### Powers correlation analysis of non-stationary assets

### Valentin Patilea<sup>†</sup> and <u>Hamdi Raïssi</u>\*

\* CREST-Ensai † IES PUCV

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

# Outline



#### 1 Motivation of the study



Investigating higher-order dynamics in our context



Numerical illustrations



#### Conclusion

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

# Constant unconditional variance assumption may be unrealistic:

- Stărică and Granger (2005): found strong evidence of non constant variance for large samples of daily stock returns.
- Stărică (2003): For volatility forecasts of stock returns.
- Engle and Rangel (2008), Hafner and Linton (2010): The spline GARCH.
- Subba Rao (2006), Kokoszka and Leipus (2000): ARCH( $\infty$ ) models allowing unconditional non constant variance.
- ... many others ...

Powers correlation analysis of non-stationary assets LMotivation of the study

# Constant unconditional variance assumption may be unrealistic:

Diagnostic tools:

- Numerous tests for detecting non constant unconditional variance: e.g. Berkes, Horváth and Kokoszka (2004) in a GARCH context.
- Test for second order dynamics in presence of a non-constant variance: Patilea and Raïssi (2014).

# Non-constant daily zero returns probability

#### Illiquid stocks=Let us say presence of daily zero returns

- Time-varying illiquidity levels are often not taken into account in the financial econometric literature
- Relatively small companies in all markets.
- Lesmond (2005): very common in emerging markets.
- So, let us review some representative examples taken from the Chilean stock market...!!

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Powers correlation analysis of non-stationary assets LMotivation of the study

# Empirical facts: Returns with possibly non constant zero returns probability

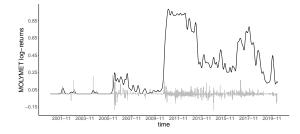


Figure: The daily log-returns of the Molymet stock. Data source: Yahoo Finance.

Capital increase of more than 216 millions Dollars, announced during the extraordinary shareholders meeting by August 13th, 2010.

Powers correlation analysis of non-stationary assets LMotivation of the study

# Empirical facts: Returns with possibly non constant zero returns probability

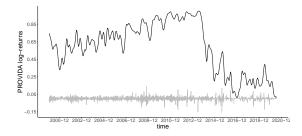


Figure: The daily log-returns of the Provida stock. Data source: Yahoo Finance.

Take-over bid of Metlife on the pension funds administration company Provida during September 2013. On that occasion Metlife acquired more than 90% of the share capital of Provida. Powers correlation analysis of non-stationary assets Motivation of the study

Empirical facts: Returns with possibly non constant zero returns probability

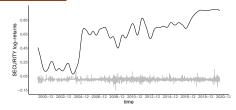


Figure: The daily log-returns of the Security stock. Data source: Yahoo Finance.

- Merger by absorption of the Dresdner Bank Lateinamerika in September 2004.
- Issued more than 32.8 millions new stocks after the capital increase announced during the extraordinary shareholders meeting by December 29th, 2004.

Powers correlation analysis of non-stationary assets Motivation of the study

# Empirical facts: Returns with possibly non constant zero returns probability

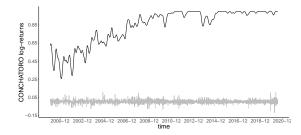


Figure: The daily log-returns of the Conchatoro stock. Data source: Yahoo Finance.

Increase of the liquidity due to the fast developing of the emerging Chilean stock market in the 2000's.

イロト イポト イヨト イヨト 三日

Powers correlation analysis of non-stationary assets Motivation of the study

# Empirical facts: Returns with possibly non constant zero returns probability

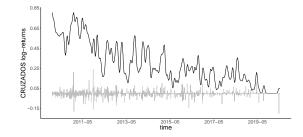


Figure: The daily log-returns of the Cruzados stock. Data source: Yahoo Finance.

Long-run decrease of the liquidity.

Powers correlation analysis of non-stationary assets Motivation of the study

# Empirical facts: Returns with possibly constant zero returns probability

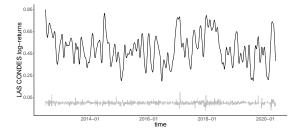


Figure: The daily log-returns of the Clinica Las Condes stock. Data source: Yahoo Finance.

Sometimes the zero returns probability may be assumed constant.

Powers correlation analysis of non-stationary assets Motivation of the study

# Empirical facts: Intraday data with non-constant zero returns probability

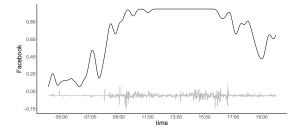


Figure: The 1-minute log-returns of the Facebook stock. Data source: Firstdata.

Zero returns can be always observed for small enough time periods.

Powers correlation analysis of non-stationary assets  $\mathbf{L}_{Motivation of the study}$ 

# Our goal

Test higher-order correlations in the returns dynamics.

- Inhomogeneous non zero returns distribution over time can be confused with long-run/long memory volatility effects.
- Correct tools to assess short run effects or evaluate the shock persistency.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Pre-publication of this work: arXiv:2104.04472v1.

# The framework

• Let  $r_1, \ldots, r_n$  be the observed returns, with n the sample size.

- Consider the binary process  $(a_t) \subset \{0, 1\}$ .
- $r_t = a_t \tilde{r}_t$ , with  $\tilde{r}_t$  partially unobserved.

 $r_t = 0$  may be explained by a variety of facts: such as trading costs, or rounded prices....

# The framework

Investigate the power returns serial correlations

$$\begin{split} \widehat{\Gamma}_{0}^{(\delta)}(m) &:= \left( \widehat{\rho}_{0}^{(\delta)}(1), \dots, \widehat{\rho}_{0}^{(\delta)}(m) \right)', \text{with} \widehat{\rho}_{0}^{(\delta)}(h) := \widehat{\gamma}_{0}^{(\delta)}(h) \widehat{\gamma}_{0}^{(\delta)}(0)^{-1}, \\ \text{where } \widehat{\gamma}_{0}^{(\delta)}(h) &= n^{-1} \sum_{t=1+h}^{n} \left( |\widetilde{r}_{t}|^{\delta} - \overline{\widetilde{r}}^{(\delta)} \right) \left( |\widetilde{r}_{t-h}|^{\delta} - \overline{\widetilde{r}}^{(\delta)} \right), \text{ and} \\ \overline{\widetilde{r}}^{(\delta)} &= n^{-1} \sum_{t=1}^{n} |\widetilde{r}_{t}|^{\delta}. \\ \text{Problem: } \widetilde{r}_{t} \text{ is not fully observed!} \end{split}$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

# The framework

We investigate the behavior of the feasible statistic

$$\begin{split} \widehat{\Gamma}_{s}^{(\delta)}(m) &:= \left( \hat{\rho}_{s}^{(\delta)}(1), \dots, \hat{\rho}_{s}^{(\delta)}(m) \right)', \text{with} \hat{\rho}_{s}^{(\delta)}(h) := \hat{\gamma}_{s}^{(\delta)}(h) \hat{\gamma}_{s}^{(\delta)}(0)^{-1}, \\ \text{where } \hat{\gamma}_{s}^{(\delta)}(h) &= n^{-1} \sum_{t=1+h}^{n} \left( |r_{t}|^{\delta} - \bar{r}^{(\delta)} \right) \left( |r_{t-h}|^{\delta} - \bar{r}^{(\delta)} \right) \text{ and } \\ \bar{r}^{(\delta)} &= n^{-1} \sum_{t=1}^{n} |r_{t}|^{\delta}. \end{split}$$

# The framework

Studied cases:

- Case 1: Constant variance and probability.
- Case 2: Constant variance, time-varying probability.

Case 3: Time-varying probability and variance.

# The results

Case 1: Everything is ok with the classical higher-order serial correlations

Proposition

Let  $\delta > 0$ , and suppose that  $\sigma_t > 0$  is constant, and  $0 < P(a_t = 1) < 1$  is constant. Then, under additional assumptions, for any integer  $m \ge 1$ ,  $\sqrt{n}\widehat{\Gamma}_s^{(\delta)}(m) \xrightarrow{d} \mathcal{N}(0, I_m)$ .

The classical powers correlations may be used safely...

# The results

#### Case 2: The problem

#### Proposition

Let  $\delta > 0$ , and suppose that  $\sigma_t > 0$  is constant (no higher order dynamics). Moreover, assume that  $0 < P(a_t = 1) < 1$  is not constant. Then, under additional assumptions for any integer  $m \ge 1$ ,  $\widehat{\Gamma}_s^{(\delta)}(m) \xrightarrow{a.s.} C_{0,a} \in \mathbb{R}^m$ , and all the components of the vector  $C_{0,a}$  are equal and strictly positive.

Using the classical powers correlations is not a good idea...

### The results

# Case 2: <u>Correct</u> higher order serial correlations: $\widehat{\Gamma}_{ns}^{(\delta)}(m) := \left(\widehat{\rho}_{ns}^{(\delta)}(1), \dots, \widehat{\rho}_{ns}^{(\delta)}(m)\right)', \text{ with } \widehat{\rho}_{ns}^{(\delta)}(h) := \widehat{\gamma}_{ns}^{(\delta)}(h)\widehat{\gamma}_{ns}^{(\delta)}(0)^{-1},$

where

$$\hat{\gamma}_{ns}^{(\delta)}(h) = n^{-1} \sum_{t=1+h}^{n} \left( |r_t|^{\delta} - \bar{r}^{(\delta)} \frac{P(a_t=1)}{\bar{a}} \right) \left( |r_{t-h}|^{\delta} - \bar{r}^{(\delta)} \frac{P(a_{t-h}=1)}{\bar{a}} \right),$$

and  $\bar{a} = n^{-1} \sum_{t=1}^{n} P(a_t = 1).$ 

# The results

Case 2: Correct the higher-order serial correlations.

#### Proposition

Assume that  $\sigma_t > 0$  is constant. Suppose that  $0 < P(a_t = 1) < 1$  is not constant. Then, under additional assumptions, for any integer  $m \ge 1$ , we have  $\sqrt{n}\widehat{\Gamma}_{ns}^{(\delta)}(m) \xrightarrow{d} \mathcal{N}(0,\varsigma I_m)$ , as  $n \to \infty$ , where  $\varsigma$  is given in the paper.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

# The results

#### Case 3: The problem

#### Proposition

Let  $\delta > 0$  and suppose that  $\sigma_t$  is deterministic non-constant, and  $P(a_t = 1)$  is time-varying. Then, under additional assumptions, for any integer  $m \ge 1$ ,  $\widehat{\Gamma}_s^{(\delta)}(m) \xrightarrow{a.s.} C_{0,\sigma} \in \mathbb{R}^m$ . If  $v^{\delta}(\cdot)g(\cdot)$  is a constant function, then  $C_{0,\sigma}$  is the null vector, otherwise all the components of the vector  $C_{0,\sigma}$  are equal and strictly positive.

Again, using the classical powers correlations is not a good idea...

### The results

Case 3: Correct the higher-order serial correlations.

$$\widehat{\Gamma}_{ns,\sigma}^{(\delta)}(m) := \left(\widehat{\rho}_{ns,\sigma}^{(\delta)}(1), \dots, \widehat{\rho}_{ns,\sigma}^{(\delta)}(m)\right)',$$

with  $\hat{\rho}_{ns,\sigma}^{(\delta)}(h) := \hat{\gamma}_{ns,\sigma}^{(\delta)}(h) \hat{\gamma}_{ns,\sigma}^{(\delta)}(0)^{-1}$ , where

$$\hat{\gamma}_{ns,\sigma}^{(\delta)}(h) = n^{-1} \sum_{t=1+h}^{n} \left\{ |r_t|^{\delta} - E\left(|r_t|^{\delta}\right) \right\} \left\{ |r_{t-h}|^{\delta} - E\left(|r_t|^{\delta}\right) \right\}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

# The results

Case 3: Correct the higher-order serial correlations.

#### Proposition

Let  $\delta > 0$ , and suppose that  $\sigma_t > 0$  is deterministic non-constant and  $0 < P(a_t = 1) < 1$  is time-varying. Then, under additional assumptions, for any integer  $m \ge 1$ , we have  $\sqrt{n}\widehat{\Gamma}_{ns,\sigma}^{(\delta)}(m) \xrightarrow{d} \mathcal{N}(0, \zeta I_m)$ , where  $\zeta$  is given in the paper.

# Feasible statistics

• In the above results  $E\left(|r_t|^{\delta}\right)$  and  $P(a_t=1)$  are assumed known.

- コン・4日ン・4日ン・日、 のへの

• We need to estimate them to build feasible statistics.

# Feasible statistics

• Time-varying probability:

$$\widehat{P(a_t=1)} = \sum_{j=1}^n w_{tj}(b_a)a_j,$$

• Time-varying  $\delta$  moment of  $(r_t)$ :

$$\widehat{E(|r_t|^{\delta})} = \sum_{j=1}^n w_{tj}(b_{\tau})|r_j|^{\delta},$$

• Smoothing weights:

$$w_{tj}(b) = (nb)^{-1} K \left( (t-j)/(nb) \right).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

# Feasible statistics

- The Kernel fulfill standard conditions.
- The bandwidths  $b_a$  and  $b_{\tau}$  are taken in the range  $\mathcal{B}_n = [c_{min}b_n, c_{max}b_n]$  with  $0 < c_{min} < c_{max} < \infty$  and  $nb_n^4 + 1/nb_n^{2+\gamma} \to 0$  as  $n \to \infty$ , for some  $\gamma > 0$ .

Feasible statistics  $\widetilde{\Gamma}_{ns}^{(\delta)}(m)$  and  $\widetilde{\Gamma}_{ns,\sigma}^{(\delta)}(m)$  can be obtained by plugin the estimators defined above.

# Feasible tests

### Proposition

Under suitable conditions, we have

$$\sqrt{n} \left| \widehat{\Gamma}_{ns}^{(\delta)}(m) - \widetilde{\Gamma}_{ns}^{(\delta)}(m) \right| \stackrel{p}{\longrightarrow} 0,$$

uniformly with respect to  $b_a \in \mathcal{B}_n$ , and

$$\sqrt{n} \left| \widehat{\Gamma}_{ns,\sigma}^{(\delta)}(m) - \widetilde{\Gamma}_{ns,\sigma}^{(\delta)}(m) \right| \stackrel{p}{\longrightarrow} 0,$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

uniformly with respect to  $b_{\tau} \in \mathcal{B}_n$ .

# Practical issues

- The tools are implemented using a bootstrap procedure (B = 3999 replications).
- The bandwidths are selected using a leave-one-out cross validation criterion (LOOCV).

• 
$$H_0^{(\delta)}$$
 vs.  $H_1^{(\delta)}$  are tested with

 $H_0^{(\delta)}$  no power correlations of order  $\delta$ .

- ACF of power returns are built.
- $\delta = 1$  is taken in all our experiments (Taylor (1986) effect).

Powers correlation analysis of non-stationary assets
Unnerical illustrations

# Notations

- Classical: the usual serial autocorrelations of powers returns.
- RP: autocorrelations of powers returns robust to time-varying zero returns probability.

• **RPV**: autocorrelations of powers returns robust to both time-varying zero returns probability and variance.

Numerical illustrations

Monte Carlo experiments

# Simulated processes

- Under  $H_0^{(\delta)}$ : iid  $(r_t)$  (Case 1)
- Under  $H_0^{(\delta)}$ : Non constant zero returns probability (Case 2)
- Under  $H_0^{(\delta)}$ : Non constant unconditional variance and zero returns probability (Case 3)

Powers correlation analysis of non-stationary assets LNumerical illustrations

Monte Carlo experiments

Table: The frequencies (in %) of adaptive and classical autocorrelations outside their respective nominal 95% confidence bands, obtained from R = 5000 independent replications, Case 1 under  $H_0^{(\delta)}$ .

|          | lags    | 1    | 2    | 3    | 4    | 5    | 20   | 40   | 60   |
|----------|---------|------|------|------|------|------|------|------|------|
| lassical | n = 100 | 4.12 | 4.20 | 4.20 | 4.66 | 4.40 | 2.30 | 1.14 | 0.28 |
|          | n = 200 | 4.52 | 4.46 | 4.64 | 4.12 | 4.76 | 3.78 | 2.70 | 1.68 |
|          | n = 400 | 5.36 | 4.30 | 4.56 | 4.90 | 4.56 | 4.22 | 3.36 | 2.80 |
| 0        | n = 800 | 5.20 | 5.04 | 4.70 | 4.64 | 4.90 | 5.02 | 4.22 | 4.36 |
| 4        | n = 100 | 6.04 | 6.16 | 5.98 | 6.70 | 6.48 | 5.14 | 4.56 | 4.08 |
|          | n = 200 | 6.06 | 5.80 | 5.64 | 5.62 | 6.16 | 5.36 | 5.48 | 4.98 |
| 2        | n = 400 | 5.76 | 4.96 | 5.82 | 5.34 | 5.62 | 5.08 | 5.14 | 4.82 |
|          | n = 800 | 5.18 | 5.12 | 4.98 | 4.94 | 5.54 | 6.08 | 5.14 | 5.88 |
| RPV      | n = 100 | 6.24 | 6.28 | 6.34 | 7.14 | 6.76 | 5.18 | 4.54 | 3.84 |
|          | n = 200 | 6.04 | 6.10 | 5.88 | 5.60 | 6.52 | 5.58 | 5.82 | 5.02 |
|          | n = 400 | 6.04 | 5.00 | 5.78 | 5.38 | 5.80 | 5.20 | 5.30 | 5.00 |
|          | n = 800 | 5.42 | 5.24 | 5.06 | 5.02 | 5.58 | 6.04 | 5.30 | 6.00 |

LNumerical illustrations

Monte Carlo experiments

Table: The same as above but for Case 2 under  $H_0^{(\delta)}$ .

|           | lags    | 1     | 2     | 3     | 4     | 5     | 20    | 40    | 60    |
|-----------|---------|-------|-------|-------|-------|-------|-------|-------|-------|
| Classical | n = 100 | 46.04 | 44.44 | 42.30 | 40.50 | 40.68 | 8.64  | 0.64  | 1.38  |
|           | n = 200 | 71.68 | 70.12 | 71.44 | 70.04 | 69.76 | 53.64 | 17.60 | 1.52  |
|           | n = 400 | 94.70 | 94.64 | 94.74 | 94.54 | 93.66 | 91.90 | 83.10 | 67.36 |
|           | n = 800 | 99.88 | 99.80 | 99.90 | 99.92 | 99.88 | 99.7  | 99.8  | 99.3  |
| RP        | n = 100 | 6.20  | 5.78  | 5.62  | 6.16  | 5.04  | 4.14  | 3.44  | 1.82  |
|           | n = 200 | 5.88  | 6.24  | 5.92  | 6.04  | 5.64  | 4.66  | 4.66  | 5.40  |
|           | n = 400 | 5.70  | 5.36  | 5.24  | 5.28  | 5.70  | 5.02  | 4.88  | 4.60  |
|           | n = 800 | 5.58  | 5.50  | 5.26  | 5.64  | 5.32  | 6.06  | 5.28  | 5.80  |
| RPV       | n = 100 | 6.70  | 6.36  | 7.10  | 7.86  | 6.34  | 4.42  | 3.42  | 1.78  |
|           | n = 200 | 6.70  | 6.98  | 6.96  | 6.60  | 6.50  | 4.72  | 4.52  | 5.44  |
|           | n = 400 | 6.12  | 6.34  | 5.92  | 6.20  | 6.20  | 5.26  | 5.04  | 4.48  |
|           | n = 800 | 5.86  | 5.60  | 5.70  | 5.80  | 6.10  | 6.44  | 5.54  | 5.68  |
|           |         |       |       |       |       |       |       |       |       |

LNumerical illustrations

Monte Carlo experiments

Table: The same as above but for Case 3 under  $H_0^{(\delta)}$ .

|           | ags     | 1      | 2      | 3      | 4      | 5      | 20     | 40     | 60     |
|-----------|---------|--------|--------|--------|--------|--------|--------|--------|--------|
| Classical | n = 100 | 79.84  | 78.88  | 78.16  | 74.56  | 74.68  | 20.46  | 0.56   | 5.58   |
|           | n = 200 | 97.38  | 97.80  | 97.62  | 97.36  | 97.64  | 90.44  | 46.00  | 1.52   |
|           | n = 400 | 99.98  | 99.96  | 100.00 | 100.00 | 100.00 | 99.96  | 99.72  | 97.06  |
|           | n = 800 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
| RP        | n = 100 | 4.86   | 3.98   | 4.30   | 4.46   | 4.30   | 3.76   | 3.24   | 3.22   |
|           | n = 200 | 4.44   | 4.40   | 4.56   | 4.28   | 4.40   | 4.36   | 3.84   | 4.78   |
|           | n = 400 | 5.44   | 4.90   | 4.84   | 4.84   | 4.76   | 4.90   | 4.74   | 4.28   |
|           | n = 800 | 6.86   | 6.48   | 6.38   | 6.24   | 6.48   | 6.74   | 6.20   | 6.00   |
| RPV       | n = 100 | 6.36   | 6.24   | 6.78   | 7.38   | 6.30   | 4.28   | 2.58   | 1.10   |
|           | n = 200 | 5.88   | 6.46   | 6.16   | 6.06   | 6.34   | 4.68   | 4.38   | 4.98   |
|           | n = 400 | 5.32   | 5.58   | 5.50   | 5.98   | 5.76   | 5.26   | 5.02   | 4.20   |
|           | n = 800 | 5.40   | 5.52   | 5.74   | 5.42   | 5.54   | 6.22   | 5.26   | 5.64   |

Numerical illustrations

Real data study

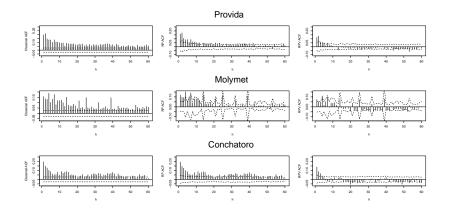


Figure: The classical (left column), RPV and RP (middle and right columns) absolute returns autocorrelations ( $\delta = 1$ ) for  $h = 1, \ldots, 60$ . The dashed lines correspond to the bootstrap and classical 95% confidence bands.

L<sub>Numerical</sub> illustrations

Real data study

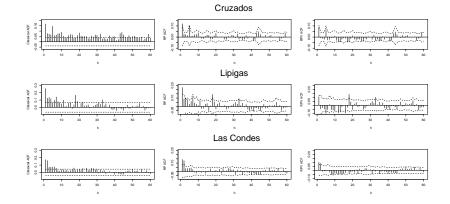


Figure: The same as above.

Conclusion

# Conclusion

- Non constant unconditional zero returns probability is a common feature.
- In this framework the standard portmanteau test is
  - Unable to distinguish between non constant liquidity levels and second order residual autocorrelation.

Adaptive portmanteau test which

- Control the type I errors reasonably well
- Able to detect second order dynamics
- ⇒ Help for the volatility specification when the unconditional variance and liquidity levels are not constant.