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Figure 1. Friendly yours, Paul
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1. The Leadbetter conditions D and D′ (1974,1983)

•Consider an iid sequence (Xt) with common distribution F and

partial maxima

Mn = max
i=1,...,n

Xi , n ≥ 1 .
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• For a threshold sequence un(τ )→ xF , τ ∈ [0,∞],

P(Mn ≤ un(τ ))→ e−τ , n→∞ ,

holds if and only if

nF (un(τ ))→ τ , n→∞ .

• In particular, for un(x) = cn x+ dn, cn > 0, dn ∈ R,

P
(
c−1
n (Mn − dn) ≤ x

)
→ H(x) , x ∈ R ,

for an extreme value distribution H if and only if

nF (cn x+ dn)→ − logH(x) .

What happens if (Xt) is (strictly) stationary?

•Condition D(un(τ )) is a mixing condition motivated by the

blocks method for rn/n→ 0, kn = [n/rn]→∞.
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X1, . . . , Xrn︸ ︷︷ ︸
Block 1

, Xrn+1, . . . , X2 rn︸ ︷︷ ︸
Block 2

, . . . , X(kn−1) rn+1, . . . , Xkn rn︸ ︷︷ ︸
Block kn

.

•A stronger version of D(un(τ ))

P
(
Mn ≤ un(τ )

)
=
(
P
(
Mrn ≤ un(τ )

))kn
+ o(1)

= exp
(
− kn P

(
Mrn > un(τ )

)
(1 + o(1))

)
+ o(1)

= exp
(
−

P
(
Mrn > un(τ )

)
rn F (un(τ ))︸ ︷︷ ︸

=:θn(τ )

[
nF (un(τ ))

]︸ ︷︷ ︸
→τ

(1 + o(1))
)

+ o(1)

→ exp
(
− θn(τ ) τ (1 + o(1))

)
n→∞ .
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• If θn(τ )→ θX ∈ [0, 1] this limit is the extremal index.

• θn(τ ) is the reciprocal of the expected number of exceedances

of un(τ ) in a block.

• θn(τ )→ θX is a large deviation result for maxima:

P
(
Mrn > un(τ )

)
∼ θX rn F (un(τ ))

When is θX = 1 ? As if (Xt) were iid. . .

• Leadbetter’s anti-clustering condition

lim
k→∞

lim sup
n→∞

[n/k]∑
i=1

P
(
Xi > un(τ ) | X0 > un(τ )

)
= 0 .
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• Satisfied for any reasonable Gaussian stationary sequence.
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2. Regular variation of stationary sequences

•A strictly stationary sequence (Xt) is regularly varying with

index α > 0 if |X0| is regularly varying with index α and for

every h ≥ 0, Davis, Hsing (1995)

P
(
x−1(X0, . . . , Xh) ∈ ·

)
P(|X0| > x)

v→ µh(·) , x→∞ .

•A strictly stationary sequence (Xt) is regularly varying with

index α > 0 if there exists a sequence (Θt) independent of a

Pareto(α)-distributed Yα such that for every h ≥ 0,

P
(
x−1(X−h, . . . , Xh) ∈ •

∣∣|X0| > x
) w→ P

(
Yα (Θ−h, . . . ,Θh) ∈ •

)
• (Θt) is the spectral tail process. Basrak, Segers (2009)
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2.1. Examples of regularly varying time series.

AR(1) process: Xt = ϕXt−1 + Zt, (Zt) iid regularly varying with

index α > 0, |ϕ| < 1. Then (Xt) is regularly varying with index α

and

Θt = Θ0ϕ
t , t ≥ 0 .

Affine stochastic recurrence equation: Xt = AtXt−1 +Bt, (At, Bt),

t ∈ Z, iid, and the equation E[|A|α] = 1 has a positive solution OR

(Bt) is regularly varying with index α and E[|A|α] < 1. Then (Xt)

is regularly varying with index α > 0 and

Θt = Θ0A1 · · ·At t ≥ 0 .

Kesten (1973), Goldie (1991), Grincevičius (1985)
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GARCH(1, 1) process: Xt = σtZt, (Zt) iid, E[Z] = 0, E[Z2] = 1,

σ2
t = α0 + α1X

2
t−1 + β1 σ

2
t−1 = α0 + (α1Z

2
t−1 + β1)σ

2
t−1 .

(σ2
t ) satisfies an affine stochastic recurrence equation.

It is regularly varying with index α/2 if E[(α1Z
2
0 + β1)

α/2] = 1 and

(Xt) inherits regular variation with index α.

Stochastic volatility model: Xt = σtZt, (σt) positive stationary,

independent of an iid regularly varying sequence (Zt) with index

α. If E[σα+δ] <∞ for some δ > 0, (Xt) is regularly varying with

index α and Θt = 0, t 6= 0.

Asymptotic independence
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2.2. Limit theory for partial maxima.

Here we assume that (Xt) is a non-negative stationary regularly
varying sequence with index α > 0, and (an) satisfies n P(X0 >
an)→ 1.

Mixing condition

P(Mn ≤ xan)−
[
P(Mrn ≤ xan)

]kn → 0 , n→∞ ,

Anti-clustering condition:

lim
k→∞

lim sup
n→∞

P
(
Mk,rn > xan | X0 > xan

)
= 0 , x > 0 .

Then a telescoping sum argument Jakubowski (1993,1997)

P(Mk > u)− P(Mk−1 > u) = P(X0 > u ,Mk−1 ≤ u) shows

lim
k→∞

lim sup
n→∞

∣∣∣ P(Mrn > xan)

rn P(X0 > xan)︸ ︷︷ ︸
=:θn(x)

−P(Mk ≤ xan | X0 > xan)
∣∣∣ = 0 .
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• By regular variation and the continuous mapping theorem

P(Mk ≤ xan | X0 > xan)
n→∞→ P

(
max
i=1,...,k

Yα Θi ≤ 1
)

= P
(
Y α
α max

i=1,...,k
Θα
i ≤ 1

)
k→∞→ P

(
Y α
α sup

i=1,2,...
Θα
i ≤ 1

)
= θX

•AR(1) process (|Xt|):

P
(

sup
i=1,2,...

|ϕ|iα ≤ Y −αα

)
= 1− |ϕ|α = θ|X|

• Stoch. recurrence eqn.: A,B ≥ 0 a.s.

P
(

sup
i=1,2,...

Aα
1 · · ·A

α
i ≤ Y

−α
α

)
= E

[(
1− sup

i=1,2,...
Aα

1 · · ·A
α
i

)
+

]
= θX

• Stochastic volatility model: Θt = 0, t = 1, 2, . . .: θX = 1.
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•Under mixing and anti-clustering,

∗ for the time T ∗ of the largest record of (|Θt|)t∈Z),

θ|X| = P(T ∗ = 0) = P
(

sup
t≤−1
|Θt| < 1 = sup

t≥0
|Θt|

)

∗ Θt→ 0, |t| → ∞ and
∑

t∈Z |Θt|α <∞.
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3. α-Stable limit theory for partial sums, α ∈ (0, 2)

• (Xt) stationary regularly varying with index α, generic element

X, normalizing constants (an) with n P(|X0| > an)→ 1, and

partial sums

Sn = X1 + · · ·+Xn , n ≥ 1 .

Mixing condition: The characteristic functions of a−1
n Sn and

a−1
n Srn satisfy

ϕa−1
n Sn

(u) =
(
ϕa−1

n Srn
(u)
)kn + o(1) , n→∞ , u ∈ R .

Anti-clustering condition:

lim
k→∞

lim sup
n→∞

n

rn∑
j=k

E
[
(|a−1

n Xj| ∧ 1) (|a−1
n X0| ∧ 1)

]
= 0 .
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• Then a−1
n (Sn − bn)

d→ ξα and ξα is α-stable with characteristic

function (α 6= 1)

ϕξα(u) = exp
(
− cα σα(u)

(
1− i β(u) tan(απ/2)

))
, u ∈ R .

with

β(u) =
E
[(

(u
∑∞

i=0 Θi)
α
+ − (u

∑∞
i=1 Θi)

α
+

)
−
(
(u
∑∞

i=0 Θi)
α
− − (u

∑∞
i=1 Θi)

α
−
)]

E[|u
∑∞

i=0 Θi|α − |u
∑∞

i=1 Θi|α]
,

σα(u) = E
[∣∣∣u ∞∑

i=0

Θi

∣∣∣α − ∣∣∣u ∞∑
i=1

Θi

∣∣∣α] ,
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•Assume bn = 0. Under mixing, a−1
n Sn

d→ ξα if and only if

a−1
n

∑kn
i=1 S

′
rn,i

d→ ξα for iid copies S′rn,i of Srn. Then Petrov (1974)

kn P(±Srn > xan) ∼
P(±Srn > xan)

rn P(|X0| > an)
→ c± x

−α , x > 0 .

• This is a large deviation result.

• It extends to uniform convergence.
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Extremal indices for sums.

• Linear process. Xt =
∑∞

j=0ψj Zt−j, (Zt) iid regularly varying,

α ∈ (0, 2). If all non-zero ψj have the same sign or Z is

symmetric, then

ϕξα(u) =
(
ϕξ′α(u)

)|∑j ψj|α/
∑
j |ψj|α

ξ′a is the limit for sums of iid copies of Xt.

•Affine SRE. Xt = AtXt−1 +Bt, A,B ≥ 0.

ϕξα(u) =
(
ϕξ′α(u)

)E[(1+
∑∞
j=1A1···Aj

)α
−
(∑∞

j=1A1···Aj
)α]
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Similar conditions and arguments apply to

• point process convergence (using Laplace functionals) Davis,

Hsing (1995), Basrak, Segers (2009),

• convergence of `p-norms of samples (using Laplace trans-
forms),

• their convergence jointly with maxima and sums (hybrid
characteristic functions)
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4. Maxima, sums, and their ratios

•Under anti-clustering for sums and mixing for the hybrid

characteristic function

E
[
ei ua

−1
n (Sn−bn)1(a−1

n M
|X|
n ≤ x)

]
, u ∈ R, x > 0 ,

we have for α ∈ (0, 2),

a−1
n (M |X|

n , Sn − bn)
d→ (ηα, ξa)

where
E
[
ei uξα1(ηα ≤ x)

]
= ϕξα(u) exp

(
−
∫ ∞
0

E
[
ei y u

∑∞
t=−∞Qt 1

(
y max

t∈Z
|Qt| > x

)]
d(−y−α)

)
= ϕξα(u) Φθ|X|

α (x) exp
(
− θ|X|

∫ ∞
x

E
[
ei y u

∑∞
t=−∞ Q̃t − 1

]
d(−y−α)

)
u ∈ R , x > 0 ,

and (Qt) = (Θt/
(∑

i∈Z |Θi|α
)1/α

and (Q̃t) is a version of (Qt)

under some change of measure.
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• In the case of asymptotic independence: Θt = Qt = Q̃t = 0,

t 6= 0, but ξα and ηα are not independent.

• Independence of ηα, ξα is only possible if
∑

t∈ZQt =
∑

t∈Z Θt = 0

a.s. This implies ξα = 0 a.s. For a linear process, this

corresponds to
∑

j ψj = 0.

•Ratio limit

Sn − bn
M
|X|
n

d→ Rα =
ξα

ηα
,

where for u ∈ R

ϕRα(u) =

E
[
ei u

∑∞
t=−∞ Q̃t

]∫ ∞
0

E
[
1 + i y u

∑
t∈Z

Q̃t 1(1,2)(α)− eiyu
∑∞
t=−∞ Q̃t1(y ≤ 1)

]
d(−y−α)

.
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•AR(1) process: Xt = ϕXt−1 + Zt for an iid regularly varying

sequence such that P(Z > x) = x−α for x > 1, ϕ ∈ (−1, 1) and

α ∈ (0, 1) ∪ (1, 2). Then

E[Rα] =
1

1− α
E
[∑
t∈Z

Q̃t

]
=

1

(1− α)(1− ϕ)
.
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5. Self-normalizations

•Write for a stationary regularly varying sequence (Xt) with

index α ∈ (0, 2),

γn,p =
( n∑
t=1

|Xt|p
)1/p

, p > 0 .

Under anti-clustering and mixing, for α < p,

(a−1
n Sn, a

−1
n M

|X|
n , a−pn γ

p
n,p)

d→ (ξα, ηα, ζ
p
α,p) , n→∞ ,

where the joint limit distribution is described by

E
[
ei u ξα 1(ηα ≤ x) e−λ

p ζpα,p
]

= exp
( ∫ ∞

0

E
[
ei y u

∑∞
t=−∞Qt−ypλp

∑∞
t=−∞ |Qt|p 1

(
y max

t∈Z
|Qt| ≤ x

)
−1− i y u

∑
t∈Z

Qt 1(1,2)(α)
]
d(−y−α)

)
.

ζpα,p has an α/p-stable distribution.
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• Studentized sums

Sn

γn,p

d→
ξα

ζα,p
=: Rα,p , n→∞ .

and

E[Rα,p] =
Γ((1− α)/p)

Γ(1/p)Γ(1− α/p)
E
[ ‖Q‖αp
E[‖Q‖αp ]

∑∞
t=−∞Qt

‖Q‖p

]
.

•Greenwood statistics for a positive regularly varying stationary

time series (Xt) , α < p ∧ 1,

Tn,p :=
Xp

1 + · · ·+Xp
n

(X1 + · · ·+Xn)p
d→
ζpα,p

ξpα
,

where ζpα,p is α/p-stable and ξα is α-stable.

E[Tn,p]→ E
[ζpα,p
ξpα

]
=

Γ(p− α)

Γ(p) Γ(1− α)
E
[ ‖Q‖α1
E[‖Q‖α1 ]

‖Q‖pp
‖Q‖p1

]
.
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6. Another view at these limit results: point process

convergence

• The distribution of a point process N =
∑

i εYi with state space

E ⊂ R is determined by its Laplace functional

ΨN(f) = E
[
exp

(
−
∫
E f dN

)]
, f ∈ C+

K ,

and Nn
d→ N if and only if ΨNn(f)→ ΨN(f), f ∈ C+

K.

•Assume (Xt) is stationary regularly varying with index α > 0.

Set

Nn =
n∑
t=1

εXt/an , n ≥ 1 .
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• Davis, Hsing (1995) Under anti-clustering and mixing in terms of the

Laplace functionals of (Nn),

Nn
d→ N =

∞∑
i=1

∑
j∈Z

ε
Γ
−1/α
i Qij

, n→∞ ,

on E = R0 = R\{0}, where 0 < Γ1 < Γ2 < · · · are the points of

a homogeneous Poisson process on (0,∞) with intensity

θ|X| > 0,
∑

j∈Z εQij are iid cluster processes with supj |Qij| = 1

a.s.

• (Joint) limit theory for a−1
n (Sn − bn,M |X|

n ) follows by the

continuous mapping theorem, e.g.

P
(
0 ≤ a−1

n M
|X|
n ≤ x

)
→ P

(
sup
i≥1

Γ
−1/α
i sup

j∈Z
|Qij| ≤ x

)
= P

(
Γ
−1/α
1 ≤ x

)
= Φ

θ|X|
α (x) .
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•A similar argument applies for sums, α ∈ (0, 2), by first

summing the largest points

ξα(δ) =
∞∑
i=1

Γ
−1/α
i

∑
j∈Z

Qij 1(Γ
−1/α
i |Qij| > δ)

and then letting δ ↓ 0: one needs to check the

vanishing-small-values condition for α ∈ (1, 2): for γ > 0,

lim
δ↓0

lim sup
n→∞

P
(∣∣∣a−1

n

n∑
t=1

Xt 1(a−1
n |Xt| ≤ δ)− E[...]

∣∣∣ > γ
)

= 0 .

• This is difficult and, in general, it is also difficult to identify the

parameters of the α-stable limit.
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