Alexander Lindner, Ulm University

Based on (joint) works with/of I. Alexeev, D. Berger, A Khartov, M. Kutlu, L. Pan and K. Sato

> Multitask ECODEP Conference Paris February 12 - 14, 2024

Definition: A probability distribution μ on \mathbb{R}^d is infinitely divisible, if for every $n \in \mathbb{N}$ there exists a probability distribution μ_n on \mathbb{R}^d such that

$$\mu_n^{*n} = \mu,$$

i.e. if it has convolution roots of all orders.

Definition: A probability distribution μ on \mathbb{R}^d is infinitely divisible, if for every $n \in \mathbb{N}$ there exists a probability distribution μ_n on \mathbb{R}^d such that

$$\mu_n^{*n} = \mu,$$

i.e. if it has convolution roots of all orders.

Remark: There exists a one-to-one correspondence between infinitely divisible distributions and Lévy processes (in law).

Fourier transform/characteristic function of measure $\mu = \mathcal{L}(X)$

$$\widehat{\mu}(z) = \int_{\mathbb{R}^d} \mathrm{e}^{\mathrm{i} z^{\mathcal{T}_X}} \mu(\mathrm{d} x) = \mathbb{E} \mathrm{e}^{\mathrm{i} z^{\mathcal{T}_X}}, \quad z \in \mathbb{R}^d$$

伺 と く ヨ と く ヨ と …

э

Fourier transform/characteristic function of measure $\mu = \mathcal{L}(X)$

$$\widehat{\mu}(z) = \int_{\mathbb{R}^d} \mathrm{e}^{\mathrm{i} z^T x} \, \mu(\mathrm{d} x) = \mathbb{E} \mathrm{e}^{\mathrm{i} z^T X}, \quad z \in \mathbb{R}^d$$

Lévy-Khintchine formula:

A probability distribution μ on \mathbb{R}^d is infinitely divisible if and only if there exist $A \in \mathbb{R}^{d \times d}$ positive semidefinifite, $\gamma \in \mathbb{R}^d$ and a Lévy measure ν on \mathbb{R}^d (i.e. satisfying $\nu(\{0\}) = 0$ and $\int_{\mathbb{R}} (1 \wedge |x|^2) \nu(dx) < \infty$) such that

$$\widehat{\mu}(z) = \exp\left\{\mathrm{i}\gamma^{\mathsf{T}}z - \frac{1}{2}z^{\mathsf{T}}Az + \int_{\mathbb{R}^d} \left(\mathrm{e}^{\mathrm{i}x^{\mathsf{T}}z} - 1 - \mathrm{i}x^{\mathsf{T}}z\mathbf{1}_{|x|\leq 1}\right)\nu(\mathrm{d}x)\right\}.$$

The triplet (A, ν, γ) is unique and called **characteristic triplet** of μ .

Definition: A probability measure μ on \mathbb{R}^d is **quasi-infinitely divisible (q.i.d.)**, if there exist two infinitely divisible distributions μ_1 and μ_2 on \mathbb{R}^d such that

$$\widehat{\mu}(z) = rac{\widehat{\mu_1}(z)}{\widehat{\mu_2}(z)} \quad \forall \ z \in \mathbb{R}^d.$$

Definition: A probability measure μ on \mathbb{R}^d is **quasi-infinitely divisible (q.i.d.)**, if there exist two infinitely divisible distributions μ_1 and μ_2 on \mathbb{R}^d such that

$$\widehat{\mu}(z) = rac{\widehat{\mu_1}(z)}{\widehat{\mu_2}(z)} \quad \forall \ z \in \mathbb{R}^d.$$

 $\mu = \mathcal{L}(X)$ q.i.d. $\iff \exists \mu_1, \mu_2$ infinitely divisible:

$$\mu_2 * \mu = \mu_1.$$

Definition: A probability measure μ on \mathbb{R}^d is **quasi-infinitely divisible (q.i.d.)**, if there exist two infinitely divisible distributions μ_1 and μ_2 on \mathbb{R}^d such that

$$\widehat{\mu}(z) = rac{\widehat{\mu_1}(z)}{\widehat{\mu_2}(z)} \quad \forall \ z \in \mathbb{R}^d.$$

$$\mu = \mathcal{L}(X)$$
 q.i.d. $\iff \exists \mu_1, \mu_2$ infinitely divisible:

$$\mu_2 * \mu = \mu_1.$$

Hence q.i.d. distributions appear in factorisation problems of infinitely divisible distributions.

 Early references: Linnik (1964), Linnik and Ostrovskii (1967), Gnedenko and Kolmogorov (1968), Cuppens (1975), Ibragimov (1972), etc.

A B F A B F

- Early references: Linnik (1964), Linnik and Ostrovskii (1967), Gnedenko and Kolmogorov (1968), Cuppens (1975), Ibragimov (1972), etc.
- Applications found in insurance mathematics (Zhang, Liu and Li, 2014) and quantum physics (Demni and Mouayn, 2015)

- Early references: Linnik (1964), Linnik and Ostrovskii (1967), Gnedenko and Kolmogorov (1968), Cuppens (1975), Ibragimov (1972), etc.
- Applications found in insurance mathematics (Zhang, Liu and Li, 2014) and quantum physics (Demni and Mouayn, 2015)
- Systematic study initiated by Lindner/Pan/Sato (2018)

- Early references: Linnik (1964), Linnik and Ostrovskii (1967), Gnedenko and Kolmogorov (1968), Cuppens (1975), Ibragimov (1972), etc.
- Applications found in insurance mathematics (Zhang, Liu and Li, 2014) and quantum physics (Demni and Mouayn, 2015)
- Systematic study initiated by Lindner/Pan/Sato (2018)
- Since then works by Berger (2019), Passeggeri (2020), Kadankova/Simon/Wang (2020), Khartov (2019, 2022), Alexeev and Khartov (2022, 2023), Kutlu (2021), Berger/Kutlu/Lindner (2022), Berger/Lindner (2022), and others.

伺 ト イ ヨ ト イ ヨ ト

Identify quasi-infinitely divisible distributions.

문▶ 문

- Identify quasi-infinitely divisible distributions.
- How many quasi-infinitely divisible distributions are there?

Goals

- Identify quasi-infinitely divisible distributions.
- How many quasi-infinitely divisible distributions are there?
- What properties do quasi-infinitely divisible distributions have? Characterisation in terms of characteristic triplet?

Goals

- Identify quasi-infinitely divisible distributions.
- How many quasi-infinitely divisible distributions are there?
- What properties do quasi-infinitely divisible distributions have? Characterisation in terms of characteristic triplet?
- Mathematical applications of quasi-infinitely divisible distributions.

Elementary properties

 μ q.i.d. $\iff \exists \mu_1, \mu_2$ infinitely divisible such that $\widehat{\mu}(z) = \frac{\widehat{\mu_1}(z)}{\widehat{\mu_2}(z)}$.

A B > A B >

э

Elementary properties

 μ q.i.d. $\iff \exists \mu_1, \mu_2$ infinitely divisible such that $\hat{\mu}(z) = \frac{\hat{\mu}_1(z)}{\hat{\mu}_2(z)}$. Suppose μ is q.i.d. and denote characteristic triplets of μ_1, μ_2 above by (A_1, ν_1, γ_1) and (A_2, ν_2, γ_2) . Denote

$$\begin{array}{rcl} A & := & A_1 - A_2 \in \mathbb{R}^{d \times d} & (\text{symmetric}), \\ \gamma & := & \gamma_1 - \gamma_2, \\ \nu & := & \nu_1 - \nu_2 \end{array}$$

(a 'signed Lévy measure', henceforth called quasi-Lévy measure)

Elementary properties

 μ q.i.d. $\iff \exists \mu_1, \mu_2$ infinitely divisible such that $\hat{\mu}(z) = \frac{\hat{\mu}_1(z)}{\hat{\mu}_2(z)}$. Suppose μ is q.i.d. and denote characteristic triplets of μ_1, μ_2 above by (A_1, ν_1, γ_1) and (A_2, ν_2, γ_2) . Denote

$$\begin{array}{lll} A & := & A_1 - A_2 \in \mathbb{R}^{d \times d} & (\text{symmetric}), \\ \gamma & := & \gamma_1 - \gamma_2, \\ \nu & := & \nu_1 - \nu_2 \end{array}$$

(a 'signed Lévy measure', henceforth called **quasi-Lévy measure**) By Lévy-Khintchine formula,

$$\widehat{\mu}(z) = \exp\left\{\mathrm{i}\gamma^{\mathsf{T}}z - \frac{1}{2}z^{\mathsf{T}}Az + \int_{\mathbb{R}^d} \left(\mathrm{e}^{\mathrm{i}x^{\mathsf{T}}z} - 1 - \mathrm{i}x^{\mathsf{T}}z\mathbf{1}_{|x|\leq 1}\right)\nu(\mathrm{d}x)\right\}.$$

▶ The characteristic function of a q.i.d. distribution is zero-free.

B> B

- ▶ The characteristic function of a q.i.d. distribution is zero-free.
- Characteristic triplet (A, ν, γ) is unique.

< ∃ >

- The characteristic function of a q.i.d. distribution is zero-free.
- **Characteristic triplet** (A, ν, γ) is unique.
- A probability distribution μ is q.i.d. if and only if there exist
 (A, ν, γ) such that μ has Lévy–Khintchine type representation as before.

- The characteristic function of a q.i.d. distribution is zero-free.
- Characteristic triplet (A, ν, γ) is unique.
- A probability distribution μ is q.i.d. if and only if there exist (A, ν, γ) such that μ has Lévy–Khintchine type representation as before.
- Not every triplet (A, ν, γ) with ν signed-Lévy measure gives rise to a probability distribution.

- The characteristic function of a q.i.d. distribution is zero-free.
- Characteristic triplet (A, ν, γ) is unique.
- A probability distribution μ is q.i.d. if and only if there exist (A, ν, γ) such that μ has Lévy–Khintchine type representation as before.
- Not every triplet (A, ν, γ) with ν signed-Lévy measure gives rise to a probability distribution.
- ► The symmetric matrix A ∈ ℝ^{d×d} must be positive semidefinite.

- The characteristic function of a q.i.d. distribution is zero-free.
- Characteristic triplet (A, ν, γ) is unique.
- A probability distribution μ is q.i.d. if and only if there exist (A, ν, γ) such that μ has Lévy–Khintchine type representation as before.
- Not every triplet (A, ν, γ) with ν signed-Lévy measure gives rise to a probability distribution.
- ► The symmetric matrix A ∈ ℝ^{d×d} must be positive semidefinite.
- Convolutions of q.i.d. distributions are q.i.d. (with characteristic triplets adding up).

Examples of quasi-infinitely divisible distributions

Theorem (Cuppens, 1969):

If a probability distribution μ has an atom of mass > 1/2, i.e. if $\exists c \in \mathbb{R}^d$ with $\mu(\{c\}) > 1/2$, then μ is q.i.d. with A = 0 and finite quasi-Lévy measure.

Examples of quasi-infinitely divisible distributions

Theorem (Cuppens, 1969):

If a probability distribution μ has an atom of mass > 1/2, i.e. if $\exists c \in \mathbb{R}^d$ with $\mu(\{c\}) > 1/2$, then μ is q.i.d. with A = 0 and finite quasi-Lévy measure.

Corollary: A Bernoulli distribution b(1, p) is q.i.d. if and only if $p \neq 1/2$. Hence a binomial distribution b(n, p) is q.i.d. if and only if $p \neq 1/2$.

Examples of quasi-infinitely divisible distributions

Theorem (Cuppens, 1969):

If a probability distribution μ has an atom of mass > 1/2, i.e. if $\exists c \in \mathbb{R}^d$ with $\mu(\{c\}) > 1/2$, then μ is q.i.d. with A = 0 and finite quasi-Lévy measure.

Corollary: A Bernoulli distribution b(1, p) is q.i.d. if and only if $p \neq 1/2$. Hence a binomial distribution b(n, p) is q.i.d. if and only if $p \neq 1/2$.

Corollary: The set of q.i.d. distributions is not closed with respect to weak convergence.

$\widehat{b(n,p)}$ zero-free $\iff p \neq 1/2 \iff b(n,p)$ q.i.d. Does this generalise?

• • = • • = •

 $\widehat{b(n,p)}$ zero-free $\iff p \neq 1/2 \iff b(n,p)$ q.i.d. Does this generalise?

There exist examples of distributions μ that are not q.i.d. but for which $\hat{\mu}(z) \neq 0$ for all $z \in \mathbb{R}^d$. However:

 $\widehat{b(n,p)}$ zero-free $\iff p \neq 1/2 \iff b(n,p)$ q.i.d. Does this generalise?

There exist examples of distributions μ that are not q.i.d. but for which $\hat{\mu}(z) \neq 0$ for all $z \in \mathbb{R}^d$. However:

Theorem (L./Pan/Sato 2018 (d = 1), Berger/L. (2022) ($d \ge 2$)): Let μ be a distribution on $h\mathbb{Z}^d$ for some h > 0. Then

$$\mu$$
 q.i.d. $\iff \widehat{\mu}(z) \neq 0 \ \forall \ z \in \mathbb{R}^d.$

In that case, the quasi-Lévy measure ν is finite and A = 0.

 $\widehat{b(n,p)}$ zero-free $\iff p \neq 1/2 \iff b(n,p)$ q.i.d. Does this generalise?

There exist examples of distributions μ that are not q.i.d. but for which $\hat{\mu}(z) \neq 0$ for all $z \in \mathbb{R}^d$. However:

Theorem (L./Pan/Sato 2018 (d = 1), Berger/L. (2022) ($d \ge 2$)): Let μ be a distribution on $h\mathbb{Z}^d$ for some h > 0. Then

$$\mu$$
 q.i.d. $\iff \widehat{\mu}(z) \neq 0 \ \forall \ z \in \mathbb{R}^d$.

In that case, the quasi-Lévy measure ν is finite and A = 0.

Idea of proof: $\hat{\mu}$ is periodic in all coordinates. Take Fourier series of log $\hat{\mu}$. The Wiener-Lévy theorem shows that the Fourier coefficients c_n are absolutely summable. The quasi-Lévy measure is then of the form $\sum c_n \delta_n$ (when h = 1).

Theorem (Khartov (2022), Alexeev and Khartov (2022, 2023))

Let μ be a discrete probability distribution on \mathbb{R}^d . Then the following are equivalent:

Theorem (Khartov (2022), Alexeev and Khartov (2022, 2023))

Let μ be a discrete probability distribution on \mathbb{R}^d . Then the following are equivalent:

• μ is quasi-infinitely divisible.

Theorem (Khartov (2022), Alexeev and Khartov (2022, 2023))

Let μ be a discrete probability distribution on \mathbb{R}^d . Then the following are equivalent:

- μ is quasi-infinitely divisible.
- ► $\inf_{z \in \mathbb{R}^d} |\widehat{\mu}(z)| > 0.$

Theorem (Khartov (2022), Alexeev and Khartov (2022, 2023))

Let μ be a discrete probability distribution on \mathbb{R}^d . Then the following are equivalent:

- μ is quasi-infinitely divisible.
- ► $\inf_{z \in \mathbb{R}^d} |\widehat{\mu}(z)| > 0.$

In that case, the quasi-Lévy measure of μ is discrete and finite and the Gaussian variance A=0.

Further classes of quasi-infinitely divisible distributions

Theorem (Khartov (2022), Alexeev and Khartov (2022, 2023))

Let μ be a discrete probability distribution on \mathbb{R}^d . Then the following are equivalent:

- μ is quasi-infinitely divisible.
- ► $\inf_{z \in \mathbb{R}^d} |\widehat{\mu}(z)| > 0.$

In that case, the quasi-Lévy measure of μ is discrete and finite and the Gaussian variance A=0.

Observe: If μ is concentrated on \mathbb{Z}^d , then $\hat{\mu}$ is 2π -periodic in all coordinates (and continuous), hence $\inf_{z \in \mathbb{R}^d} |\hat{\mu}(z)| > 0$ is equivalent to $\hat{\mu}(z) \neq 0$ for all $z \in \mathbb{R}^d$. Hence generalise result of L./Pan/Sato (2018) and Berger/L. (2022).

• μ is quasi-infinitely divisible.

- μ is quasi-infinitely divisible.
- $\inf_{z \in \mathbb{R}} |\widehat{\mu}_d(z)| > 0$ and $\widehat{\mu}(z) \neq 0$ for all $z \in \mathbb{R}$.

- μ is quasi-infinitely divisible.
- ▶ $\inf_{z \in \mathbb{R}} |\widehat{\mu}_d(z)| > 0$ and $\widehat{\mu}(z) \neq 0$ for all $z \in \mathbb{R}$.
- $\blacktriangleright \inf_{z\in\mathbb{R}} |\widehat{\mu}(z)| > 0.$

- μ is quasi-infinitely divisible.
- $\inf_{z \in \mathbb{R}} |\widehat{\mu}_d(z)| > 0$ and $\widehat{\mu}(z) \neq 0$ for all $z \in \mathbb{R}$.
- $\blacktriangleright \inf_{z\in\mathbb{R}} |\widehat{\mu}(z)| > 0.$

In that case, the quasi-Levy measure ν of μ is of the form

$$\nu(\mathrm{d} x) = \nu_1(\mathrm{d} x) + \frac{m \mathrm{e}^{-|x|}}{|x|} \mathrm{sgn}(x) \,\mathrm{d} x,$$

where ν_1 is a finite signed measure and $m \in \mathbb{Z}$. The Gaussian variance A = 0.

Example (Berger, 2019):

Example (Berger, 2019):

$$\blacktriangleright \mu = \sum_{i=1}^{n} p_i N(0, a_i)$$

Example (Berger, 2019):

•
$$\mu = \sum_{i=1}^{n} p_i N(0, a_i)$$

• $0 < p_1, \dots, p_n < 1, \sum_{i=1}^{n} p_i = 1.$

Example (Berger, 2019):

•
$$\mu = \sum_{i=1}^{n} p_i N(0, a_i)$$

• $0 < p_1, \dots, p_n < 1, \sum_{i=1}^{n} p_i = 1.$
• $0 < a_1 < a_2 < \dots < a_n$

B> B

Example (Berger, 2019):

•
$$\mu = \sum_{i=1}^{n} p_i N(0, a_i)$$

• $0 < p_1, \dots, p_n < 1, \sum_{i=1}^{n} p_i = 1.$
• $0 < a_1 < a_2 < \dots < a_n$

• Then μ is quasi-infinitely divisible.

Example (Berger, 2019):

•
$$\mu = \sum_{i=1}^{n} p_i N(0, a_i)$$

• $0 < p_1, \dots, p_n < 1, \sum_{i=1}^{n} p_i = 1.$
• $0 < a_1 < a_2 < \dots < a_n$

• Then μ is quasi-infinitely divisible.

Idea of proof:

$$\mu = N(0, a_1) * \underbrace{(p_1 \delta_0 + p_2 N(0, a_2 - a_1) + \ldots + p_n N(0, a_n - a_1))}_{\text{q.i.d. by previous Theorem}}$$

How many q.i.d. distributions are there?

Theorem (Berger (2019), Berger, Kutlu, L. (2022)) The set of probability distributions on \mathbb{R}^d that are not q.i.d. is dense in the set of all probability distributions with respect to weak convergence.

How many q.i.d. distributions are there?

Theorem (Berger (2019), Berger, Kutlu, L. (2022)) The set of probability distributions on \mathbb{R}^d that are not q.i.d. is dense in the set of all probability distributions with respect to weak convergence.

Theorem (L./Pan/Sato, 2018):

When d = 1, then the set of q.i.d. distributions is dense in the set of all probability measures with respect to weak convergence.

How many q.i.d. distributions are there?

Theorem (Berger (2019), Berger, Kutlu, L. (2022)) The set of probability distributions on \mathbb{R}^d that are not q.i.d. is dense in the set of all probability distributions with respect to weak convergence.

Theorem (L./Pan/Sato, 2018):

When d = 1, then the set of q.i.d. distributions is dense in the set of all probability measures with respect to weak convergence.

Idea of proof: Every probability distribution on \mathbb{R} can be approximated by a lattice distribution with finite support and zero-free characteristic function.

Theorem (Kutlu, 2021):

When $d \ge 2$, then the set of q.i.d. distributions is not dense with respect to weak convergence. Even more, the set of probability distributions with zero-free characteristic function is not dense.

Theorem (Kutlu, 2021):

When $d \ge 2$, then the set of q.i.d. distributions is not dense with respect to weak convergence. Even more, the set of probability distributions with zero-free characteristic function is not dense.

Idea of proof: When d = 2, take

$$\mu := \frac{1}{3}\delta_{(0,1)} + \frac{1}{3}\delta_{(1,0)} + \frac{1}{3}\delta_{(1,1)}.$$

An application of the Poincaré-Miranda theorem (a multi-variable generalisation of the intermediate value theorem) shows that μ cannot be approximated by probability distributions with zero-free characteristic functions.

Recall:

A sequence of random vectors (X_n)_{n∈ℕ} converges weakly to a random vector X if and only if a^TX_n converges weakly to a^TX for every a ∈ ℝ^d (classical Cramér–Wold device).

- A sequence of random vectors (X_n)_{n∈ℕ} converges weakly to a random vector X if and only if a^TX_n converges weakly to a^TX for every a ∈ ℝ^d (classical Cramér–Wold device).
- A probability distribution $\mu = \mathcal{L}(X)$ on \mathbb{R}^d is normal if and only if $\mathcal{L}(a^T X)$ is normal for all $a \in \mathbb{R}^d$.

- A sequence of random vectors (X_n)_{n∈ℕ} converges weakly to a random vector X if and only if a^TX_n converges weakly to a^TX for every a ∈ ℝ^d (classical Cramér–Wold device).
- A probability distribution $\mu = \mathcal{L}(X)$ on \mathbb{R}^d is normal if and only if $\mathcal{L}(a^T X)$ is normal for all $a \in \mathbb{R}^d$.
- Let α ≥ 1. A distribution μ = L(X) is α-stable if and only L(a^TX) is α-stable for all a ∈ ℝ^d.

- A sequence of random vectors (X_n)_{n∈ℕ} converges weakly to a random vector X if and only if a^TX_n converges weakly to a^TX for every a ∈ ℝ^d (classical Cramér–Wold device).
- A probability distribution $\mu = \mathcal{L}(X)$ on \mathbb{R}^d is normal if and only if $\mathcal{L}(a^T X)$ is normal for all $a \in \mathbb{R}^d$.
- Let α ≥ 1. A distribution μ = L(X) is α-stable if and only L(a^TX) is α-stable for all a ∈ ℝ^d.
- Not true for α ∈ (0, 1): D. Marcus (1983) gives an example of a distribution L(X) that is not α-stable but such that L(a^TX) is α-stable for each a ∈ ℝ^d.

- A sequence of random vectors (X_n)_{n∈ℕ} converges weakly to a random vector X if and only if a^TX_n converges weakly to a^TX for every a ∈ ℝ^d (classical Cramér–Wold device).
- A probability distribution µ = L(X) on ℝ^d is normal if and only if L(a^TX) is normal for all a ∈ ℝ^d.
- Let α ≥ 1. A distribution μ = L(X) is α-stable if and only L(a^TX) is α-stable for all a ∈ ℝ^d.
- Not true for α ∈ (0, 1): D. Marcus (1983) gives an example of a distribution L(X) that is not α-stable but such that L(a^TX) is α-stable for each a ∈ ℝ^d.
- Giné and Hahn (1983) show that the example of Marcus cannot be infinitely divisible.

- A sequence of random vectors (X_n)_{n∈ℕ} converges weakly to a random vector X if and only if a^TX_n converges weakly to a^TX for every a ∈ ℝ^d (classical Cramér–Wold device).
- A probability distribution $\mu = \mathcal{L}(X)$ on \mathbb{R}^d is normal if and only if $\mathcal{L}(a^T X)$ is normal for all $a \in \mathbb{R}^d$.
- Let α ≥ 1. A distribution μ = L(X) is α-stable if and only L(a^TX) is α-stable for all a ∈ ℝ^d.
- Not true for α ∈ (0, 1): D. Marcus (1983) gives an example of a distribution L(X) that is not α-stable but such that L(a^TX) is α-stable for each a ∈ ℝ^d.
- Giné and Hahn (1983) show that the example of Marcus cannot be infinitely divisible.
- Hence there are distributions µ = L(X) that are not infinitely divisible but such that L(a^TX) is infinitely divisible ∀ a ∈ ℝ^d.

 Earlier examples of such a phenomenon by Dwass and Teicher (1957) who use a three dimensional Wishart distribution (shown by Lévy (1948) to be non-infinitely divisible)

- Earlier examples of such a phenomenon by Dwass and Teicher (1957) who use a three dimensional Wishart distribution (shown by Lévy (1948) to be non-infinitely divisible)
- Or an example by Ibragimov (1972) who constructs a quasi-infinitely divisible distribution with truly signed quasi-Lévy measure but such that L(a^TX) is infinitely divisible for all a ∈ ℝ^d.

Theorem (Berger, L., 2022):

Theorem (Berger, L., 2022):

Let $\mathcal{L}(X)$ be a probability distribution on \mathbb{Z}^d . Then the following are equivalent:

• $\mathcal{L}(X)$ is infinitely divisible.

Theorem (Berger, L., 2022):

- $\mathcal{L}(X)$ is infinitely divisible.
- $\mathcal{L}(a^T X)$ is infinitely divisible for all $a \in \mathbb{R}^d$.

Theorem (Berger, L., 2022):

- $\mathcal{L}(X)$ is infinitely divisible.
- $\mathcal{L}(a^T X)$ is infinitely divisible for all $a \in \mathbb{R}^d$.
- $\mathcal{L}(a^T X)$ is infinitely divisible for all $a \in \mathbb{N}_0^d$.

Theorem (Berger, L., 2022):

- $\mathcal{L}(X)$ is infinitely divisible.
- $\mathcal{L}(a^T X)$ is infinitely divisible for all $a \in \mathbb{R}^d$.
- $\mathcal{L}(a^T X)$ is infinitely divisible for all $a \in \mathbb{N}_0^d$.
- The characteristic function of X has no zeroes and there exists some a = (a₁,..., a_d)^T ∈ ℝ^d such that a₁,..., a_d are linearly independent over Q and such that L(a^TX) is infinitely divisible.

Theorem (Berger, L., 2022):

Let $\mathcal{L}(X)$ be a probability distribution on \mathbb{Z}^d . Then the following are equivalent:

- $\mathcal{L}(X)$ is infinitely divisible.
- $\mathcal{L}(a^T X)$ is infinitely divisible for all $a \in \mathbb{R}^d$.
- $\mathcal{L}(a^T X)$ is infinitely divisible for all $a \in \mathbb{N}_0^d$.
- The characteristic function of X has no zeroes and there exists some a = (a₁,..., a_d)^T ∈ ℝ^d such that a₁,..., a_d are linearly independent over Q and such that L(a^TX) is infinitely divisible.

Idea of proof: If the characteristic function of X is zero-free, then $\mathcal{L}(X)$ is quasi-infinitely divisible with finite quasi-Lévy measure. Can then relate the quasi-Lévy measures of $\mathcal{L}(a^T X)$ to that of $\mathcal{L}(X)$.

Cramér-Wold for discrete distributions

Theorem (Alexeev, Khartov, 2023):

Cramér-Wold for discrete distributions

Theorem (Alexeev, Khartov, 2023):

Let $\mathcal{L}(X)$ be a discrete probability distribution on \mathbb{R}^d . Then the following are equivalent:

• $\mathcal{L}(X)$ is (quasi-)infinitely divisible.

Cramér-Wold for discrete distributions

Theorem (Alexeev, Khartov, 2023):

- $\mathcal{L}(X)$ is (quasi-)infinitely divisible.
- $\mathcal{L}(a^T X)$ is (quasi-)infinitely divisible for all $a \in \mathbb{R}^d$.

The example of D. Marcus (1983)

• Let
$$\alpha \in (0,1)$$
 and $d = 2$. Let $\beta > 0$ small enough. Then

 $arphi(z) = \mathrm{e}^{-|z|^{lpha}} \, \mathrm{e}^{\mathrm{i}eta|z|\cos(3 heta)}, \quad ext{where} \quad z = |z|(\cos(heta),\sin(heta)) \in \mathbb{R}^2$

is the characteristic function of a probability distribution $\mathcal{L}(X)$ on \mathbb{R}^2 that is not stable (Marcus, 1983).

The example of D. Marcus (1983)

• Let $\alpha \in (0,1)$ and d = 2. Let $\beta > 0$ small enough. Then

 $arphi(z) = \mathrm{e}^{-|z|^{lpha}} \, \mathrm{e}^{\mathrm{i}eta|z|\cos(3 heta)}, \quad ext{where} \quad z = |z|(\cos(heta),\sin(heta)) \in \mathbb{R}^2$

is the characteristic function of a probability distribution $\mathcal{L}(X)$ on \mathbb{R}^2 that is not stable (Marcus, 1983).

• $\mathcal{L}(a^T X)$ is α -stable for each $a \in \mathbb{R}^2$ (Marcus, 1983).

The example of D. Marcus (1983)

• Let $\alpha \in (0,1)$ and d = 2. Let $\beta > 0$ small enough. Then

 $arphi(z) = \mathrm{e}^{-|z|^{lpha}} \, \mathrm{e}^{\mathrm{i}eta|z|\cos(3 heta)}, \quad ext{where} \quad z = |z|(\cos(heta),\sin(heta)) \in \mathbb{R}^2$

is the characteristic function of a probability distribution $\mathcal{L}(X)$ on \mathbb{R}^2 that is not stable (Marcus, 1983).

- $\mathcal{L}(a^T X)$ is α -stable for each $a \in \mathbb{R}^2$ (Marcus, 1983).
- *L(X)* is quasi-infinitely divisible with quasi-Lévy measure

$$\nu(B) = \underbrace{c_1 \int_0^{2\pi} \int_0^\infty \mathbf{1}_B(r \mathrm{e}^{\mathrm{i}\theta}) \frac{\mathrm{d}r}{r^{1+\alpha}} \,\mathrm{d}\theta}_{\text{rot. sym.}\alpha\text{-stable}} + \underbrace{c_2 \int_0^{2\pi} \int_0^\infty \mathbf{1}_B(r \mathrm{e}^{\mathrm{i}\theta}) \frac{\mathrm{d}r}{r^{1+1}} \left(-\cos(3\theta)\right) \mathrm{d}\theta}_{\text{'signed'1-stable}}.$$

with constants $c_1, c_2 > 0$ (Berger, Kutlu and L., in preparation).

Happy birthday and all the best to you, Paul!

A. Lindner Quasi-infinitely divisible distributions