# A log-linear model for non-stationary time series of counts 

Michael H. Neumann (joint work with Anne Leucht, Bamberg)

Friedrich-Schiller-Universität Jena
Paris, February 12-14, 2024

(1) GARCH and integer-valued GARCH
(2) Models for non-stationary count processes
(3) Mixing properties of INGARCH processes

## GARCH and integer-valued GARCH

(Classical) GARCH:

$$
\begin{aligned}
X_{t} & =\sigma_{t} \varepsilon_{t} \\
\sigma_{t}^{2} & =f\left(X_{t-1}^{2}, \ldots, X_{t-p}^{2} ; \sigma_{t-1}^{2}, \ldots, \sigma_{t-q}^{2}\right)
\end{aligned}
$$

where $f: \quad \mathbb{R}_{+}^{p+q} \rightarrow \mathbb{R}_{+},\left(\varepsilon_{t}\right)_{t \in \mathbb{Z}}$ sequence of i.i.d. rv 's, $\mathbb{E} \varepsilon_{t}^{2}=1$.

## GARCH and integer-valued GARCH

(Classical) GARCH:

$$
\begin{aligned}
& X_{t}=\sigma_{t} \varepsilon_{t}, \\
& \sigma_{t}^{2}=f\left(X_{t-1}^{2}, \ldots, X_{t-p}^{2} ; \sigma_{t-1}^{2}, \ldots, \sigma_{t-q}^{2}\right),
\end{aligned}
$$

where $f: \mathbb{R}_{+}^{p+q} \rightarrow \mathbb{R}_{+},\left(\varepsilon_{t}\right)_{t \in \mathbb{Z}}$ sequence of i.i.d. rv's, $\mathbb{E} \varepsilon_{t}^{2}=1$.

Integer-valued GARCH (INGARCH):

$$
\begin{aligned}
P^{X_{t} \mid X_{t-1}, X_{t-2}, \ldots} & =Q\left(\sigma_{t}\right) \\
\sigma_{t} & =f\left(X_{t-1}, \ldots, X_{t-p} ; \sigma_{t-1}, \ldots, \sigma_{t-q}\right),
\end{aligned}
$$

## GARCH and integer-valued GARCH

(Classical) GARCH:

$$
\begin{aligned}
X_{t} & =\sigma_{t} \varepsilon_{t} \\
\sigma_{t}^{2} & =f\left(X_{t-1}^{2}, \ldots, X_{t-p}^{2} ; \sigma_{t-1}^{2}, \ldots, \sigma_{t-q}^{2}\right)
\end{aligned}
$$

where $f: \mathbb{R}_{+}^{p+q} \rightarrow \mathbb{R}_{+},\left(\varepsilon_{t}\right)_{t \in \mathbb{Z}}$ sequence of i.i.d. rv's, $\mathbb{E} \varepsilon_{t}^{2}=1$.

Integer-valued GARCH (INGARCH):

$$
\begin{aligned}
P^{X_{t} \mid X_{t-1}, X_{t-2}, \ldots} & =Q\left(\sigma_{t}\right) \\
\sigma_{t} & =f\left(X_{t-1}, \ldots, X_{t-p} ; \sigma_{t-1}, \ldots, \sigma_{t-q}\right)
\end{aligned}
$$

$\{Q(\sigma): \quad \sigma \geq 0\}$ some family of distributions on $\mathbb{N}_{0}$.

## GARCH and integer-valued GARCH

(Classical) GARCH:

$$
\begin{aligned}
X_{t} & =\sigma_{t} \varepsilon_{t} \\
\sigma_{t}^{2} & =f\left(X_{t-1}^{2}, \ldots, X_{t-p}^{2} ; \sigma_{t-1}^{2}, \ldots, \sigma_{t-q}^{2}\right)
\end{aligned}
$$

where $f: \quad \mathbb{R}_{+}^{p+q} \rightarrow \mathbb{R}_{+},\left(\varepsilon_{t}\right)_{t \in \mathbb{Z}}$ sequence of i.i.d. rv 's, $\mathbb{E} \varepsilon_{t}^{2}=1$.

Integer-valued GARCH (INGARCH):

$$
\begin{aligned}
P^{X_{t} \mid X_{t-1}, X_{t-2}, \ldots} & =Q\left(\sigma_{t}\right) \\
\sigma_{t} & =f\left(X_{t-1}, \ldots, X_{t-p} ; \sigma_{t-1}, \ldots, \sigma_{t-q}\right),
\end{aligned}
$$

$\{Q(\sigma): \quad \sigma \geq 0\}$ some family of distributions on $\mathbb{N}_{0}$.
Poisson-INGARCH: $Q(\sigma)=\operatorname{Poi}(\sigma) \quad \rightsquigarrow \quad \sigma_{t}=\operatorname{var}\left(X_{t} \mid X_{t-1}, X_{t-2}, \ldots\right)$

## A model for count series with a strong trend




Figure: left: Monthly immigration numbers for the Netherlands with increasing trend and strongly increasing seasonality; right: daily COVID-19 infection numbers from Italy with explosive trend.

## Poisson-INGARCH and trend

$$
X_{t} \mid " \text { past" } \sim \operatorname{Poi}\left(\sigma_{t}\right) ; \quad \sigma_{t+1}=a_{t} X_{t}+b_{t} \sigma_{t}+Z_{t}
$$

$\left(Z_{t}\right)_{t \in \mathbb{N}_{0}}$ exogenous process, possibly $Z_{t} \xrightarrow{P} \infty$.

## Poisson-INGARCH and trend

$$
X_{t} \mid " \operatorname{past} " \sim \operatorname{Poi}\left(\sigma_{t}\right) ; \quad \sigma_{t+1}=a_{t} X_{t}+b_{t} \sigma_{t}+Z_{t}
$$

$\left(Z_{t}\right)_{t \in \mathbb{N}_{0}}$ exogenous process, possibly $Z_{t} \xrightarrow{P} \infty$. Then

$$
E\left(X_{t} \mid \sigma_{t}\right)=\sigma_{t}, \quad \sqrt{\operatorname{var}\left(X_{t} \mid \sigma_{t}\right)}=\sqrt{\sigma_{t}}
$$

## Poisson-INGARCH and trend

$$
X_{t} \mid " \operatorname{past} " \sim \operatorname{Poi}\left(\sigma_{t}\right) ; \quad \sigma_{t+1}=a_{t} X_{t}+b_{t} \sigma_{t}+Z_{t}
$$

$\left(Z_{t}\right)_{t \in \mathbb{N}_{0}}$ exogenous process, possibly $Z_{t} \xrightarrow{P} \infty$. Then

$$
E\left(X_{t} \mid \sigma_{t}\right)=\sigma_{t}, \quad \sqrt{\operatorname{var}\left(X_{t} \mid \sigma_{t}\right)}=\sqrt{\sigma_{t}}
$$

If $\sigma_{t} \xrightarrow{P} \infty$ as $t \rightarrow \infty$, then $\sqrt{\operatorname{var}\left(X_{t} \mid \sigma_{t}\right)} / E\left(X_{t} \mid \sigma_{t}\right) \xrightarrow{P} 0$.

## Poisson-INGARCH and trend

$$
X_{t} \mid \text { "past" } \sim \operatorname{Poi}\left(\sigma_{t}\right) ; \quad \sigma_{t+1}=a_{t} X_{t}+b_{t} \sigma_{t}+Z_{t},
$$

$\left(Z_{t}\right)_{t \in \mathbb{N}_{0}}$ exogenous process, possibly $Z_{t} \xrightarrow{P} \infty$. Then

$$
E\left(X_{t} \mid \sigma_{t}\right)=\sigma_{t}, \quad \sqrt{\operatorname{var}\left(X_{t} \mid \sigma_{t}\right)}=\sqrt{\sigma_{t}} .
$$

If $\sigma_{t} \xrightarrow{P} \infty$ as $t \rightarrow \infty$, then $\sqrt{\operatorname{var}\left(X_{t} \mid \sigma_{t}\right)} / E\left(X_{t} \mid \sigma_{t}\right) \xrightarrow{P} 0$.
Possible issues:

- contradicts impression from certain data (e.g. Covid 19 infection numbers)


## Poisson-INGARCH and trend

$$
X_{t} \mid \text { "past" } \sim \operatorname{Poi}\left(\sigma_{t}\right) ; \quad \sigma_{t+1}=a_{t} X_{t}+b_{t} \sigma_{t}+Z_{t}
$$

$\left(Z_{t}\right)_{t \in \mathbb{N}_{0}}$ exogenous process, possibly $Z_{t} \xrightarrow{P} \infty$. Then

$$
E\left(X_{t} \mid \sigma_{t}\right)=\sigma_{t}, \quad \sqrt{\operatorname{var}\left(X_{t} \mid \sigma_{t}\right)}=\sqrt{\sigma_{t}}
$$

If $\sigma_{t} \xrightarrow{P} \infty$ as $t \rightarrow \infty$, then $\sqrt{\operatorname{var}\left(X_{t} \mid \sigma_{t}\right)} / E\left(X_{t} \mid \sigma_{t}\right) \xrightarrow{P} 0$.
Possible issues:

- contradicts impression from certain data (e.g. Covid 19 infection numbers)
- if $\sqrt{\operatorname{var}\left(X_{t} \mid \sigma_{t}\right)} / E\left(X_{t} \mid \sigma_{t}\right) \xrightarrow{P} 0$, then
- $d_{T V}\left(\operatorname{Poi}\left(\widetilde{\sigma}_{t}\right), \operatorname{Poi}\left(\widetilde{\sigma}_{t}^{\prime}\right)\right) \xrightarrow{P} 1$,
- mixing properties deteriorate as $t \rightarrow \infty$


## A remedy: (nearly) scale-invariant distributions on $\mathbb{N}_{0}$

Classical GARCH:

$$
\begin{gathered}
X_{t} \mid \text { "past" } \sim \mathcal{N}\left(0, \sigma_{t}\right) \\
\rightsquigarrow \quad E\left(\left|X_{t}\right| \mid \text { "past" }\right)=\sqrt{2 / \pi} \sqrt{\operatorname{var}\left(X_{t} \mid \text { "past" }\right)}
\end{gathered}
$$

## A remedy: (nearly) scale-invariant distributions on $\mathbb{N}_{0}$

Classical GARCH:

$$
\begin{gathered}
X_{t} \mid \text { "past" } \sim \mathcal{N}\left(0, \sigma_{t}\right) \\
\rightsquigarrow \quad E\left(\left|X_{t}\right| \mid \text { "past" }\right)=\sqrt{2 / \pi} \sqrt{\operatorname{var}\left(X_{t} \mid \text { "past" }\right)}
\end{gathered}
$$

Let $Y$ be a non-negative r.v. with a bounded density $p, E Y=1$, $E Y^{2}<\infty$.
Then $\left(P^{\sigma Y}\right)_{\sigma>0}$ is a scale-invariant family.

## A remedy: (nearly) scale-invariant distributions on $\mathbb{N}_{0}$

Classical GARCH:

$$
\begin{gathered}
X_{t} \mid \text { "past" } \sim \mathcal{N}\left(0, \sigma_{t}\right) \\
\rightsquigarrow \quad E\left(\left|X_{t}\right| \mid \text { "past" }\right)=\sqrt{2 / \pi} \sqrt{\operatorname{var}\left(X_{t} \mid \text { "past" }\right)}
\end{gathered}
$$

Let $Y$ be a non-negative r.v. with a bounded density $p, E Y=1$, $E Y^{2}<\infty$.
Then $\left(P^{\sigma Y}\right)_{\sigma>0}$ is a scale-invariant family.
Integer-valued counterparts:

$$
X_{\sigma}=\lfloor\sigma Y\rfloor
$$

$$
\left(X_{\sigma}=k \quad \Longleftrightarrow \quad \sigma Y \in[k, k+1)\right)
$$

## Examples

- $Y \sim \operatorname{Exp}(1)$, then

$$
\begin{aligned}
& \quad P\left(X_{\sigma}=k\right)=P(\sigma Y \in[k, k+1))=p(1-p)^{k}, \\
& p=1-e^{-1 / \sigma}
\end{aligned}
$$

## Examples

- $Y \sim \operatorname{Exp}(1)$, then

$$
\begin{aligned}
& \quad P\left(X_{\sigma}=k\right)=P(\sigma Y \in[k, k+1))=p(1-p)^{k}, \\
& p=1-e^{-1 / \sigma}
\end{aligned}
$$

- $Z \sim \mathcal{N}(0, \pi / 2)$, then $Y:=|Z|$ has a half-normal distribution, $E Y=1, X_{\sigma}=\lfloor\sigma Y\rfloor$


## The proposed model

$$
\begin{align*}
X_{t} \mid \text { "past" } & \stackrel{d}{=}\left\lfloor\sigma_{t} Y\right\rfloor  \tag{2.1a}\\
\sigma_{t} & =f\left(\sigma_{t-1}, X_{t-1}\right) \cdot Z_{t-1} \tag{2.1b}
\end{align*}
$$

$\left(Z_{t}\right)_{t}$ sequence of exogenous covariates

## The proposed model

$$
\begin{align*}
X_{t} \mid \text { "past" } & \stackrel{d}{=}\left\lfloor\sigma_{t} Y\right\rfloor  \tag{2.1a}\\
\sigma_{t} & =f\left(\sigma_{t-1}, X_{t-1}\right) \cdot Z_{t-1} \tag{2.1b}
\end{align*}
$$

$\left(Z_{t}\right)_{t}$ sequence of exogenous covariates
Then

$$
d_{T V}\left(P^{X_{\sigma}}, P^{X_{\sigma^{\prime}}}\right) \leq \text { const. } \cdot\left|\ln (\sigma)-\ln \left(\sigma^{\prime}\right)\right| \quad \forall \sigma, \sigma^{\prime}>0
$$

$\Longrightarrow$ change over to logarithmic scale

## The proposed model

$$
\begin{align*}
X_{t} \mid \text { "past" } & \stackrel{d}{=}\left\lfloor\sigma_{t} Y\right\rfloor  \tag{2.1a}\\
\sigma_{t} & =f\left(\sigma_{t-1}, X_{t-1}\right) \cdot Z_{t-1} \tag{2.1b}
\end{align*}
$$

$\left(Z_{t}\right)_{t}$ sequence of exogenous covariates

Then

$$
d_{T V}\left(P^{X_{\sigma}}, P^{X_{\sigma^{\prime}}}\right) \leq \text { const. } \cdot\left|\ln (\sigma)-\ln \left(\sigma^{\prime}\right)\right| \quad \forall \sigma, \sigma^{\prime}>0
$$

$\Longrightarrow$ change over to logarithmic scale
(2.1b) equivalent to

$$
\begin{equation*}
\ln \left(\sigma_{t}\right)=\ln \left(f\left(\sigma_{t-1}, X_{t-1}\right)\right)+\underbrace{\ln \left(Z_{t-1}\right)}_{=: C_{t-1}} \tag{2.1c}
\end{equation*}
$$

## Covid data

Model:

$$
\begin{aligned}
X_{t} \mid \text { "past" } & \stackrel{d}{=}\left\lfloor\sigma_{t} Y\right\rfloor \\
\ln \left(\sigma_{t}\right) & =a \ln \left(\sigma_{t-1}\right)+b \ln \left(X_{t-1}+1\right)+c \ln (t)
\end{aligned}
$$

## Covid data

Model:

$$
\begin{aligned}
X_{t} \mid \text { "past" } & \stackrel{d}{=}\left\lfloor\sigma_{t} Y\right\rfloor \\
\ln \left(\sigma_{t}\right) & =a \ln \left(\sigma_{t-1}\right)+b \ln \left(X_{t-1}+1\right)+c \ln (t)
\end{aligned}
$$

Then

$$
E \ln \left(X_{t}+1\right)=\ln \left(t^{\theta}\right)+O(1) ; \quad \theta=c /(1-a-b)
$$

## Covid data

Model:

$$
\begin{aligned}
X_{t} \mid \text { "past" } & \stackrel{d}{=}\left\lfloor\sigma_{t} Y\right\rfloor \\
\ln \left(\sigma_{t}\right) & =a \ln \left(\sigma_{t-1}\right)+b \ln \left(X_{t-1}+1\right)+c \ln (t)
\end{aligned}
$$

Then

$$
E \ln \left(X_{t}+1\right)=\ln \left(t^{\theta}\right)+O(1) ; \quad \theta=c /(1-a-b)
$$

Least squares fit: $\widehat{\theta}_{n}=2.48, \quad t \mapsto t^{\widehat{\theta}_{n}}$


## Mixing vs. ergodicity

Applications in statistics: consistency, asymptotic normality, ...

## Mixing vs. ergodicity

Applications in statistics: consistency, asymptotic normality, ...

- (strictly) stationary processes ergodicity (plus some structure) suffices: ergodic theorem, CLT for martingale differences
- non-stationary processes ergodicity does not help, mixing (or "weak dependence")


## Absolute regularity ( $\beta$-mixing)

- $(\Omega, \mathcal{F}, P)$ probab. space, $\mathcal{A}, \mathcal{B}$ sub- $\sigma$-algebras of $\mathcal{F}$. Then

$$
\beta(\mathcal{A}, \mathcal{B})=\mathbb{E}\left[\sup _{B \in \mathcal{B}}|P(B \mid \mathcal{A})-P(B)|\right]
$$

## Absolute regularity ( $\beta$-mixing)

- $(\Omega, \mathcal{F}, P)$ probab. space, $\mathcal{A}, \mathcal{B}$ sub- $\sigma$-algebras of $\mathcal{F}$. Then

$$
\beta(\mathcal{A}, \mathcal{B})=\mathbb{E}\left[\sup _{B \in \mathcal{B}}|P(B \mid \mathcal{A})-P(B)|\right]
$$

- $Y=\left(Y_{t}\right)_{t \in \mathbb{Z}}$ stochastic process on $(\Omega, \mathcal{F}, P)$. Then

$$
\beta^{Y}(k, n)=\beta\left(\sigma\left(Y_{t}: t \leq k\right), \sigma\left(Y_{t}: t \geq k+n\right)\right)
$$

## Absolute regularity ( $\beta$-mixing)

- $(\Omega, \mathcal{F}, P)$ probab. space, $\mathcal{A}, \mathcal{B}$ sub- $\sigma$-algebras of $\mathcal{F}$. Then

$$
\beta(\mathcal{A}, \mathcal{B})=\mathbb{E}\left[\sup _{B \in \mathcal{B}}|P(B \mid \mathcal{A})-P(B)|\right]
$$

- $Y=\left(Y_{t}\right)_{t \in \mathbb{Z}}$ stochastic process on $(\Omega, \mathcal{F}, P)$. Then

$$
\begin{aligned}
& \beta^{Y}(k, n)= \beta\left(\sigma\left(Y_{t}: t \leq k\right), \sigma\left(Y_{t}: t \geq k+n\right)\right) \\
& \beta^{Y}(n)= \\
&=\sup _{k} \beta^{Y}(k, n) \\
&= \sup _{k} \mathbb{E}\left[\sup _{C} \mid P\left(\left(Y_{k+n}, Y_{k+n+1}, \ldots\right) \in C \mid Y_{k}, Y_{k-1}, \ldots\right)\right. \\
&\left.\quad-P\left(\left(Y_{k+n}, Y_{k+n+1}, \ldots\right) \in C\right) \mid\right]
\end{aligned}
$$

## Absolute regularity ( $\beta$-mixing)

- $(\Omega, \mathcal{F}, P)$ probab. space, $\mathcal{A}, \mathcal{B}$ sub- $\sigma$-algebras of $\mathcal{F}$. Then

$$
\beta(\mathcal{A}, \mathcal{B})=\mathbb{E}\left[\sup _{B \in \mathcal{B}}|P(B \mid \mathcal{A})-P(B)|\right]
$$

- $Y=\left(Y_{t}\right)_{t \in \mathbb{Z}}$ stochastic process on $(\Omega, \mathcal{F}, P)$. Then

$$
\begin{aligned}
& \beta^{Y}(k, n)= \beta\left(\sigma\left(Y_{t}: t \leq k\right), \sigma\left(Y_{t}: t \geq k+n\right)\right) \\
& \beta^{Y}(n)= \\
&=\sup _{k} \beta^{Y}(k, n) \\
&= \sup _{k} \mathbb{E}\left[\sup _{C} \mid P\left(\left(Y_{k+n}, Y_{k+n+1}, \ldots\right) \in C \mid Y_{k}, Y_{k-1}, \ldots\right)\right. \\
&\left.\quad-P\left(\left(Y_{k+n}, Y_{k+n+1}, \ldots\right) \in C\right) \mid\right]
\end{aligned}
$$

$Y$ is absolutely regular ( $\beta$-mixing) if

$$
\beta^{Y}(n) \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

## Mixing of classical GARCH

- Linear $\operatorname{GARCH}(p, q):$ Boussama (1998)
- Nonlinear $\operatorname{GARCH}(1,1)$ : Carrasco \& Chen (2002), Francq \& Zakoïan (2006)


## Mixing of classical GARCH

- Linear $\operatorname{GARCH}(p, q):$ Boussama (1998)
- Nonlinear GARCH(1,1): Carrasco \& Chen (2002), Francq \& Zakoïan (2006)


## Typical result:

$\left(\left(X_{t}, \sigma_{t}\right)\right)_{t}$ absolutely regular ( $\beta$-mixing), $\beta^{(X, \sigma)}(n)=O\left(\rho^{n}\right)$, for some $\rho<1$.

## Mixing of classical GARCH

- Linear $\operatorname{GARCH}(p, q)$ : Boussama (1998)
- Nonlinear $\operatorname{GARCH}(1,1)$ : Carrasco \& Chen (2002), Francq \& Zakoïan (2006)

Typical result:
$\left(\left(X_{t}, \sigma_{t}\right)\right)_{t}$ absolutely regular ( $\beta$-mixing), $\beta^{(X, \sigma)}(n)=O\left(\rho^{n}\right)$, for some $\rho<1$.

Method of proof:

- $\left(\left(X_{t}, \sigma_{t}\right)\right)_{t}$ time-homogeneous Markov chain
- MC technology can be used


## Here: Mixing of $\operatorname{INGARCH}(1,1)$

- $\left(\left(X_{t}, \sigma_{t}\right)\right)_{t}$ is a Markov chain
- However: $\left(\sigma_{t}\right)_{t}$ not mixing in general (see next slide)
- $\left(X_{t}\right)_{t}$ has infinite memory, is not a MC


## Here: Mixing of $\operatorname{INGARCH}(1,1)$

- $\left(\left(X_{t}, \sigma_{t}\right)\right)_{t}$ is a Markov chain
- However: $\left(\sigma_{t}\right)_{t}$ not mixing in general (see next slide)
- $\left(X_{t}\right)_{t}$ has infinite memory, is not a MC


## Consequences:

- Cannot use MC technology; use coupling arguments instead
- Revision of (a possible) original goal: Prove mixing only for the count process $\left(X_{t}\right)_{t}$

Non-mixing of $\left(\sigma_{t}\right)_{t}$
Counterexample (Neumann, 2011, Bernoulli):

$$
P^{X_{t} \mid X_{t-1}, X_{t-2}, \ldots}=\operatorname{Poi}\left(\sigma_{t}\right), \quad \sigma_{t}=X_{t-1} / 2+g\left(\sigma_{t-1}\right)
$$

Non-mixing of $\left(\sigma_{t}\right)_{t}$
Counterexample (Neumann, 2011, Bernoulli):

$$
P^{X_{t} \mid X_{t-1}, X_{t-2}, \ldots}=\operatorname{Poi}\left(\sigma_{t}\right), \quad \sigma_{t}=X_{t-1} / 2+g\left(\sigma_{t-1}\right)
$$

where

- $g:[0, \infty) \rightarrow[0, \infty)$ strictly monotone
- $0<g(\sigma)<1 / 2$

Non-mixing of $\left(\sigma_{t}\right)_{t}$
Counterexample (Neumann, 2011, Bernoulli):

$$
P^{X_{t} \mid X_{t-1}, X_{t-2}, \ldots}=\operatorname{Poi}\left(\sigma_{t}\right), \quad \sigma_{t}=X_{t-1} / 2+g\left(\sigma_{t-1}\right)
$$

where

- $g:[0, \infty) \rightarrow[0, \infty)$ strictly monotone
- $0<g(\sigma)<1 / 2$

Then $\quad 2 \sigma_{t}=X_{t-1}+\underbrace{2 g\left(\sigma_{t-1}\right)}_{\in(0,1)} \rightsquigarrow\left\lfloor 2 \sigma_{t}\right\rfloor=X_{t-1}$
$\rightsquigarrow \quad 2 g\left(\sigma_{t-1}\right)=2 \sigma_{t}-X_{t-1}=2 \sigma_{t}-\left\lfloor 2 \sigma_{t}\right\rfloor$

## Non-mixing of $\left(\sigma_{t}\right)_{t}$

Counterexample (Neumann, 2011, Bernoulli):

$$
P^{X_{t} \mid X_{t-1}, X_{t-2}, \ldots}=\operatorname{Poi}\left(\sigma_{t}\right), \quad \sigma_{t}=X_{t-1} / 2+g\left(\sigma_{t-1}\right)
$$

where

- $g:[0, \infty) \rightarrow[0, \infty)$ strictly monotone
- $0<g(\sigma)<1 / 2$

Then $\quad 2 \sigma_{t}=X_{t-1}+\underbrace{2 g\left(\sigma_{t-1}\right)}_{\in(0,1)} \rightsquigarrow\left\lfloor 2 \sigma_{t}\right\rfloor=X_{t-1}$
$\rightsquigarrow \quad 2 g\left(\sigma_{t-1}\right)=2 \sigma_{t}-X_{t-1}=2 \sigma_{t}-\left\lfloor 2 \sigma_{t}\right\rfloor$

- $g$ strictly monotone $\rightsquigarrow$ we can recover $\sigma_{t-1}$ from $\sigma_{t}$ $\rightsquigarrow \quad$ we can recover from $\sigma_{t}$ the complete past, $\left(\sigma_{s}\right)_{s<t}$
- $\left(\sigma_{t}\right)_{t}$ is not purely non-random $\rightsquigarrow \quad$ not strong $(\alpha-)$ mixing $\rightsquigarrow \quad \operatorname{not} \beta$-mixing


## Upper bounds to the mixing coefficients

- $\left(X_{t}\right)_{t}$ integer-valued process on $(\Omega, \mathcal{F}, P)$, possibly nonstationary


## Upper bounds to the mixing coefficients

- $\left(X_{t}\right)_{t}$ integer-valued process on $(\Omega, \mathcal{F}, P)$, possibly nonstationary
- $\widetilde{X}=\left(\widetilde{X}_{t}\right)_{t}$ and $\widetilde{X}^{\prime}=\left(\widetilde{X}_{t}^{\prime}\right)_{t}$ two versions of $\left(\tilde{X}_{t}\right)_{t}$, defined on $(\widetilde{\Omega}, \widetilde{\mathcal{F}}, \widetilde{P})$, where $\left(\widetilde{X}_{0}, \ldots, \widetilde{X}_{k}\right)$ and $\left(\widetilde{X}_{0}^{\prime}, \ldots, \widetilde{X}_{k}^{\prime}\right)$ independent


## Upper bounds to the mixing coefficients

- $\left(X_{t}\right)_{t}$ integer-valued process on $(\Omega, \mathcal{F}, P)$, possibly nonstationary
- $\widetilde{X}=\left(\widetilde{X}_{t}\right)_{t}$ and $\widetilde{X}^{\prime}=\left(\widetilde{X}_{t}^{\prime}\right)_{t}$ two versions of $\left(\tilde{X}_{t}\right)_{t}$, defined on $(\widetilde{\Omega}, \widetilde{\mathcal{F}}, \widetilde{P})$, where $\left(\widetilde{X}_{0}, \ldots, \widetilde{X}_{k}\right)$ and $\left(\widetilde{X}_{0}^{\prime}, \ldots, \widetilde{X}_{k}^{\prime}\right)$ independent
- Then

$$
\begin{aligned}
& \beta^{X}(k, n) \\
& \leq \widetilde{E}\left[\operatorname { s u p } _ { C \in \sigma ( \mathcal { C } ) } \left\{\mid \widetilde{P}\left(\left(\widetilde{X}_{k+n}, \widetilde{X}_{k+n+1}, \ldots\right) \in C \mid \widetilde{X}_{0}, \ldots, \widetilde{X}_{k}\right)\right.\right. \\
& \\
& \left.\left.\quad-\widetilde{P}\left(\left(\widetilde{X}_{k+n}^{\prime}, \widetilde{X}_{k+n+1}^{\prime}, \ldots\right) \in C \mid \widetilde{X}_{0}^{\prime}, \ldots, \widetilde{X}_{k}^{\prime}\right) \mid\right\}\right]
\end{aligned}
$$

## Upper bounds to the mixing coefficients

- $\left(X_{t}\right)_{t}$ integer-valued process on $(\Omega, \mathcal{F}, P)$, possibly nonstationary
- $\widetilde{X}=\left(\widetilde{X}_{t}\right)_{t}$ and $\widetilde{X}^{\prime}=\left(\widetilde{X}_{t}^{\prime}\right)_{t}$ two versions of $\left(\tilde{X}_{t}\right)_{t}$, defined on $(\widetilde{\Omega}, \widetilde{\mathcal{F}}, \widetilde{P})$, where $\left(\widetilde{X}_{0}, \ldots, \widetilde{X}_{k}\right)$ and $\left(\widetilde{X}_{0}^{\prime}, \ldots, \widetilde{X}_{k}^{\prime}\right)$ independent
- Then

$$
\begin{aligned}
& \beta^{X}(k, n) \\
& \begin{array}{l}
\leq \\
\leq
\end{array} \sup _{C \in \sigma(\mathcal{C})}\left\{\mid \widetilde{P}\left(\left(\widetilde{X}_{k+n}, \widetilde{X}_{k+n+1}, \ldots\right) \in C \mid \widetilde{X}_{0}, \ldots, \widetilde{X}_{k}\right)\right. \\
& \\
& \left.\left.\quad-\widetilde{P}\left(\left(\widetilde{X}_{k+n}^{\prime}, \widetilde{X}_{k+n+1}^{\prime}, \ldots\right) \in C \mid \widetilde{X}_{0}^{\prime}, \ldots, \widetilde{X}_{k}^{\prime}\right) \mid\right\}\right] \\
& \leq \\
& \leq \\
& \hline P\left(\widetilde{X}_{k+n+r} \neq \widetilde{X}_{k+n+r}^{\prime} \quad \text { for some } r \in \mathbb{N}_{0}\right)
\end{aligned}
$$

## Upper bounds to the mixing coefficients

- $\left(X_{t}\right)_{t}$ integer-valued process on $(\Omega, \mathcal{F}, P)$, possibly nonstationary
- $\widetilde{X}=\left(\widetilde{X}_{t}\right)_{t}$ and $\widetilde{X}^{\prime}=\left(\widetilde{X}_{t}^{\prime}\right)_{t}$ two versions of $\left(\tilde{X}_{t}\right)_{t}$, defined on $(\widetilde{\Omega}, \widetilde{\mathcal{F}}, \widetilde{P})$, where $\left(\widetilde{X}_{0}, \ldots, \widetilde{X}_{k}\right)$ and $\left(\widetilde{X}_{0}^{\prime}, \ldots, \widetilde{X}_{k}^{\prime}\right)$ independent
- Then

$$
\begin{aligned}
& \beta^{X}(k, n) \\
& \leq \tilde{E}\left[\operatorname { s u p } _ { C \in \sigma ( \mathcal { C } ) } \left\{\mid \widetilde{P}\left(\left(\widetilde{X}_{k+n}, \widetilde{X}_{k+n+1}, \ldots\right) \in \mathcal{C} \mid \widetilde{X}_{0}, \ldots, \widetilde{X}_{k}\right)\right.\right. \\
& \left.\left.-\widetilde{P}\left(\left(\widetilde{X}_{k+n}^{\prime}, \widetilde{X}_{k+n+1}^{\prime}, \ldots\right) \in C \mid \widetilde{X}_{0}^{\prime}, \ldots, \widetilde{X}_{k}^{\prime}\right) \mid\right\}\right] \\
& \leq \widetilde{P}\left(\widetilde{X}_{k+n+r} \neq \widetilde{X}_{k+n+r}^{\prime} \quad \text { for some } r \in \mathbb{N}_{0}\right) \\
& =\widetilde{P}\left(\widetilde{X}_{k+n} \neq \widetilde{X}_{k+n}^{\prime}\right) \\
& +\sum_{r=1}^{\infty} \widetilde{P}\left(\widetilde{X}_{k+n+r} \neq \widetilde{X}_{k+n+r}^{\prime}, \widetilde{X}_{k+n+r-1}=\widetilde{X}_{k+n+r-1}^{\prime}, \ldots, \widetilde{X}_{k+n}=\widetilde{X}_{k+n}^{\prime}\right) \text {. }
\end{aligned}
$$

## Mixing of "Scale-invariant" INGARCH

$$
\begin{align*}
X_{t} \mid \text { "past" } & \stackrel{d}{=}\left\lfloor\sigma_{t} Y\right\rfloor,  \tag{3.1a}\\
\ln \left(\sigma_{t}\right) & =\ln \left(f\left(\sigma_{t-1}, X_{t-1}\right)\right)+\underbrace{\ln \left(Z_{t-1}\right)}_{=: C_{t-1}} \tag{3.1b}
\end{align*}
$$

## Mixing of "Scale-invariant" INGARCH

$$
\begin{align*}
X_{t} \mid \text { "past" } & \stackrel{d}{=}\left\lfloor\sigma_{t} Y\right\rfloor,  \tag{3.1a}\\
\ln \left(\sigma_{t}\right) & =\ln \left(f\left(\sigma_{t-1}, X_{t-1}\right)\right)+\underbrace{\ln \left(Z_{t-1}\right)}_{=: C_{t-1}} \tag{3.1b}
\end{align*}
$$

Contractive condition:

$$
\left|\ln (f(x, \sigma))-\ln \left(f\left(x^{\prime}, \sigma^{\prime}\right)\right)\right| \leq a\left|\ln (\sigma)-\ln \left(\sigma^{\prime}\right)\right|+b\left|\ln (x+1)-\ln \left(x^{\prime}+1\right)\right| .
$$

## Mixing of "Scale-invariant" INGARCH

$$
\begin{align*}
X_{t} \mid \text { "past" } & \stackrel{d}{=}\left\lfloor\sigma_{t} Y\right\rfloor,  \tag{3.1a}\\
\ln \left(\sigma_{t}\right) & =\ln \left(f\left(\sigma_{t-1}, X_{t-1}\right)\right)+\underbrace{\ln \left(Z_{t-1}\right)}_{=: C_{t-1}} \tag{3.1b}
\end{align*}
$$

Contractive condition:

$$
\left|\ln (f(x, \sigma))-\ln \left(f\left(x^{\prime}, \sigma^{\prime}\right)\right)\right| \leq a\left|\ln (\sigma)-\ln \left(\sigma^{\prime}\right)\right|+b\left|\ln (x+1)-\ln \left(x^{\prime}+1\right)\right| .
$$

Theorem 3.1 (Leucht \& N., 2023+).
If $a+\gamma b<1$, $\sup \left\{E\left|C_{t}-E C_{t}\right|: t \in \mathbb{N}_{0}\right\}<\infty$, and $E\left|\ln \left(\sigma_{0}\right)\right|<\infty$, then

$$
\beta^{X}(n)=O\left(\rho^{n}\right)
$$

for some $\rho<1$.

## Proof of Theorem 3.1

For $t \geq k$, couple $\widetilde{X}_{t}$ and $\widetilde{X}_{t}^{\prime}$ such that

$$
\begin{aligned}
\widetilde{P}\left(\widetilde{X}_{t} \neq \widetilde{X}_{t}^{\prime} \mid \widetilde{\sigma}_{t}, \widetilde{\sigma}_{t}^{\prime}\right) & =d_{T V}\left(P^{\left\lfloor\widetilde{\sigma}_{t} Y\right\rfloor}, P \mid \widetilde{\sigma}_{t}^{\prime} Y\right\rfloor \\
& =O\left(\left|\ln \left(\widetilde{\sigma}_{t}\right)-\ln \left(\widetilde{\sigma}_{t}^{\prime}\right)\right|\right.
\end{aligned}
$$

## Proof of Theorem 3.1

For $t \geq k$, couple $\widetilde{X}_{t}$ and $\widetilde{X}_{t}^{\prime}$ such that

$$
\begin{aligned}
\widetilde{P}\left(\widetilde{X}_{t} \neq \widetilde{X}_{t}^{\prime} \mid \widetilde{\sigma}_{t}, \widetilde{\sigma}_{t}^{\prime}\right) & =d_{T V}\left(P^{\left.\mid \widetilde{\sigma}_{t} Y\right\rfloor}, P^{\left.\mid \widetilde{\sigma}_{t}^{\prime} Y\right\rfloor}\right) \\
& =O\left(\left|\ln \left(\widetilde{\sigma}_{t}\right)-\ln \left(\widetilde{\sigma}_{t}^{\prime}\right)\right|\right.
\end{aligned}
$$

Then

$$
\begin{aligned}
& \beta^{X}(k, n) \\
& \quad \underbrace{\widetilde{P}\left(\widetilde{X}_{k+n} \neq \widetilde{X}_{k+n}^{\prime}\right)}_{\leq c_{1}(a+\gamma b)^{n}} \\
& \\
& \quad+\sum_{r=1}^{\infty} \underbrace{\widetilde{P}\left(\widetilde{X}_{k+n+r} \neq \widetilde{X}_{k+n+r}^{\prime}, \widetilde{X}_{k+n+r-1}=\widetilde{X}_{k+n+r-1}^{\prime}, \ldots, \widetilde{X}_{k+n}=\widetilde{X}_{k+n}^{\prime}\right)}_{\leq c_{2}(a+\gamma b)^{n} a^{r}}
\end{aligned}
$$

## Summary

- GARCH and INGARCH have a similar structure - nevertheless, mixing results are qualitatively different and require different techniques of proof


## Summary

- GARCH and INGARCH have a similar structure - nevertheless, mixing results are qualitatively different and require different techniques of proof
- INGARCH: proof of mixing via coupling rather than existing MC results


## Summary

- GARCH and INGARCH have a similar structure - nevertheless, mixing results are qualitatively different and require different techniques of proof
- INGARCH: proof of mixing via coupling rather than existing MC results
- Poisson-INGARCH: a moderate trend leaves mixing properties intact


## Summary

- GARCH and INGARCH have a similar structure - nevertheless, mixing results are qualitatively different and require different techniques of proof
- INGARCH: proof of mixing via coupling rather than existing MC results
- Poisson-INGARCH: a moderate trend leaves mixing properties intact
- "scale-invariant" INGARCH:
- closer to classical GARCH
- contraction at a logarithmic scale $\rightsquigarrow$ explosive behavior does not affect mixing properties

