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Summary. Extensions of classical extreme value theory to apply to sta-
tionary sequences generally make use of two types of dependence restric-
tion:

(a) a weak “mixing condition” restricting long range dependence

(b) a local condition restricting the “clustering” of high level ex-
ceedances.

The purpose of this paper is to investigate extremal properties when the
local condition (b) is omitted. It is found that, under general conditions, the
type of the limiting distribution for maxima is unaltered. The precise
modifications and the degree of clustering of high level exceedances are
found to be largely described by a parameter here called the “extremal
index” of the sequence.

1. Introduction

Classical Extreme Value Theory discusses the possible limiting laws for the
maximum

M,=max (&, ¢, .- &) (1.1)

1. THE LEADBETTER CONDITIONS D AND D’ (1974,1983

e Consider an iid sequence (X;) with common distribution F' and

partial maxima




e For a threshold sequence u,(7) — xp, 7 € [0, 00|,
P(M,, < uy(t)) > e 7, n — oo,
holds if and only if
n F(u,(1)) — 7, n — 0o .
e In particular, for u,(x) = ¢, + d,,, ¢, > 0, d,, € R,
P(c,"(M, —d,) < z) - H(z), x €eR,
for an extreme value distribution H if and only if

nF(c,z +d,) — —log H(x) .

What happens if (X;) is (strictly) stationary?

e Condition D(u,(7)) is a mixzing condition motivated by the

blocks method for r,/n — 0, k,, = [n/r,] — oco.
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e A stronger version of D (un(7))
P(M, < un(7))
= (B(My, < un(m)) "+ o(1)
= oxp (= knP(M,, > ua(r))(1+ 0(1))) + o(1)

IP)(‘1\47% > u’n(T)) Rl
— exp(—\ o Flun() ;[nF(g;(T))l (1+0(1))) + o(1)
=:0n(T)

— exp (— O,(7) T (1 + 0(1))) n — oco.




o If 0,(7) — Ox € [0,1] this limit is the extremal index.
® 0,,(7) is the reciprocal of the expected number of exceedances
of u,(7) in a block.

@ 0,(17) — Ox is a large deviation result for maxima:

P(M,, > un(T)) ~ Ox 1y F(un(T))

When is Ox =1 7 As if (X;) were iid...

e Leadbetter’s anti-clustering condition

[n/k]
lim lim sup Z P(X; > un(7) | Xo > un(r)) =0.

k—oco pn—soco .
1=1



e Satisfied for any reasonable (GGaussian stationary sequence.



2. REGULAR VARIATION OF STATIONARY SEQUENCES

e A strictly stationary sequence (X3;) is regularly varying with
index o > 0 if | Xy| is regularly varying with index « and for

every h > 0, Davis, Hsing (1995)

P(z=(Xoy---s Xn) €+) o
P(| Xo| > )

>/th(°)7 L — OO.

e A strictly stationary sequence (X;) is regularly varying with
index a > 0 if there exists a sequence (0;) independent of a

Pareto(a)-distributed Y, such that for every h > 0,

Pz (X_py..., Xs) € 0||Xo| > z) = P(Ya (O_p,...,04) € o)

® (©,) is the spectral tail process. Basrak, Segers (2009)



2.1. Examples of regularly varying time series.
AR(1) process: X; = ¢ Xy 1 + Z;, (Zy) iid regularly varying with
index a > 0, || < 1. Then (X}) is regularly varying with index «

and

@t:@()QOt, t>0.

Affine stochastic recurrence equation: X; = A; Xy 1 + By, (A4, By),
t € Z, iid, and the equation E[|A|*| = 1 has a positive solution OR
(By) is regularly varying with index a and E[|A|*] < 1. Then (X})

is regularly varying with index a > 0 and
@t:@OAl"'At tz().

Kesten (1973), Goldie (1991), Grincevicius (1985)
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GARCH(1,1) process: Xy = oy Zy, (Z;) iid, E[Z] = 0, E[Z?] = 1,
o] =+ o1 X; | +pBio; =ap+ (uZ]  + B)o; .

(o?) satisfies an affine stochastic recurrence equation.

It is regularly varying with index a/2 if E[(a;Z2 + 3,)*/?] = 1 and

(X;) inherits regular variation with index «.

Stochastic volatility model: X; = o Z;, (o) positive stationary,

independent of an iid regularly varying sequence (Z;) with index

a. If E[c*1] < oo for some § > 0, (X;) is regularly varying with

index a and ©, = 0, t # 0.

Asymptotic independence
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2.2. Limit theory for partial maxima.

Here we assume that (X;) is a non-negative stationary regularly
varying sequence with index a > 0, and (a,) satisfies n P(X, >
a,) — 1.

Mixing condition

P(M, < xa,) — [P(Mrngman)]k"—)O, n — oo,
Anti-clustering condition:

lim limsupIP’(Mk,rn >xa, | Xo> :Ban) =0, x=>0.

k—oco  n—oo

Then a telescoping sum argument Jakubowski (1993,1997)

P(My, > u) — P(Mi_1 > u) =P(Xo > v, M1 < u) shows

L P(M,, > xay,)
lim lim sup
k—oo  n—oo Tn IP)(X() > X an)J

=00 (@)

—P(M, <zxa,| Xo>xa,) =0.
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e By regular variation and the continuous mapping theorem

P(My < xa,| Xog>xa,) ne IP( max, Y, 0; < 1)

1=1,...

= P(YY max OF <1)
1=1,....,k

e AR(1) process (| X¢|):

P( sup | <Y %) =1—|p|* = 6x

e Stoch. recurrence eqn.: A, B > 0 a.s.

P( sup A?---A?SYQ_O‘):E[(l—.sup AT - AT

i=1,2,... i=1,2,...

e Stochastic volatility model: &; =0,t =1,2,...: Ox = 1.

+} = Ux



e Under mixing and anti-clustering,

« for the time T of the largest record of (|©¢|)icz),

0x| = P(T* = 0) = IP( sup ] < 1 = sup |@t|)
t<— t>0

* ©; — 0, [t| > oo and ), , O < co.

13
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3. a-STABLE LIMIT THEORY FOR PARTIAL SUMS, a € (0, 2)

e (X;) stationary regularly varying with index a, generic element
X, normalizing constants (a,,) with n P(|Xy| > a,) — 1, and

partial sums

S, =X, 4+---+X,, n>1.

Mixing condition: The characteristic functions of a; 'S, and
a_ls - satisfy

Ports, (W) = (¢ —15rn(U))k" +o(1), n—oco, uc€ER.

Anti-clustering condition:

lim limsupn ZE[(|a;1Xj| A1) (Ja,"Xo| A1)] =

k—oco p—sco 3
=k




15

e Then a_'(S, — b,) 4 £, and &, is a-stable with characteristic

function (a # 1)

@t (u) = exp ( — cqo*(u) (1 — i B(u) tan(aw/2))), u € R.

with

sy E[((u 2,002 — (WXR, 0)%) — (12, 0)* — (X, @i)c_v)}
- ]EHUZ:ZO ;> — IUZfil ©;|*] ,

puSal]
=1

oc%(un) = EHui C¥
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e Assume b, = 0. Under mixing, a 'S, 4 &€, if and only if

—1 an S’ _> ¢, for iid copies S’

P(+S, .
by P(£S, > za,) ~ o > @ n)
ro P(| Xo| > an)

. of S, . Then petrov (1974)

»crx” ¢, x>0.

e This is a large deviation result.

e It extends to uniform convergence.



Extremal indices for sums.

e Linear process. X; = Z;’io Vi Zy—j, (Z;) iid regularly varying,
a € (0,2). If all non-zero 1; have the same sign or Z is
symmetric, then

SOEQ('U') — (¢€&(u))|2j¢j| /Z] |¢j|

¢! is the limit for sums of iid copies of X;.

e Affine SRE. Xt = AtXt—l —+ Bt, A, B 2 0.

pe (1) = (iper (w))PLOFER Aray) = (52 40a)) ]

17
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Similar conditions and arguments apply to

e point process convergence (using Laplace functionals) Davis,
Hsing (1995), Basrak, Segers (2009),

e convergence of /P-norms of samples (using Laplace trans-
forms),

e their convergence jointly with maxima and sums (hybrid
characteristic functions)
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4. MAXIMA, SUMS, AND THEIR RATIOS

e Under anti-clustering for sums and mixing for the hybrid

characteristic function
IE',[ei"“Lﬁl(s"’b_b")l((1,;1.7\47|,LX| < :13)} , wueER, x>0,
we have for a € (0, 2),

a’;l(MqLX|7 S’n - bn) i) (nav £a)
where
E[eiugal(na < )]

- et o (=[5 E=o iai > o))
= ¢ (u) 20¥(x) exp ( — 6)x /OOE[e"y“Efi—oo Q1] d(—y_a))
u€eR, x>0, :

and (Q;) = (@t/( D icz |@i|a)

under some change of measure.

1/a and (ét) is a version of (Q:)
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e In the case of asymptotic independence: ®; = (); = ét = 0,
t # 0, but £, and 7, are not independent.

e Independence of 7,, §, is only possibleif ) ,_., Q; =) ,., ©; =0
a.s. This implies &, = 0 a.s. For a linear process, this
corresponds to ) . 1; = 0.

e Ratio limit

Sn - bn d\ €a

X ot T ’
Mx Mo

where for u € R

PR, (u) = )
E |:ei u Zi?i_oo Qt}

/ E{l tiyu ) Qlag(a) — Wi (y < 1)| d(—y )
0 teZ




e AR(1) process: X; = ¢ X;_1 + Z; for an iid regularly varying
sequence such that P(Z > x) =x *forx > 1, p € (—1,1) and

a € (0,1) U (1,2). Then

E[R,] = 1_1QE[ZCN?4 = (1 _a)l(l — )

te’Z

21
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5. SELF-NORMALIZATIONS

e Write for a stationary regularly varying sequence (X;) with

index a € (0, 2),

- 1/p
o= (D 1%:7) 7, p>o0.

t=1

Under anti-clustering and mixing, for a < p,

_ _ _ d
(anlsna anlMJﬂLXh anp’ﬁ;p) — (£a7 Nas Cg,p) ’ n — oo,
where the joint limit distribution is described by

E[e' "% 1(ne < x) e “ar]

o @)
= exp (/ E[eiy“ 2otmmoo QEmYIAT im0 [Quf” 1(y max |Qy| < :n)
0 S

—l—-iyu Z Q1 1(1,2)(“)} d(—y_a)) .

teZ

Cg,p has an a/p-stable distribution.
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e Studentized sums

Sn d £a

\ -
e p—
Y  Goup

: Rap n — OO.
and

E [Ra,p] —

P = 0)/p) gy 1@l T Qg
/)Tt —a/p) E(IQIET @l

e Greenwood statistics for a positive regularly varying stationary

time series (X;) , a < p A 1,
T . X7+ +XE 4 Chp
PP (X e+ X R
where Cg,p is a/p-stable and &, is a-stable.
Ly - _To—o) Qi ol
&a L(p)T(1—ea) (EfQIIIQIT

E[T,,] — E[
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6. ANOTHER VIEW AT THESE LIMIT RESULTS: POINT PROCESS

CONVERGENCE

e The distribution of a point process N = ) . ey, with state space

E C R is determined by its Laplace functional

\IIN(f):E[eXp<_fEde)}a fECI-Ea

and N,, -5 N if and only if Uy (f) — Un(f), f € C.
e Assume (X;) is stationary regularly varying with index a > 0.

Set

Nn:Z€Xt/an, ’I’LZ]_.
t=1
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® Davis, Hsing (1995) Under anti-clustering and mixing in terms of the
Laplace functionals of (INV,),

e @)
d
Nn—)N:ZZé‘F_l/aQ”, n — oo,
i=1 jez Y

on E =Ry = R\{0}, where 0 < T'; < T'; < --. are the points of
a homogeneous Poisson process on (0, c0) with intensity
0,x > 0, ZjeZ eq,; are iid cluster processes with sup; 1Qiil =1
a.s.

e (Joint) limit theory for a_1(S, — b,, MIX!) follows by the

continuous mapping theorem, e.g.

IP(O < a,;lMJIX| < :U) — P(sup I‘,L-_l/a sup | Qi | < :U)
i>1 jEZ

= B, <) = (@)
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e A similar argument applies for sums, a € (0, 2), by first

summing the largest points

£a(0) = T3 Qi 1(T7V*1Qy > 0)
i=1 JEZ
and then letting 0 | 0: one needs to check the

vanishing-small-values condition for a« € (1,2): for v > 0,

limlimsup[@(‘a,gl ZXt 1(a'| Xy < 8) — E[]’ > ’y) =0.
t=1

010  noo

e This is difficult and, in general, it is also difficult to identify the

parameters of the a-stable limit.
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