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Hyperparameters for Machine learning models

Unlike parameters which are learned from data, hyperparameters
are defined by the data scientist and influence the learning process
and the model’s ability to generalize.

• Models: Regression, Knn, SVM, Neural Networks, random
forests

• Examples: Learning rate, batch size, and number of epochs in
neural network training; the depth of a decision tree, the
bandwidth for kernel estimation...

The choice of hyperparameters has a profound impact on the
performance of machine learning models. Poorly selected
hyperparameters can result in models that underperform or are
prone to overfitting, where they memorize the training data but fail
to generalize to new data.



Hyperparameters and Regression models
The general model assumes a relationship between Y , the variable
being explained and one or more variables doing the explaining X .

• The data set (Xi ,Yi )1≤i≤n with unknown common
distribution as (X ,Y ).

• Model:
Yi = f (Xi ) + ϵi , E (ϵi/Xi ) = 0 a.s.

f Regression function of Y on X , (ϵi ): noise.

• Purpose: Estimate f based on the data set (Xi ,Yi )1≤i≤n.

• Criteria: based on RSS(f) (minimising the noise

RSS(f ) =
n∑

i=1

(Yi − f (Xi ))
2).



Hyperparameters and Regression models

• Linear regression:

β̂ = argminβ

{∑n
i=1(yi −

∑p
j=1 xijβj)

2 + λΨ(β)
}
.

Ψ(β) = ∥β∥22, ∥β∥1 · · · .. Ridge, Lasso, Elastic net...

• Kernel methods and local regression:
bandwidth h the width of the kernel.

• Projection estimator (basis functions and dictionary methods):
N number of basis functions.

• Cubic smoothing spline:
argminf

{∑n
i=1(yi − f (xi ))

2 + λJ(f )
}

J(f ) =
∫
f
′′2(x)dx .

λ the multiplier of the penalty term.



Linear estimators

For any x ,

f̂ (x) =
n∑

i=1

li (x)Yi ,

n∑
i=1

li (x) = 1.

In a matricial form, Y = (Y1, · · · ,Yn)
t

(f̂ (X1), · · · , f̂ (Xn))
t = LY

L = (Lj(Xi ))1≤i ,j≤n

ν = trace(L) : the effective degree of freedom.
Bias-variance Tradeoff, overfitting, underfitting.



How to choose the hyper-parameter? Minimizer of the
ASE

ASE (λ) =
1

n

n∑
i=1

(f̂ (xi )− f (xi ))
2,

λ̂n = argminλASE (λ)

Problem ?
1

n

n∑
i=1

(Yi − f̂ (xi ))
2

Problem ?
A poor estimate of MASE(λ): it is biased downwards and typically
leads to overfitting. The reason is that we are using the data
twice: to estimate the function and to estimate the risk.



How to choose the hyper-parameter? Cross Validation

Definition

CV (λ) =
1

n

n∑
i=1

(Yi − f̂ −i (xi ))
2

where f̂ −i is the estimator obtained by omitting the ith pair
(xi ,Yi ).

f̂ (x) =
n∑

j=1

lj ,n(x)Yj f̂ −i (x) =
n∑

j=1

l−i
j ,n(x)Yj ,

l−i
j ,n(x) =

lj ,n(x)∑
j , j ̸=i lj ,n(x)

1Ij ̸=i .



How to choose the hyper-parameter? GCV

Lemma

CV (λ) =
1

n

n∑
i=1

(Yi − f̂ (xi ))
2

(1− li (xi ))2

Definition

GCV (λ) =
1

n

n∑
i=1

(Yi − f̂ (xi ))
2

(1− ν/n)2

ν = tr(L) =
n∑

i=1

li (xi )

(1− x)−2 = 1 + 2x + ...



How to choose the hyperparameter? Mallows criterion

Definition

Cp := Cp(λ) =
1

n

n∑
i=1

(Yi − f̂ (xi ))
2 + 2

ν

n
σ̂2,

where,

σ̂2 =
1

n

n∑
i=1

(Yi − f̂ (xi ))
2, ν = tr(L) =

n∑
i=1

li (xi ).



For i.i.d, an unbiased estimator of MASE is, if σ2 is known,

1

n

n∑
i=1

(Yi − f̂ (xi ))
2 + 2

ν

n
σ2 − σ2.

In the dependent case, an unbiased estimator of MASE, if σ2
i ,j is

known,

1

n

n∑
i=1

(Yi − f̂ (xi ))
2 +

2

n

n∑
i=1

n∑
j=1

lj(Xi )Cov(ϵi , ϵj)− σ2.



λn = argminhMASE (λ) λ̂n = argminλASE (λ),

λ̂ML = argminλCp(λ) λ̂G = argminλGCV (λ)

All those windows are nearly equivalent in probability.

Paper: W. Härdle, P. Hall and J. S. Marron (1988). How far are
automatically chosen regression smoothing parameters from their
optimum? Journal of the American Statistical Association 83,
86-95.



Purposes

• Asymtotic behaviors: ”asymptotic optimality” λ̂
λ̂n

→ 1, prob.

• comparison, confidence sets: asymptotic normality vn(λ̂− λ̂n)

• The excess of error: (comparison of risks)
wn(ASE (λ̂)− ASE (λ̂n))

For dependent observations
Errors with no necessarily normal law

Criterion under dependence uses estimates of Cov(ϵi , ϵj)
For i ̸= j , Cov(ϵi , ϵj) = 0 for MDS.



Assumptions

Assume that the errors (ϵi )i≥0 :

• form a strictly stationary MDS with respect to some natural
filtration (Fi )i≥1, i.e, for any i > 0, ϵi is Fi -measurable and

IE(ϵi |Fi−1) = 0 almost surely. Suppose also that IE(ϵ2p1 ) < ∞
for some p > 8.



Examples

• With ARCH(1) errors:

Yi = f (xi ) + ϵi

ϵn = en

√
σ2(1− α) + αϵ2n−1, 0 ≤ α < 1, σ2 > 0

(ei ) iid , normal law

en indep (ϵ0, · · · , ϵn−1)

Robert F. Engle, 1982. Econometric and finance problems.
Var(ϵn|ϵn−1) = σ2(1− α) + αϵ2n−1.



Examples

• SV with Log-normal volatility sequences: ϵn = σnZn

(Zn) iid centered independent of (σn)n. the volatility sequence
(σi )i∈IN is an exponential weight of a Gaussian moving
average:

σi = β exp

 ∞∑
j=0

γjηi−j

 , β > 0, |γ| < 1.

(ηi )i iid with centered normal law.

Taylor (1986): Modelling Financial Time Series.



How to choose h? Minimizer of the MASE
K : [−1, 1]-compactly supported Kernel

f ∈ C2, xi =
i

n
, Yi = f (xi) + ϵi , 1 ≤ i ≤ n

Lemma

Define, Dn(h) =
h4

4

∫ 1

0
u(x)f

′′2(x)dx

(∫ 1

−1
t2K (t)dt

)2

+
σ2

nh
(

∫ 1

0
u(x)dx)

∫ 1

−1
K 2(y)dy .

Then for any n ≥ 1 and h ∈]0, ϵ[,

MASE (h) = Dn(h) + O(
1

n
) + O(h5) + O(

1

n2h4
) +

O(h)

nh
.



How to choose h? Minimizer of the MASE

Let h∗n = argminh>0Dn(h). Clearly, if
∫ 1
0 u(x)f

′′2(x)dx ̸= 0 then

h∗n = n−1/5

(
(
∫ 1
0 u(x)dx)

∫ 1
−1 K

2(y)dyσ2∫ 1
0 u(x)f ′′2(x)dx(

∫ 1
−1 t

2K (t)dt)2

)1/5

=: cn−1/5.

Problem ?



Our first result proves that for MDS of errors, the selected
bandwidths hn, h

∗
n, ĥn and ĥML are nearly equivalent.

Proposition 1, Benhenni, Girard, Louhichi (2022).

It holds, under the above notations and conditions,

h∗n
hn

,
ĥn
hn

,
ĥML

hn

converge all in probability to 1 as n tends to infinity.



Our second result gives the rate at which ĥn − ĥML converges in
distribution to a centered normal law.

Theorem 1, Benhenni, Girard, Louhichi (2022).

Suppose that the above conditions are satisfied. Suppose also, that
there exists a positive decreasing function Φ defined on IR+

satisfying
∞∑
s=1

s4Φ(s) < ∞,

and for any positive integer q less than 6,
1 ≤ i1 ≤ · · · ≤ ik < ik+1 ≤ iq ≤ n such that
ik+1 − ik ≥ max1≤l≤q−1(il+1 − il)

|Cov(ϵi1 · · · ϵik , ϵik+1
· · · ϵiq)| ≤ Φ(ik+1 − ik). (1)



Then
n3/10(ĥn − ĥML)

converges in distribution to a centered normal law with variance
Σ2 given by

Σ2 =
4σ12/5B1/5

5A6/5
(

∫
t2K (t)dt)2

∫ 1

0
u2(x)f

′′2(x)dx

+
16σ12/5

5A1/5B4/5

∫ 1

0
u2(x)dx

∫ 1

0
(K − G )2(u)du,

where σ2 = IE(ϵ21), G is the function defined for any x ∈ IR by
G (x) = −xK ′(x) and

A =

∫ 1

0
u(x)f

′′2(x)dx

∫
t2K (t)dt, B =

∫ 1

0
u(x)dx

∫
K 2(t)dt.



The excess of average squared error: Main results

Theorem 2, Benhenni, Girard, Louhichi (2021).

Suppose that Conditions on (ϵi )i are satisfied. Then both

n(ASE (ĥML)− ASE (ĥn)) and n(ASE (ĥG )− ASE (ĥn))

converge in distribution to a CX2(1) law, where C is the positive
constant given by,

C =
2σ2

5A

((∫
t2K (t)dt

)2 ∫ 1

0
u2(x)f ′′2(x)dx

+
2A

B

∫ 1

0
u2(x)dx

∫
(K − G )2(t)dt

)
.



Application to ARCH(1) processes

Proposition

Let (ϵn) be a strictly stationary ARCH(1) process. Suppose that
α8
∏8

i=1(2i − 1) < 1. Then the asymptotic optimality, the
asymptotic normality together with the conclusions of Theorem 2
are satisfied.



Simulation study for a trend plus ARCH(1) process

K (x) = (15/8)(1− 4x2)21[−.5,.5](x).

f (x) = (4x(1− x))3,

and we use an equispaced design xi = i/n, i = 1, · · · , n,

α ∈ {0.01, 0.162, 0.577, 0.75, 0.9, 0.98}

with a common value σ = 0.32. The first value of α nearly
corresponds to i.i.d. normal observation noises (this setting will be
referred to as the “quasi-iid-normal” case) and the last one
generates noise sequences for which a strong serial correlation is
always present when the sequence is squared. Recall that the
moment of order 16 no longer exists as soon as α is slightly above
0.162, but the moment of order 4 still exists for
α <

√
1/3 ≈ 0.57735.
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Figure 1 : n = 29. Each of these 2 panels displays one data set Y and

the “smooth” deterministic trend r(x). The 2 panels only differ by

α = 0.577 (left) and α = 0.9 (right)
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Log-normal volatility sequences

Corollary

Suppose that the volatility sequence (σi )i∈IN is defined for i ∈ IN,

by σi = β exp
(∑∞

j=0 γ
jηi−j

)
with |γ| < 1, β > 0 and (ηi )i∈ZZ is an

i.i.d. centered sequence distributed as a Gaussian law with finite
variance. Suppose also that Z1 follows a standard Gaussian law.
Then the process (ϵi )i∈IN is a strictly stationary MDS, with finite

all integer moments, strongly mixing with αs = O(|γ|
2
3
s), and the

asymptotic optimality, the asymptotic normality together with the
conclusions of Theorem 2 hold.



Simulations: Trend plus a log-normal SV process

f (x) = (4x(1− x))3. These 6 panels only differ by n (= 29 in the
top row and 215 in the bottom row) and by γ varying in
{0.01, 0.9, 0.98}. In each panel, the displayed normalized
histogram is that of the 3000 replicates of ĥM − ĥn. The
superposed blue curve is the normal distribution of ĥM − ĥn as
predicted by the asymptotic theory.



Simulations: Trend plus a log-normal SV process
Assessment of the simplified 6

5nσ
2X2(1) approximation of the ASE-excess.

In each panel, the displayed normalized histogram is that of the 3000

replicates of ASE (ĥM)− ASE (ĥn). The superposed blue curve is the
6
5nσ

2X2(1) density as suggested by the asymptotic theory. (A): n = 29

and (τ, γ) = (0.75, 0.98). (B): n = 212 and (τ, γ) = (0.75, 0.98). (C):

n = 29 and (τ, γ) = (0.75, 0.9). (D): n = 29 and (τ, γ) = (0.4, 0.98).



Outlines of the proofs
Tools for martingale difference sequences

We recall the following Marcinkiewicz-Zygmund type inequality
which is a simple consequence of the Minkowski and the
Burkholder inequalities (see Burkholder (1988)).

Theorem

Let (ηi )i≥0 be a stationary centered sequence of martingale
difference of finite pth moment with p ≥ 2. Then there exists a
positive constant cp such that for any positive integer n,∥∥∥∥∥

n∑
i=1

ηi

∥∥∥∥∥
2

p

≤ cp

n∑
i=1

∥ηi∥2p.



An immediate consequence of Theorem 1 is the following corollary.

Corollary

Let (ηi )i≥0 be a stationary sequence of martingale difference of
finite pth moment with p ≥ 2. Then there exists a positive
constant cp such that for any positive integer n,∥∥∥∥∥

n∑
i=1

di ,nηi

∥∥∥∥∥
2

p

≤ cp

n∑
i=1

d2
i ,n,

and for any sequence of real numbers (di ,n)1≤i≤n.



We also need the following proposition whose proof uses Theorem
1 above.

Proposition

Let (ηi )i≥0 be a stationary sequence of martingale difference such
that ∥ηi∥2p < ∞ for some p ≥ 2. Then, there exists a positive
constant cp such that for any positive integer n,∥∥∥∥∥∥

n∑
i=1

i−1∑
j=1

bi ,j ,nηjηi

∥∥∥∥∥∥
2

p

≤ cp

n∑
i=1

i−1∑
j=1

b2i ,j ,n,

and for any sequence of real numbers bi ,j ,n.

Let Xi =
∑i−1

j=1 bi ,j ,nηjηi . The sequence (Xi )i is a martingale
difference relative to the filtration σ(ηj , j ≤ i − 1).



The following maximal inequality is also very needed in the proofs.
Its proof needs some chaining arguments.

Lemma

Let (ηi )i≥0 be a sequence of stationary martingale difference with
∥ηi∥p < ∞ for some p ≥ 2. Let (ci ,n(h))i ,n,h be a sequence of
weights satisfying, for any h, h′ ∈ Hn = [an−1/5, bn−1/5],

|ci ,n(h)− ci ,n(h
′)| ≤ cst |h − h′|.

and

max
i≤n

sup
h∈Hn

|ci ,n(h)| ≤ cst n−α, α >
5p − 2

10(p − 1)
.

Then,

lim
n→∞

∥∥∥∥∥ suph∈Hn

∣∣∣∣∣
n∑

i=1

ci ,n(h)ηi

∣∣∣∣∣
∥∥∥∥∥
p

= 0.



Lemma

Let (ϵj)j be a sequence of random variables with finite fourth
moment and such that,

sup
i

∞∑
j=1

|Cov(ϵ2i , ϵ2j )| < ∞.

Let for h ∈ Hn = [an−1/5, bn−1/5], (dj ,n(h))1≤j≤n be a sequence of
real numbers satisfying for any 1 ≤ j ≤ n,

|dj ,n(h)| ≤
cst

n
, and , |dj ,n(h)− dj ,n(h

′)| ≤ cst n−2/5|h − h′|.

Then,

lim
n→∞

∥∥∥∥∥ suph∈Hn

∣∣∣∣∣
n∑

i=1

di ,n(h)(ϵ
2
i − IE(ϵ2i ))

∣∣∣∣∣
∥∥∥∥∥
2

= 0.



Lemma

Let (ηi )i≥0 be a stationary sequence of martingale difference
random variables with finite moment of order 2p, for some p > 8.
Suppose that, for any h, h′ ∈ Hn

|bi ,j ,n(h)| ≤
cst

n
1I|i−j |≤2nh,

|bi ,j ,n(h)− bi ,j ,n(h
′)| ≤ cst n−4/5|h − h′|1I|i−j |≤2nmax(h,h′).

Then,

lim
n→∞

∥∥∥∥∥∥ suph∈Hn

∣∣∣∣∣∣
n∑

i=1

i−1∑
j=1

bi ,j ,n(h)ηjηi

∣∣∣∣∣∣
∥∥∥∥∥∥
p

= 0.



CLT
Recall that K − G is an even function, [−1, 1]-supported, that the
window hn is a positive sequence satisfying

lim
n→∞

hn = 0, lim
n→∞

nhn = ∞.

Define, for i = 1, · · · , n, xi = i
n and, for a positive constant CK

depending only on K ,

ai ,n(hn) = CK
hn
n
f ′′(xi )u(xi )

bi ,j(hn) =
1

n2h2n
(K − G )(

xi − xj
hn

)

b̃i ,j = bi ,j(hn)(u(xi ) + u(xj)).

Let (ϵi )i≥0 be a centered sequence of stationary MD random
variables with finite second moment σ2. Let

Yi ,n(hn) = ai ,n(hn)ϵi +
i−1∑
j=1

b̃i ,jϵiϵj , (2)

that
1

sn

n∑
i=1

(Yi ,n(hn)− IE(Yi ,n(hn)) ,

with s2n = Var(
∑n

i=1 Yi ,n(hn)) converges in distribution to a
normal law.
For this, we first control Var(

∑n
i=1 Yi ,n(hn)). In all the proofs we

denote by cst a constant independent of n and hn and that may be
different from line to line.



CLT: Control of the variance

Proposition

Suppose that there exists a positive decreasing function Φ defined
on IR+ satisfying

∞∑
s=1

s2Φ(s) < ∞,

and for any 1 ≤ i1 ≤ i2 < i3 ≤ i4 ≤ i5 ≤ n such that
i3 − i2 ≥ max(i2 − i1, i4 − i3, i5 − i4)

|Cov(ϵi1ϵi2 , ϵi3ϵi4)| ≤ Φ(i3 − i2)

|Cov(ϵi2 , ϵi3ϵi4ϵi5)| ≤ Φ(i3 − i2).



Then

Var

(
n∑

i=1

Yi ,n(hn)

)
=

h2nσ
2

n
C 2
K

∫
u2(x)f

′′2(x)dx

+
4σ4

n2h3n

∫ 1

0
u2(x)dx

∫ 1

0
(K − G )2(u)du

+o(
1

n2h3n
+

h2n
n
).



Proposition

Let (ϵi )i≥0 be a stationary sequence of centered martingale
difference random variables relative to the filtration
Fi = σ(ϵ1, · · · , ϵi ). Suppose that IE(ϵ81) < ∞. Suppose, moreover,
that there exists a positive decreasing function Φ defined on IR+

satisfying
∞∑
s=1

s4Φ(s) < ∞,

and for any positive integer q ≤ 6,
1 ≤ i1 ≤ · · · ≤ ik < ik+1 ≤ iq ≤ n such that
ik+1 − ik ≥ max1≤l≤k(il+1 − il)

|Cov(ϵi1 · · · ϵik , ϵik+1
· · · ϵiq)| ≤ Φ(ik+1 − ik).

Let Yin(hn) be as defined in (2) with hn = cn−1/5.



Then

n7/10
n∑

i=1

Yi ,n(hn) =⇒ N (0,V ),

where =⇒ denotes convergence in distribution when n tends to
infinity, the variance V is defined by,

V = c2C 2
Kσ

2

∫ 1

0
u2(x)f

′′2(x)dx

+
4

c3
σ4

∫ 1

0
u2(x)dx

∫ 1

0
(K − G )2(u)du,

and σ2 = IE(ϵ21).



Main tools for the control of the excess of errors

n(ASE (ĥ)− ASE (ĥn))

= n(ĥ − ĥn)ASE
′
n(ĥn) +

n

2
(ĥ − ĥn)

2ASE
′′
(h∗)

=
n

2
(ĥ − ĥn)

2IE(ASE
′′
(h∗n))

+
n

2
(ĥ − ĥn)

2
(
ASE

′′
(h∗)− IE(ASE

′′
(h∗n))

)
,

Σ−1n3/10(ĥ − ĥn) =⇒ N (0, 1),

lim
n→∞

n2/5IE(ASE
′′
(h∗n)) = 5σ4/5B2/5A3/5,

•
∣∣∣ ĥh∗n − 1

∣∣∣→ 0 a.s.

• suph∈Hn

∣∣∣ASE ′′
(h)− IE(ASE

′′
(h))

∣∣∣,
sup|h1−h2|≤an

∣∣∣IE(ASE ′′
(h1))− IE(ASE

′′
(h2))

∣∣∣
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