)

Kolmogorov-Smirnov statistic: Dλ := supy∈R |Fλ(y)− F (y)|

(21) behaves very differently under LRD and SRD

LRD time series ν = 1,A =]0, 1]: numerous work (including asymptotic expansions
and regression estimators):
Dehling & Taqqu (1989), Beran (1992), Ho & Hsing (1996), Koul & Mukherjee
(1993), Wu (2003), …
Giraitis, Koul & S., Large Sample Inference for Long Memory Processes, 2012

LRD, ν ≥ 2,A =]0, 1] ⊂ Rν :
Doukhan, Lang & S. (2002), Koul & S. (2016)

Spatial case ν ≥ 2 much harder due to lack of causality and martingale methods

2024 m. vasario 12 d. 26 / 35



5. Nonlinear functionals and empirical processes

Classical problem: asymptotic distribution of empirical process

d−1
λ (Fλ(y)− F (y)), y ∈ R (21)

Kolmogorov-Smirnov statistic: Dλ := supy∈R |Fλ(y)− F (y)|

(21) behaves very differently under LRD and SRD

LRD time series ν = 1,A =]0, 1]: numerous work (including asymptotic expansions
and regression estimators):
Dehling & Taqqu (1989), Beran (1992), Ho & Hsing (1996), Koul & Mukherjee
(1993), Wu (2003), …
Giraitis, Koul & S., Large Sample Inference for Long Memory Processes, 2012

LRD, ν ≥ 2,A =]0, 1] ⊂ Rν :
Doukhan, Lang & S. (2002), Koul & S. (2016)

Spatial case ν ≥ 2 much harder due to lack of causality and martingale methods

2024 m. vasario 12 d. 26 / 35



5. Nonlinear functionals and empirical processes

Classical problem: asymptotic distribution of empirical process

d−1
λ (Fλ(y)− F (y)), y ∈ R (21)

Kolmogorov-Smirnov statistic: Dλ := supy∈R |Fλ(y)− F (y)|

(21) behaves very differently under LRD and SRD

LRD time series ν = 1,A =]0, 1]: numerous work (including asymptotic expansions
and regression estimators):
Dehling & Taqqu (1989), Beran (1992), Ho & Hsing (1996), Koul & Mukherjee
(1993), Wu (2003), …
Giraitis, Koul & S., Large Sample Inference for Long Memory Processes, 2012

LRD, ν ≥ 2,A =]0, 1] ⊂ Rν :
Doukhan, Lang & S. (2002), Koul & S. (2016)

Spatial case ν ≥ 2 much harder due to lack of causality and martingale methods

2024 m. vasario 12 d. 26 / 35



5. Nonlinear functionals and empirical processes

Classical problem: asymptotic distribution of empirical process

d−1
λ (Fλ(y)− F (y)), y ∈ R (21)

Kolmogorov-Smirnov statistic: Dλ := supy∈R |Fλ(y)− F (y)|

(21) behaves very differently under LRD and SRD

LRD time series ν = 1,A =]0, 1]: numerous work (including asymptotic expansions
and regression estimators):
Dehling & Taqqu (1989), Beran (1992), Ho & Hsing (1996), Koul & Mukherjee
(1993), Wu (2003), …
Giraitis, Koul & S., Large Sample Inference for Long Memory Processes, 2012

LRD, ν ≥ 2,A =]0, 1] ⊂ Rν :
Doukhan, Lang & S. (2002), Koul & S. (2016)

Spatial case ν ≥ 2 much harder due to lack of causality and martingale methods

2024 m. vasario 12 d. 26 / 35



5. Nonlinear functionals and empirical processes

I(X(t) ≤ y) and spatial empirical process Fλ(y) are nonlinear functionals of X

We extend the study of Fλ(y) to more general nonlinear functionals

Yλ(φ) :=
∫
Rν φ(t/λ)Y (t)dt, φ ∈ Φ

where:

Y (t) := G(X(t)) or Y (t) = G(X([t]), t ∈ Rν , EY (t)2 <∞,
G : R→ R is a nonlinear function,
X(t) is a linear RF satisfying Assumption (A)(d ;Zν)/(A)(d ;Rν)

Fλ(y) corresponds to bounded G(x) = I(x ≤ y) and φ(t) = I(t ∈ A)

For Gaussian RF X the limit distribution of Yλ(φ) can be derived from
Dobrushin-Major-Taqqu theory based on Hermite expansion of G
If G has Hermite rank 1: h1 := EG(X(t))X(t) 6= 0 the limit of Yλ(φ) coincides
with that of h1Xλ(φ) which is Gaussian

This talk: a similar result for nongaussian linear RX X with h1 replaced by a1 =
the first Appell coefficient of G
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5. Nonlinear functionals and empirical processes

In Thm 4 X is a linear LRD RF on Zν :

X(t) =
∑

s∈Zν a(t − s)ε(s), t ∈ Zν ,

with MA coefficients a(t) satisfying Assumption (A)(d ;Zν), 0 < d < ν/4, and i.i.d. zero
mean innovations satisfying moment and regularity conditions:

E|ε|2p <∞ (∃p ≥ 2, p ∈ N), (22)
|Eeizε| ≤ C/(1 + |z|)τ , z ∈ R, (∃ C , τ > 0). (23)

Theorem (4)
Let X be as above, and G : R→ R be a measurable function satisfying

|G(x)| ≤ C(1 + |x |)p−2, x ∈ R. (24)

Then X has infinitely differentiable marginal density f (x), x ∈ R and the first Appell
coefficient of G

a1 := −
∫
R G(x)f ′(x)dx

is well-defined.

2024 m. vasario 12 d. 28 / 35



5. Nonlinear functionals and empirical processes

In Thm 4 X is a linear LRD RF on Zν :

X(t) =
∑

s∈Zν a(t − s)ε(s), t ∈ Zν ,

with MA coefficients a(t) satisfying Assumption (A)(d ;Zν), 0 < d < ν/4, and i.i.d. zero
mean innovations satisfying moment and regularity conditions:

E|ε|2p <∞ (∃p ≥ 2, p ∈ N), (22)
|Eeizε| ≤ C/(1 + |z|)τ , z ∈ R, (∃ C , τ > 0). (23)

Theorem (4)
Let X be as above, and G : R→ R be a measurable function satisfying

|G(x)| ≤ C(1 + |x |)p−2, x ∈ R. (24)

Then X has infinitely differentiable marginal density f (x), x ∈ R and the first Appell
coefficient of G

a1 := −
∫
R G(x)f ′(x)dx

is well-defined.

2024 m. vasario 12 d. 28 / 35



5. Nonlinear functionals and empirical processes

In Thm 4 X is a linear LRD RF on Zν :

X(t) =
∑

s∈Zν a(t − s)ε(s), t ∈ Zν ,

with MA coefficients a(t) satisfying Assumption (A)(d ;Zν), 0 < d < ν/4, and i.i.d. zero
mean innovations satisfying moment and regularity conditions:

E|ε|2p <∞ (∃p ≥ 2, p ∈ N), (22)
|Eeizε| ≤ C/(1 + |z|)τ , z ∈ R, (∃ C , τ > 0). (23)

Theorem (4)
Let X be as above, and G : R→ R be a measurable function satisfying

|G(x)| ≤ C(1 + |x |)p−2, x ∈ R. (24)

Then X has infinitely differentiable marginal density f (x), x ∈ R and the first Appell
coefficient of G

a1 := −
∫
R G(x)f ′(x)dx

is well-defined.

2024 m. vasario 12 d. 28 / 35



5. Nonlinear functionals and empirical processes

In Thm 4 X is a linear LRD RF on Zν :

X(t) =
∑

s∈Zν a(t − s)ε(s), t ∈ Zν ,

with MA coefficients a(t) satisfying Assumption (A)(d ;Zν), 0 < d < ν/4, and i.i.d. zero
mean innovations satisfying moment and regularity conditions:

E|ε|2p <∞ (∃p ≥ 2, p ∈ N), (22)
|Eeizε| ≤ C/(1 + |z|)τ , z ∈ R, (∃ C , τ > 0). (23)

Theorem (4)
Let X be as above, and G : R→ R be a measurable function satisfying

|G(x)| ≤ C(1 + |x |)p−2, x ∈ R. (24)

Then X has infinitely differentiable marginal density f (x), x ∈ R and the first Appell
coefficient of G

a1 := −
∫
R G(x)f ′(x)dx

is well-defined.

2024 m. vasario 12 d. 28 / 35



5. Nonlinear functionals and empirical processes

Theorem (4, ctnd)
Moreover,

λ−(ν+4d)/2Yλ(φ)
d−→ a1Wd (φ), ∀φ ∈ Φ, (25)

where Wd (φ) is Gaussian RF (the same Gaussian RF as in Thm 3) with zero mean and
variance

EWd (φ)2 =
∫
Rν (a∞ ? φ)(s)2ds.

Thm 4 applies to empirical process Fλ(y) =
∫
λA I(X(t) ≤ y)dt/λνLebν(A) with

G(x) = I(x ≤ y), ` = 2, φ(t) = I(t ∈ A) and

a1 = −
∫ y
−∞ f ′(x)dx = −f (y). (26)

Set

σ2
A :=

∫
Rν
( ∫

A a∞(t − s)dt
)2ds.
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5. Nonlinear functionals and empirical processes
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5. Nonlinear functionals and empirical processes

Corollary (1)
Let X satisfy Thm 3 with p = 2, and A ⊂ Rν be a bounded Borel set. Then

λ
ν
2 −2d (Fλ(y)− F (y))

D(R̄)−→ ( σA
Lebν (A)

)f (y)Z , Z ∼ N(0, 1).

In particular, K-S statistic Dλ = supy∈R |Fλ(y)− F (y)| satisfies

λ
ν
2 −2dDλ

d−→ ( σA
Lebν (A)

)‖f ‖∞|Z |,

where ‖f ‖∞ := supy∈R f (y).

Tightness following Dehling & Taqqu (1989) chaining argument

Limit empirical process const. f (y)Z degenerated (LRD effect)

p = 2: Eε4 <∞,EX(t)4 <∞ (bounded G)

p ≥ 3,Eε2p <∞: unbounded G and statistics
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5. Nonlinear functionals and empirical processes

Related/similar results obtained for nonlinear functions and empirical process of
continuous argument LRD RF

X(t) =
∫
Rν a(t − s)M(ds), t ∈ Rν ,

under Assumption (A)(d ;Rν), 0 < d < ν/4

Proofs of Thm 4 and Cor 1 rely on the linearization or first-order reduction
principle for nonlinear functionals:

Yλ(φ) = a1Xλ(φ)(1 + op(1))

where Yλ(φ)− a1Xλ(φ) =
∫
Rν φ(t/λ)Z(t)dt, Z(t) := G(X(t))− a1X(t)

which is a consequence of

Cov(Z(0),Z(t)) = o(Cov(X(0),X(t))), |t| → ∞ (27)

In causal LRD time series case (ν = 1), (27) is shown by telescoping G(X(t)) onto
orthogonal subspaces generated by lagged innovations (Ho & Hsing (1996, 1997),
…)
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5. Nonlinear functionals and empirical processes

This talk: asymptotic expansion of the bivariate density
ft (y1, y2) := P(X(0) ∈ dy1,X(t) ∈ dy2)/dy1dy2 of (X(0),X(t)),
rX (t) := Cov(X(0),X(t)):

ft (y1, y2) ∼ f (y1)f (y2) + rX (t)f ′(y1)f ′(y2), |t| → ∞, (28)

Need a stronger result:

sup
y1,y2∈R

∣∣ft (y1, y2)− f (y1)f (y2) + rX (t)f ′(y1)f ′(y2)
∣∣ 2∏

i=1

(1 + |yi |)p = o(rX (t)) (29)

For Gaussian (X(0),X(t)) the r.h.s. of (28) gives the two first terms of Mehler’s
formula

Proof of (29) uses characteristic functions (Fourier transform) which write as
infinite products

f̂ (z) =
∏

s∈Zν φ(za(s)), f̂t (z1, z2) =
∏

s∈Zν φ(z1a(s) + z2a2(t + s))

of ch.f. φ(z) = Eeizε of innovations. For Lévy MA RF indexed by t ∈ Rν the ch.f.
are given by Lévy-Khihchine formula.
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5. Nonlinear functionals and empirical processes

M estimation in spatial linear regression
Linear regression model:

Yλ(t) = 〈β, vλ(t)〉+ X(t), t ∈ λA (30)

where:

β = (β1, · · · , βq) ∈ Rq unknown vector parameter

A ⊂ Rν is a bounded Borel set as in Corollary 1, λA = observation set

vλ(t) = (v1,λ(t), · · · , vq,λ(t)) ∈ Rq a known (deterministic) vector-valued
regression function

X(t), t ∈ Zν/Rν a linear (error) RF as in Thm 2 and 3

Regressors vi,λ(t) = vi (t/λ) with non-degenerate q × q ‘design matrix’
V :=

( ∫
A vi (t)vj (t)dt

)
i,j=1,··· ,q
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5. Nonlinear functionals and empirical processes

Following Thm 3, the LS estimator

β̃λ,LS = V−1
λ

∫
λA vλ(t)Yλ(t)dt

is asymptotically normal:

λ(ν−4d)/2(β̃λ,LS − β)
d−→ W d,v (A) :=

∫
Rν
{∫

A V−1v(t)a∞(t − u)dt
}
W (du)

with Gaussian limit written as stochastic integral w.r.t. Gaussian white noise

Since LS β̃λ,LS is sensitive to outliers, a class of robust M estimators is considered
where residuals Yλ(t)− 〈z, vλ(t)〉 are discounted by a nonlinear score function
τ(y), y ∈ R with |τ(y)| = o(|y |), |y | → ∞

Formally, β̃λ,M := argmin
{∣∣Mλ(z; τ)

∣∣2 : z ∈ Rp} where

Mλ(z; τ) := V−1/2
λ

∫
λA vλ(t)τ

(
Yλ(t)− 〈z, vλ(t)〉

)
dt.

the score τ(y), y ∈ R function is bdd, monotone and
∫
R τ(y)f (y)dy = 0,∫

R τ(y)f ′(y)dy 6= 0 (f (y) is the marginal probability density of error RF X)∫
R τ(y)f (y)dy = a0, −

∫
R τ(y)f ′(y)dy = a1: the two first Appell coefficients of τ
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5. Nonlinear functionals and empirical processes

Theorem (5)
Consider the linear regression model in (30) with regressor function vλ(t) = v(t/λ),
v(·) ∈ L1(Rν) ∩ L∞(Rν) and errors X being a linear LRD RF as in Corollary 1. Then for
any score function τ : R→ R satisfying the above conditions, M estimator is
asymptotically equivalent to LS estimator:

λ(ν−4d)/2(β̃λ,M − β) = λ(ν−4d)/2(β̃λ,LS − β) + op(1)

and has the same Gaussian limit distribution.

Related results about equivalence of M and LS estimators in LRD time series,
ν = 1: Beran (1992), Koul & Mukherjee (1993), Wu (2003), ...

Proof of Thm 5 follows the approach in Koul, (2002) Weighted Empirical
Processes in Dynamic Nonlinear Models. (2002, Springer)

uniform reduction principle for weighted empirical process
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