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A. Lindner Quasi-infinitely divisible distributions



Infinitely divisible distributions

Definition: A probability distribution µ on Rd is infinitely divisible,
if for every n ∈ N there exists a probability distribution µn on Rd

such that
µ∗n
n = µ,

i.e. if it has convolution roots of all orders.

Remark: There exists a one-to-one correspondence between
infinitely divisible distributions and Lévy processes (in law).
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Fourier transform/characteristic function of measure µ = L(X )

µ̂(z) =

∫
Rd

eiz
T x µ(dx) = Eeiz

TX , z ∈ Rd

Lévy-Khintchine formula:
A probability distribution µ on Rd is infinitely divisible if and only
if there exist A ∈ Rd×d positive semidefinifite, γ ∈ Rd and a Lévy
measure ν on Rd (i.e. satisfying ν({0}) = 0 and∫
R(1 ∧ |x |2) ν(dx) < ∞) such that

µ̂(z) = exp

{
iγT z − 1

2
zTAz +

∫
Rd

(
eix

T z − 1− ixT z1|x |≤1

)
ν(dx)

}
.

The triplet (A, ν, γ) is unique and called characteristic triplet of
µ.
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Quasi-infinitely divisible distributions

Definition: A probability measure µ on Rd is quasi-infinitely
divisible (q.i.d.), if there exist two infinitely divisible distributions
µ1 and µ2 on Rd such that

µ̂(z) =
µ̂1(z)

µ̂2(z)
∀ z ∈ Rd .

µ = L(X ) q.i.d. ⇐⇒ ∃µ1, µ2 infinitely divisible:

µ2 ∗ µ = µ1.

Hence q.i.d. distributions appear in factorisation problems of
infinitely divisible distributions.
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▶ Early references: Linnik (1964), Linnik and Ostrovskii
(1967), Gnedenko and Kolmogorov (1968), Cuppens (1975),
Ibragimov (1972), etc.

▶ Applications found in insurance mathematics (Zhang, Liu and
Li, 2014) and quantum physics (Demni and Mouayn, 2015)

▶ Systematic study initiated by Lindner/Pan/Sato (2018)

▶ Since then works by Berger (2019), Passeggeri (2020),
Kadankova/Simon/Wang (2020), Khartov (2019, 2022),
Alexeev and Khartov (2022, 2023), Kutlu (2021),
Berger/Kutlu/Lindner (2022), Berger/Lindner (2022), and
others.
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Goals

▶ Identify quasi-infinitely divisible distributions.

▶ How many quasi-infinitely divisible distributions are there?

▶ What properties do quasi-infinitely divisible distributions
have? Characterisation in terms of characteristic triplet?

▶ Mathematical applications of quasi-infinitely divisible
distributions.
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Elementary properties

µ q.i.d. ⇐⇒ ∃µ1, µ2 infinitely divisible such that µ̂(z) = µ̂1(z)
µ̂2(z)

.

Suppose µ is q.i.d. and denote characteristic triplets of µ1, µ2

above by (A1, ν1, γ1) and (A2, ν2, γ2). Denote

A := A1 − A2 ∈ Rd×d (symmetric),

γ := γ1 − γ2,

ν := ν1 − ν2

(a ‘signed Lévy measure’, henceforth called quasi-Lévy measure)
By Lévy-Khintchine formula,

µ̂(z) = exp

{
iγT z − 1

2
zTAz +

∫
Rd

(
eix

T z − 1− ixT z1|x |≤1

)
ν(dx)

}
.

A. Lindner Quasi-infinitely divisible distributions



Elementary properties

µ q.i.d. ⇐⇒ ∃µ1, µ2 infinitely divisible such that µ̂(z) = µ̂1(z)
µ̂2(z)

.
Suppose µ is q.i.d. and denote characteristic triplets of µ1, µ2

above by (A1, ν1, γ1) and (A2, ν2, γ2). Denote

A := A1 − A2 ∈ Rd×d (symmetric),

γ := γ1 − γ2,

ν := ν1 − ν2
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It can be shown:

▶ The characteristic function of a q.i.d. distribution is zero-free.

▶ Characteristic triplet (A, ν, γ) is unique.

▶ A probability distribution µ is q.i.d. if and only if there exist
(A, ν, γ) such that µ̂ has Lévy–Khintchine type representation
as before.

▶ Not every triplet (A, ν, γ) with ν signed-Lévy measure gives
rise to a probability distribution.

▶ The symmetric matrix A ∈ Rd×d must be positive
semidefinite.

▶ Convolutions of q.i.d. distributions are q.i.d. (with
characteristic triplets adding up).
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Examples of quasi-infinitely divisible distributions

Theorem (Cuppens, 1969):
If a probability distribution µ has an atom of mass > 1/2, i.e. if
∃ c ∈ Rd with µ({c}) > 1/2, then µ is q.i.d. with A = 0 and finite
quasi-Lévy measure.

Corollary: A Bernoulli distribution b(1, p) is q.i.d. if and only if
p ̸= 1/2. Hence a binomial distribution b(n, p) is q.i.d. if and only
if p ̸= 1/2.

Corollary: The set of q.i.d. distributions is not closed with respect
to weak convergence.
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b̂(n, p) zero-free ⇐⇒ p ̸= 1/2 ⇐⇒ b(n, p) q.i.d.
Does this generalise?

There exist examples of distributions µ that are not q.i.d. but for
which µ̂(z) ̸= 0 for all z ∈ Rd . However:

Theorem (L./Pan/Sato 2018 (d = 1), Berger/L. (2022)
(d ≥ 2)): Let µ be a distribution on hZd for some h > 0. Then

µ q.i.d. ⇐⇒ µ̂(z) ̸= 0 ∀ z ∈ Rd .

In that case, the quasi-Lévy measure ν is finite and A = 0.

Idea of proof: µ̂ is periodic in all coordinates. Take Fourier series
of log µ̂. The Wiener-Lévy theorem shows that the Fourier
coefficients cn are absolutely summable. The quasi-Lévy measure is
then of the form

∑
cnδn (when h = 1).
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In that case, the quasi-Lévy measure ν is finite and A = 0.

Idea of proof: µ̂ is periodic in all coordinates. Take Fourier series
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Further classes of quasi-infinitely divisible distributions

Theorem (Khartov (2022), Alexeev and Khartov (2022,
2023))
Let µ be a discrete probability distribution on Rd . Then the
following are equivalent:

▶ µ is quasi-infinitely divisible.

▶ infz∈Rd |µ̂(z)| > 0.

In that case, the quasi-Lévy measure of µ is discrete and finite and
the Gaussian variance A = 0.

Observe: If µ is concentrated on Zd , then µ̂ is 2π-periodic in all
coordinates (and continuous), hence infz∈Rd |µ̂(z)| > 0 is
equivalent to µ̂(z) ̸= 0 for all z ∈ Rd . Hence generalise result of
L./Pan/Sato (2018) and Berger/L. (2022).
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Theorem (Berger (2019), Berger and Kutlu (2022)):
Let µ = pµd + (1− p)µac be a probability distribution on R, where
µd is discrete, µac absolutely continuous and p ∈ (0, 1]. Then the
following are equivalent:

▶ µ is quasi-infinitely divisible.

▶ infz∈R |µ̂d(z)| > 0 and µ̂(z) ̸= 0 for all z ∈ R.
▶ infz∈R |µ̂(z)| > 0.

In that case, the quasi-Levy measure ν of µ is of the form

ν(dx) = ν1(dx) +
me−|x |

|x |
sgn(x) dx ,

where ν1 is a finite signed measure and m ∈ Z. The Gaussian
variance A = 0.
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Convex combinations of normal distributions

Example (Berger, 2019):

▶ µ =
∑n

i=1 piN(0, ai )

▶ 0 < p1, . . . , pn < 1,
∑n

i=1 pi = 1.

▶ 0 < a1 < a2 < . . . < an
▶ Then µ is quasi-infinitely divisible.

Idea of proof:

µ = N(0, a1) ∗ (p1δ0 + p2N(0, a2 − a1) + . . .+ pnN(0, an − a1))︸ ︷︷ ︸
q.i.d. by previous Theorem
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How many q.i.d. distributions are there?

Theorem (Berger (2019), Berger, Kutlu, L. (2022)) The set of
probability distributions on Rd that are not q.i.d. is dense in the set
of all probability distributions with respect to weak convergence.

Theorem (L./Pan/Sato, 2018):
When d = 1, then the set of q.i.d. distributions is dense in the set
of all probability measures with respect to weak convergence.

Idea of proof: Every probability distribution on R can be
approximated by a lattice distribution with finite support and
zero-free characteristic function.
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Theorem (Kutlu, 2021):
When d ≥ 2, then the set of q.i.d. distributions is not dense with
respect to weak convergence. Even more, the set of probability
distributions with zero-free characteristic function is not dense.

Idea of proof: When d = 2, take

µ :=
1

3
δ(0,1) +

1

3
δ(1,0) +

1

3
δ(1,1).

An application of the Poincaré-Miranda theorem (a multi-variable
generalisation of the intermediate value theorem) shows that µ
cannot be approximated by probability distributions with zero-free
characteristic functions.
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Cramér–Wold devices

Recall:

▶ A sequence of random vectors (Xn)n∈N converges weakly to a
random vector X if and only if aTXn converges weakly to
aTX for every a ∈ Rd (classical Cramér–Wold device).

▶ A probability distribution µ = L(X ) on Rd is normal if and
only if L(aTX ) is normal for all a ∈ Rd .

▶ Let α ≥ 1. A distribution µ = L(X ) is α-stable if and only
L(aTX ) is α-stable for all a ∈ Rd .

▶ Not true for α ∈ (0, 1): D. Marcus (1983) gives an example
of a distribution L(X ) that is not α-stable but such that
L(aTX ) is α-stable for each a ∈ Rd .

▶ Giné and Hahn (1983) show that the example of Marcus
cannot be infinitely divisible.

▶ Hence there are distributions µ = L(X ) that are not infinitely
divisible but such that L(aTX ) is infinitely divisible ∀ a ∈ Rd .
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▶ Giné and Hahn (1983) show that the example of Marcus
cannot be infinitely divisible.

▶ Hence there are distributions µ = L(X ) that are not infinitely
divisible but such that L(aTX ) is infinitely divisible ∀ a ∈ Rd .

A. Lindner Quasi-infinitely divisible distributions



Cramér–Wold devices

Recall:

▶ A sequence of random vectors (Xn)n∈N converges weakly to a
random vector X if and only if aTXn converges weakly to
aTX for every a ∈ Rd (classical Cramér–Wold device).

▶ A probability distribution µ = L(X ) on Rd is normal if and
only if L(aTX ) is normal for all a ∈ Rd .

▶ Let α ≥ 1. A distribution µ = L(X ) is α-stable if and only
L(aTX ) is α-stable for all a ∈ Rd .

▶ Not true for α ∈ (0, 1): D. Marcus (1983) gives an example
of a distribution L(X ) that is not α-stable but such that
L(aTX ) is α-stable for each a ∈ Rd .
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▶ Earlier examples of such a phenomenon by Dwass and Teicher
(1957) who use a three dimensional Wishart distribution
(shown by Lévy (1948) to be non-infinitely divisible)

▶ Or an example by Ibragimov (1972) who constructs a
quasi-infinitely divisible distribution with truly signed
quasi-Lévy measure but such that L(aTX ) is infinitely
divisible for all a ∈ Rd .
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quasi-Lévy measure but such that L(aTX ) is infinitely
divisible for all a ∈ Rd .

A. Lindner Quasi-infinitely divisible distributions



Cramér–Wold for Zd -valued distributions

Theorem (Berger, L., 2022):
Let L(X ) be a probability distribution on Zd . Then the following
are equivalent:

▶ L(X ) is infinitely divisible.

▶ L(aTX ) is infinitely divisible for all a ∈ Rd .

▶ L(aTX ) is infinitely divisible for all a ∈ Nd
0 .

▶ The characteristic function of X has no zeroes and there
exists some a = (a1, . . . , ad)

T ∈ Rd such that a1, . . . , ad are
linearly independent over Q and such that L(aTX ) is infinitely
divisible.

Idea of proof: If the characteristic function of X is zero-free, then
L(X ) is quasi-infinitely divisible with finite quasi-Lévy measure.
Can then relate the quasi-Lévy measures of L(aTX ) to that of
L(X ).
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Cramér–Wold for discrete distributions

Theorem (Alexeev, Khartov, 2023):
Let L(X ) be a discrete probability distribution on Rd . Then the
following are equivalent:

▶ L(X ) is (quasi-)infinitely divisible.

▶ L(aTX ) is (quasi-)infinitely divisible for all a ∈ Rd .
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The example of D. Marcus (1983)

▶ Let α ∈ (0, 1) and d = 2. Let β > 0 small enough. Then

φ(z) = e−|z|α eiβ|z| cos(3θ), where z = |z |(cos(θ), sin(θ)) ∈ R2

is the characteristic function of a probability distribution L(X )
on R2 that is not stable (Marcus, 1983).

▶ L(aTX ) is α-stable for each a ∈ R2 (Marcus, 1983).
▶ L(X ) is quasi-infinitely divisible with quasi-Lévy measure

ν(B) = c1

∫ 2π

0

∫ ∞

0
1B(re

iθ)
dr

r1+α
dθ︸ ︷︷ ︸

rot. sym.α-stable

+ c2

∫ 2π

0

∫ ∞

0
1B(re

iθ)
dr

r1+1
(− cos(3θ))dθ︸ ︷︷ ︸

‘signed’1-stable

.

with constants c1, c2 > 0 (Berger, Kutlu and L., in
preparation).
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ν(B) = c1

∫ 2π

0

∫ ∞

0
1B(re

iθ)
dr

r1+α
dθ︸ ︷︷ ︸

rot. sym.α-stable

+ c2

∫ 2π

0

∫ ∞

0
1B(re

iθ)
dr

r1+1
(− cos(3θ)) dθ︸ ︷︷ ︸

‘signed’1-stable

.

with constants c1, c2 > 0 (Berger, Kutlu and L., in
preparation).

A. Lindner Quasi-infinitely divisible distributions



Happy birthday and all the
best to you, Paul!
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