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Powers correlation analysis of non-stationary assets
Motivation of the study

Constant unconditional variance assumption may be
unrealistic:

Stărică and Granger (2005): found strong evidence of non
constant variance for large samples of daily stock returns.

Stărică (2003): For volatility forecasts of stock returns.

Engle and Rangel (2008), Hafner and Linton (2010): The
spline GARCH.

Subba Rao (2006), Kokoszka and Leipus (2000): ARCH(∞)
models allowing unconditional non constant variance.

... many others ...



Powers correlation analysis of non-stationary assets
Motivation of the study

Constant unconditional variance assumption may be
unrealistic:

Diagnostic tools:

Numerous tests for detecting non constant unconditional
variance: e.g. Berkes, Horváth and Kokoszka (2004) in a
GARCH context.

Test for second order dynamics in presence of a non-constant
variance: Patilea and Raïssi (2014).
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Motivation of the study

Non-constant daily zero returns probability

Illiquid stocks=Let us say presence of daily zero returns

Time-varying illiquidity levels are often not taken into account
in the financial econometric literature

Relatively small companies in all markets.

Lesmond (2005): very common in emerging markets.

So, let us review some representative examples taken from the
Chilean stock market...!!
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Motivation of the study

Empirical facts: Returns with possibly non constant
zero returns probability
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Figure: The daily log-returns of the Molymet stock. Data source: Yahoo
Finance.

Capital increase of more than 216 millions Dollars, announced
during the extraordinary shareholders meeting by August 13th,
2010.
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Empirical facts: Returns with possibly non constant
zero returns probability
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Figure: The daily log-returns of the Provida stock. Data source: Yahoo
Finance.

Take-over bid of Metlife on the pension funds administration
company Provida during September 2013. On that occasion Metlife
acquired more than 90% of the share capital of Provida.
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Empirical facts: Returns with possibly non constant
zero returns probability
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Figure: The daily log-returns of the Security stock. Data source: Yahoo
Finance.

Merger by absorption of the Dresdner Bank Lateinamerika in
September 2004.
Issued more than 32.8 millions new stocks after the capital
increase announced during the extraordinary shareholders
meeting by December 29th, 2004.
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Empirical facts: Returns with possibly non constant
zero returns probability
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Figure: The daily log-returns of the Conchatoro stock. Data source:
Yahoo Finance.

Increase of the liquidity due to the fast developing of the emerging
Chilean stock market in the 2000’s.
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Empirical facts: Returns with possibly non constant
zero returns probability
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Figure: The daily log-returns of the Cruzados stock. Data source: Yahoo
Finance.

Long-run decrease of the liquidity.
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Empirical facts: Returns with possibly constant
zero returns probability
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Figure: The daily log-returns of the Clinica Las Condes stock. Data
source: Yahoo Finance.

Sometimes the zero returns probability may be assumed constant.
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Empirical facts: Intraday data with non-constant
zero returns probability
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Figure: The 1-minute log-returns of the Facebook stock. Data source:
Firstdata.

Zero returns can be always observed for small enough time periods.
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Motivation of the study

Our goal

Test higher-order correlations in the returns dynamics.

Inhomogeneous non zero returns distribution over time can be
confused with long-run/long memory volatility effects.

Correct tools to assess short run effects or evaluate the shock
persistency.

Pre-publication of this work: arXiv:2104.04472v1.
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Investigating higher-order dynamics in our context

The framework

Let r1, . . . , rn be the observed returns, with n the sample size.

Consider the binary process (at) ⊂ {0, 1}.
rt = atr̃t, with r̃t partially unobserved.

r̃t = σtηt, where σt deterministic if no higher-order
correlations.

rt = 0 may be explained by a variety of facts: such as trading
costs, or rounded prices....
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The framework

Investigate the power returns serial correlations

Γ̂
(δ)
0 (m) :=

(
ρ̂
(δ)
0 (1), . . . , ρ̂

(δ)
0 (m)

)′

,withρ̂(δ)0 (h) := γ̂
(δ)
0 (h)γ̂

(δ)
0 (0)−1,

where γ̂
(δ)
0 (h) = n−1

∑n
t=1+h

(
|r̃t|δ − ¯̃r

(δ)
)(

|r̃t−h|δ − ¯̃r
(δ)

)
, and

¯̃r
(δ)

= n−1
∑n

t=1 |r̃t|δ.
Problem: r̃t is not fully observed!
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The framework

We investigate the behavior of the feasible statistic

Γ̂(δ)
s (m) :=

(
ρ̂(δ)s (1), . . . , ρ̂(δ)s (m)

)′

,withρ̂(δ)s (h) := γ̂(δ)s (h)γ̂(δ)s (0)−1,

where γ̂
(δ)
s (h) = n−1

∑n
t=1+h

(
|rt|δ − r̄(δ)

) (
|rt−h|δ − r̄(δ)

)
and

r̄(δ) = n−1
∑n

t=1 |rt|δ.
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The framework

Studied cases:

Case 1: Constant variance and probability.

Case 2: Constant variance, time-varying probability.

Case 3: Time-varying probability and variance.
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Investigating higher-order dynamics in our context

The results

Case 1: Everything is ok with the classical higher-order serial
correlations

Proposition
Let δ > 0, and suppose that σt > 0 is constant, and
0 < P (at = 1) < 1 is constant. Then, under additional

assumptions, for any integer m ≥ 1,
√
nΓ̂

(δ)
s (m)

d−→ N (0, Im).

The classical powers correlations may be used safely...
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The results

Case 2: The problem

Proposition
Let δ > 0, and suppose that σt > 0 is constant (no higher order
dynamics). Moreover, assume that 0 < P (at = 1) < 1 is not
constant. Then, under additional assumptions for any integer
m ≥ 1, Γ̂(δ)

s (m)
a.s.−→ C0,a ∈ Rm, and all the components of the

vector C0,a are equal and strictly positive.

Using the classical powers correlations is not a good idea...
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The results

Case 2: Correct higher order serial correlations:

Γ̂(δ)
ns (m) :=

(
ρ̂(δ)ns (1), . . . , ρ̂

(δ)
ns (m)

)′

, with ρ̂(δ)ns (h) := γ̂(δ)ns (h)γ̂
(δ)
ns (0)

−1,

where

γ̂(δ)
ns (h) = n−1

n∑

t=1+h

(
|rt|δ − r̄(δ)

P (at = 1)

ā

)(
|rt−h|δ − r̄(δ)

P (at−h = 1)

ā

)
,

and ā = n−1
∑n

t=1 P (at = 1).
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The results

Case 2: Correct the higher-order serial correlations.

Proposition
Assume that σt > 0 is constant. Suppose that 0 < P (at = 1) < 1
is not constant. Then, under additional assumptions, for any
integer m ≥ 1, we have

√
nΓ̂

(δ)
ns (m)

d−→ N (0, ςIm), as n → ∞,
where ς is given in the paper.
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The results

Case 3: The problem

Proposition
Let δ > 0 and suppose that σt is deterministic non-constant, and
P (at = 1) is time-varying. Then, under additional assumptions, for
any integer m ≥ 1, Γ̂(δ)

s (m)
a.s.−→ C0,σ ∈ Rm. If vδ(·)g(·) is a

constant function, then C0,σ is the null vector, otherwise all the
components of the vector C0,σ are equal and strictly positive.

Again, using the classical powers correlations is not a good idea...
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The results

Case 3: Correct the higher-order serial correlations.

Γ̂(δ)
ns,σ(m) :=

(
ρ̂(δ)ns,σ(1), . . . , ρ̂

(δ)
ns,σ(m)

)′

,

with ρ̂
(δ)
ns,σ(h) := γ̂

(δ)
ns,σ(h)γ̂

(δ)
ns,σ(0)−1, where

γ̂(δ)ns,σ(h) = n−1
n∑

t=1+h

{
|rt|δ − E

(
|rt|δ

)}{
|rt−h|δ − E

(
|rt|δ

)}
.
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The results

Case 3: Correct the higher-order serial correlations.

Proposition
Let δ > 0, and suppose that σt > 0 is deterministic non-constant
and 0 < P (at = 1) < 1 is time-varying. Then, under additional
assumptions, for any integer m ≥ 1, we have√
nΓ̂

(δ)
ns,σ(m)

d−→ N (0, ζIm), where ζ is given in the paper.
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Feasible statistics

In the above results E
(
|rt|δ

)
and P (at = 1) are assumed

known.

We need to estimate them to build feasible statistics.
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Investigating higher-order dynamics in our context

Feasible statistics

Time-varying probability:

̂P (at = 1) =

n∑

j=1

wtj(ba)aj,

Time-varying δ moment of (rt):

Ê(|rt|δ) =
n∑

j=1

wtj(bτ )|rj |δ,

Smoothing weights:

wtj(b) = (nb)−1K ((t− j)/(nb)) .
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Investigating higher-order dynamics in our context

Feasible statistics

The Kernel fulfill standard conditions.

The bandwidths ba and bτ are taken in the range
Bn = [cminbn, cmaxbn] with 0 < cmin < cmax < ∞ and
nb4n + 1/nb2+γ

n → 0 as n → ∞, for some γ > 0.

Feasible statistics Γ̃(δ)
ns (m) and Γ̃

(δ)
ns,σ(m) can be obtained by plugin

the estimators defined above.
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Feasible tests

Proposition
Under suitable conditions, we have

√
n
∣∣∣Γ̂(δ)

ns (m)− Γ̃(δ)
ns (m)

∣∣∣ p−→ 0,

uniformly with respect to ba ∈ Bn, and

√
n
∣∣∣Γ̂(δ)

ns,σ(m)− Γ̃(δ)
ns,σ(m)

∣∣∣ p−→ 0,

uniformly with respect to bτ ∈ Bn.
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Numerical illustrations

Practical issues

The tools are implemented using a bootstrap procedure
(B = 3999 replications).

The bandwidths are selected using a leave-one-out cross
validation criterion (LOOCV).

H
(δ)
0 vs.H(δ)

1 are tested with

H
(δ)
0 no power correlations of order δ.

ACF of power returns are built.

δ = 1 is taken in all our experiments (Taylor (1986) effect).
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Numerical illustrations

Notations

Classical: the usual serial autocorrelations of powers returns.
RP: autocorrelations of powers returns robust to time-varying
zero returns probability.

RPV: autocorrelations of powers returns robust to both
time-varying zero returns probability and variance.
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Numerical illustrations

Monte Carlo experiments

Simulated processes

Under H(δ)
0 : iid (rt) (Case 1)

Under H(δ)
0 : Non constant zero returns probability (Case 2)

Under H(δ)
0 : Non constant unconditional variance and zero

returns probability (Case 3)
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Numerical illustrations

Monte Carlo experiments

Table: The frequencies (in %) of adaptive and classical autocorrelations outside their
respective nominal 95% confidence bands, obtained from R = 5000 independent
replications, Case 1 under H(δ)

0 .

lags 1 2 3 4 5 20 40 60

C
la
ss
ic
al n = 100 4.12 4.20 4.20 4.66 4.40 2.30 1.14 0.28

n = 200 4.52 4.46 4.64 4.12 4.76 3.78 2.70 1.68
n = 400 5.36 4.30 4.56 4.90 4.56 4.22 3.36 2.80
n = 800 5.20 5.04 4.70 4.64 4.90 5.02 4.22 4.36

R
P

n = 100 6.04 6.16 5.98 6.70 6.48 5.14 4.56 4.08
n = 200 6.06 5.80 5.64 5.62 6.16 5.36 5.48 4.98
n = 400 5.76 4.96 5.82 5.34 5.62 5.08 5.14 4.82
n = 800 5.18 5.12 4.98 4.94 5.54 6.08 5.14 5.88

R
P
V

n = 100 6.24 6.28 6.34 7.14 6.76 5.18 4.54 3.84
n = 200 6.04 6.10 5.88 5.60 6.52 5.58 5.82 5.02
n = 400 6.04 5.00 5.78 5.38 5.80 5.20 5.30 5.00
n = 800 5.42 5.24 5.06 5.02 5.58 6.04 5.30 6.00
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Monte Carlo experiments

Table: The same as above but for Case 2 under H(δ)
0 .

lags 1 2 3 4 5 20 40 60

C
la
ss
ic
al n = 100 46.04 44.44 42.30 40.50 40.68 8.64 0.64 1.38

n = 200 71.68 70.12 71.44 70.04 69.76 53.64 17.60 1.52
n = 400 94.70 94.64 94.74 94.54 93.66 91.90 83.10 67.36
n = 800 99.88 99.80 99.90 99.92 99.88 99.7 99.8 99.3

R
P

n = 100 6.20 5.78 5.62 6.16 5.04 4.14 3.44 1.82
n = 200 5.88 6.24 5.92 6.04 5.64 4.66 4.66 5.40
n = 400 5.70 5.36 5.24 5.28 5.70 5.02 4.88 4.60
n = 800 5.58 5.50 5.26 5.64 5.32 6.06 5.28 5.80

R
P
V

n = 100 6.70 6.36 7.10 7.86 6.34 4.42 3.42 1.78
n = 200 6.70 6.98 6.96 6.60 6.50 4.72 4.52 5.44
n = 400 6.12 6.34 5.92 6.20 6.20 5.26 5.04 4.48
n = 800 5.86 5.60 5.70 5.80 6.10 6.44 5.54 5.68
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Monte Carlo experiments

Table: The same as above but for Case 3 under H(δ)
0 .

lags 1 2 3 4 5 20 40 60

C
la
ss
ic
al n = 100 79.84 78.88 78.16 74.56 74.68 20.46 0.56 5.58

n = 200 97.38 97.80 97.62 97.36 97.64 90.44 46.00 1.52
n = 400 99.98 99.96 100.00 100.00 100.00 99.96 99.72 97.06
n = 800 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

R
P

n = 100 4.86 3.98 4.30 4.46 4.30 3.76 3.24 3.22
n = 200 4.44 4.40 4.56 4.28 4.40 4.36 3.84 4.78
n = 400 5.44 4.90 4.84 4.84 4.76 4.90 4.74 4.28
n = 800 6.86 6.48 6.38 6.24 6.48 6.74 6.20 6.00

R
P
V

n = 100 6.36 6.24 6.78 7.38 6.30 4.28 2.58 1.10
n = 200 5.88 6.46 6.16 6.06 6.34 4.68 4.38 4.98
n = 400 5.32 5.58 5.50 5.98 5.76 5.26 5.02 4.20
n = 800 5.40 5.52 5.74 5.42 5.54 6.22 5.26 5.64
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Real data study
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Figure: The classical (left column), RPV and RP (middle and right
columns) absolute returns autocorrelations (δ = 1) for h = 1, . . . , 60.
The dashed lines correspond to the bootstrap and classical 95%
confidence bands.
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Real data study
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Figure: The same as above.
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Conclusion

Non constant unconditional zero returns probability is a
common feature.

In this framework the standard portmanteau test is

Unable to distinguish between non constant liquidity levels and
second order residual autocorrelation.

Adaptive portmanteau test which

Control the type I errors reasonably well

Able to detect second order dynamics

⇒ Help for the volatility specification when the unconditional
variance and liquidity levels are not constant.
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