Phantom distributions for non-stationary time series as an averaging operation

Multitask conference Closing ECODEP conference PI's Emeritus, Pensioning and Birthday conference IHP, Paris, 12 February 2024

> Adam Jakubowski Nicolaus Copernicus University Toruń, Poland

Adam Jakubowski

Cooking mathematics and steaks

Phantom distribution functions

Markov chains

AIRM

AIRM

Adam Jakubowski

Cooking mathematics and steaks

Phantom distribution functions

Markov chains

AIRM

Non-periodic drifts

Cooking mathematics and steaks with the PI (2007–2024)

IV Nagaev's Lecture

IV WYKŁAD IM. ALEKSANDRA NAGAJEWA NT. TWIERDZEŃ GRANICZNYCH TEORII PRAWDOPODOBIEŃSTWA

Prof. Paul Doukhan (University Cergy-Pontoise, Francja) *"Weak dependence, models and applications"*

Wtorek, 15 czerwca 2010 r., godz. 16.00, Sala Konferencyjna, WMil UMK

Cooking mathematics and steaks

Phantom distribution functions

Markov chains

AIRM

Non-periodic drifts

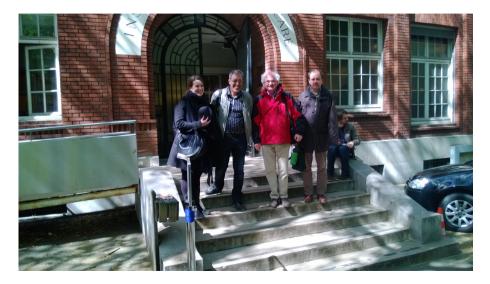
AIRM

Adam Jakubowski

n

a K S T

Chaire Internationale 2013-2014, Labex MME-DII



AIRM

Adam Jakubowski

Cooking mathematics and steaks

Phantom distribution functions

Markov chains

AIRM

A cook and a great companion

AIRM

Adam Jakubowski

Cooking mathematics and steaks

Phantom distribution functions

Markov chains

AIRM

Cooking steaks

AIRM

Adam Jakubowski

Cooking mathematics and steaks

Phantom distribution functions

Markov chains

AIRM

Enjoying friendship

AIRM

Adam Jakubowski

Cooking mathematics and steaks

Phantom distribution functions

Markov chains

AIRM

The talk

AIRM

Adam Jakubowski

Cooking mathematics and steaks

Phantom distribution functions

Markov chains

AIRM

Non-periodic drifts

Phantom distributions for non-stationary time series as an averaging operation Joint work with Paul Doukhan

Phantom distribution functions

- The notion of a phantom distribution function was introduced by O'Brien, AoP(1987).
- Let $\{X_j\}$ be a stationary sequence with partial maxima

$$M_n = \max_{1 \leq j \leq n} X_j$$

and the marginal distribution function $F(x) = \mathbb{P}(X_1 \leq x)$.

• A stationary sequence {*X_n*} is said to admit a phantom distribution function *G* if

$$\sup_{u\in\mathbb{R}}\left|\mathbb{P}(M_n\leqslant u)-G^n(u)\right|\to 0, \text{ as } n\to\infty. \tag{1}$$

- It is obvious that G is not uniquely determined for only the behavior of G at its right end G_{*} = sup{x; G(x) < 1} is of importance.
- When (1) is satisfied with G(x) = F^θ(x), for some θ ∈ (0, 1], then we say that {X_j} has the extremal index θ in the sense of Leadbetter, Z.Wahr(1983).

AIRM

Adam Jakubowski

Cooking mathematics and steaks

Phantom distribution functions Markov chains AIRM Non-periodic drift

Phantom distribution functions are quite common

- Doukhan, J. and Lang, Extr(2015) showed that phantom distribution functions (in fact: continuous phantom distribution functions) exist in a large class of stationary sequences, including some non-ergodic ones.
- J., Mikosch, Rodionov and Soja-Kukieła (2022+) exhibited examples of stationary sequences with continuous phantom distribution functions but without the extremal index.
- J., Rodionov and Soja-Kukieła, Bern(2021) extended the notion of a phantom distribution function to stationary random fields, where interesting phenomena occur.
- In all examples given above we deal with stationarity, that seems to be a natural environment for the notion of a phantom distribution function

AIRM

Adam Jakubowski

Cooking mathematics and steaks

Phantom distribution functions

Markov chains AIRM

Phantom distribution function in the Metropolis algorithm

- Let {*Z_j*} is an i.i.d. sequence with the marginal distribution function *H* given by the proposal density *h*, symmetric about 0.
- Let {*U_j*} be an i.i.d. sequence distributed uniformly on [0, 1], independent of {*Z_j*}.
- Let f(x) be the target probability density.
- We consider the random walk Metropolis algorithm given by the recursive equation

$$X_{j+1} = X_j + Z_{j+1} 1_{\{U_{j+1} \leq \psi(X_j, X_j + Z_{j+1})\}},$$

where $\psi(\mathbf{x}, \mathbf{y})$ is defined as

$$\psi(x,y) = \begin{cases} \min\left\{\frac{f(y)}{f(x)}, 1\right\} & \text{ if } f(x) > 0, \\ 1 & \text{ if } f(x) = 0. \end{cases}$$

- If *f* is heavy-tailed, then the extremal index is zero.
- Various versions of *f* and *h* can model various rates of increase of maxima.

AIRM

Adam Jakubowski

Cooking mathematics and steaks

Phantom distribution functions

Markov chains

AIRM

What if Markov chain starts at a point? (J. and Truszczyński, SPL(2018))

- Let { *Y_n*} be a positive Harris and aperiodic chain taking values in (S, S) and with a stationary distribution *π*.
- Let $f : (\mathbb{S}, \mathcal{S}) \to (\mathbb{R}^1, \mathcal{B}^1)$ be measurable. Define $X_n = f(Y_n)$.
- If {X_n} admits a continuous phantom distribution function G under some initial distribution λ, i.e. if we have

$$\sup_{x\in\mathbb{R}^1} \left|\mathbb{P}_{\lambda}\big(\textit{M}_n\leqslant x\big)-\textit{G}^n(x)\right|\to 0, \text{ as } n\to\infty,$$

then *G* is also a continuous phantom distribution function for the stationary (under π) sequence {*X_n*}.

Conversely, if {X_n} admits a continuous phantom distribution function *G* under π, then there exists a set S₀ ∈ S satisfying π(S₀) = 0 and such that relation (*) holds for every initial distribution λ with the property that λ(S₀) = 0

AIRM

Adam Jakubowski

Cooking mathematics and steaks

Phantom distribution functions

(*)

Markov chains

AIRM

Hüsler's example and periodic non-stationarity

 Let Y₁, Y₂,... be i.i.d. and have the exponential distribution with parameter λ F_λ. Choose α > 0 and set

$$X_1 = Y_1, X_2 = Y_2 + \alpha, X_3 = Y_3, X_4 = Y_4 + \alpha, \dots$$

Hüsler in JApplProb(1986) observed that

$$\mathbb{P}(M_n \leq \log n + x) \to \exp(-\exp(-x + \alpha)/2).$$

- Hüsler used this fact to illustrate the formalism developed in his paper.
- We can simply say that {*X_n*} admits a phantom distribution function

$$G(x) = \left(F_{\lambda}(x)F_{\lambda}(x-\alpha)\right)^{1/2}.$$

Notice the geometric averaging in the above formula.

AIRM

Adam Jakubowski

Cooking mathematics and steaks

Phantom distribution functions

Markov chains

AIRM

Hüsler's example and periodic non-stationarity

- In fact, when formulated in terms of phantom distribution functions, Hüsler's example is valid for any distribution function *F* such that *Fⁿ*(*v_n*) → *γ*₁, *Fⁿ*(*v_n* − *α*) → *γ*₂, 0 < *γ*₁, *γ*₂ < 1, for some sequence of levels *v_n*.
- Let us consider an important extension. Let {α_k} be a periodic sequence of numbers (i.e. α_{k+m·p} = α_k for all k, m ∈ N and some p ∈ N).
- Let { Y_j} be i.i.d. with distribution function F satisfying regularity conditions Fⁿ(v_n − α_k) → γ_k, 0 < γ₁, γ₂, ..., γ_p < 1.
- If we set $X_k = Y_k + \alpha_k$, then

$$G(x) = \left(F(x - \alpha_1)F(x - \alpha_2) \dots F(x - \alpha_p)\right)^{1/p}$$

is a phantom distribution function for $\{X_n\}$.

• Averaging! Also: undefinable extremal index.

AIRM

Adam Jakubowski

Cooking mathematics and steaks

Phantom distribution functions

Markov chains

AIRM

Asymptotic Independent Representation for Maxima

- Let $\{X_k\}_{k \in \mathbb{N}}$ be a sequence of random variables. Define $M_n = \max_{0 < k \leq n} X_k$.
- Suppose one can find a sequence $\{\widetilde{X}_k\}_{k \in \mathbb{N}}$ of independent random variables such that

$$\sup_{x\in\mathbb{R}^1}|\mathbb{P}(M_n\leqslant x)-\mathbb{P}(\widetilde{M}_n\leqslant x)|\to 0\quad\text{as}\quad n\to\infty,$$

where \widetilde{M}_n is the *n*-th partial maximum of $\{\widetilde{X}_k\}$.

- We will say that {X_k}_{k∈ℕ} admits an asymptotic independent representation for maxima (AIRM) {X̃_k}_{k∈ℕ}.
- Clearly, if {X
 _k} are identically distributed, then their common distribution function *G* is a phantom distribution function for {X_k}_{k∈ℕ}.

AIRM

Adam Jakubowski

Cooking mathematics and steaks

Phantom distribution functions

Markov chains

AIRM

The tool (Theorem 2, J., AoP(1993))

• Assume there is a non-decreasing sequence $\{v_n\}$ such that

$$\mathbb{P}(M_{[nt]} \leqslant v_n) \longrightarrow \exp(-\beta_t), \text{ as } n \to \infty, \quad t \ge 0,$$

where the function β_t is continuous on $[0, \infty)$, $\beta_0 = 0$, $\lim_{t\to\infty} \beta_t = +\infty$.

• If the function β_t is of the form

$$\beta_t = h(\log t),$$

where $h: (-\infty, +\infty) \to [0, +\infty)$ is convex, then $\{X_n\}$ admits an AIRM $\{\widetilde{X}_n\}$.

• $\{\tilde{X}_n\}$ can be defined via its marginals

$$\widetilde{X}_k \sim F_k(x) = \begin{cases} 0, & \text{if } x < v_1; \\ \exp\left(\beta_{(k-1)/n} - \beta_{k/n}\right), & \text{if } v_n \leq x < v_{n+1}; \\ 1, & \text{if } x \geqslant \sup_n v_n. \end{cases}$$

AIRM

Adam Jakubowski

Cooking mathematics and steaks

Phantom distribution functions

Markov chains

AIRM

Some comments on the main tool

• If $h(x) = B \exp(x)$, then $\beta_t = h(\log t) = B \cdot t$ and for each k

$$F_k(x) = \exp\left(\beta_{(k-1)/n} - \beta_{k/n}
ight) = \exp(-B)^{1/n}, \text{ if } v_n \leqslant x < v_{n+1},$$

i.e. F_k does not depend on k.

• In other words, if

$$\mathbb{P}(M_{[nt]} \leqslant v_n) \longrightarrow \exp(-B \cdot t), \text{ as } n \to \infty, \quad t \ge 0,$$

then $\{X_n\}$ admits a phantom distribution function, independently of being stationary or non-stationary.

• If the function β_t is discontinuous, it may be uninformative. Let

$$F(x) = \begin{cases} 1 - x^{-\beta} & \text{for } x \ge 1 \\ 0 & \text{otherwise} \end{cases}$$

If $\{Y_k\}$ are i.i.d. with $\mathcal{L}(Y_k) \sim F$, define $X_k = k^{-1/\beta} Y_k$ and $v_n = \log^{1/\beta} n$. Then for *every* t > 0,

$$\mathbb{P}(M_{[nt]} \leqslant v_n) \longrightarrow e^{-1}$$

AIRM

Adam Jakubowski

Cooking mathematics and steaks

Phantom distribution functions

Markov chains

AIRM

Non-periodic drifts

- Let $Y_1, Y_2, ...$ be i.i.d. and have the Gumbel distribution: $F(x) = \exp(-\exp(-x))$. Let α_k be any numbers. Set $X_1 = Y_1 + \alpha_1, X_2 = Y_2 + \alpha_2, ...$
- We have

$$\mathbb{P}(X_k \leq x) = \mathbb{P}(Y_k + \alpha_k \leq x) = F(x - \alpha_k) = (F(x))^{e^{\alpha_k}}$$

• Therefore

$$\mathbb{P}(M_{[nt]} \leqslant v_n) = \left(F(v_n)^n\right)^{(1/n)\sum_{k=1}^{[nt]} e^{\alpha_k}} \to exp(-B \cdot t),$$

if $F(v_n)^n \to e^{-1}$ and

$$\frac{1}{n}\sum_{k=1}^{[nt]} \boldsymbol{e}^{\alpha_k} \to \boldsymbol{B} \cdot \boldsymbol{t}, \ t > 0.$$

 Distributions of X₁, X₂,... form so-called F^α-scheme, studied by Young, Weissmann, Nevzorov, Doukhan, ... AIRM

Adam Jakubowski

Cooking mathematics and steaks

Phantom distribution functions Markov chains

AIRM

Other possible representations

• If $\{X_n\}$ are independent, and for some continuous β_t

$$\mathbb{P}(M_{[nt]} \leqslant v_n) \longrightarrow \exp(-\beta_t), \text{ as } n \to \infty, \quad t \ge 0,$$

then necessarily $\beta_t = h(\log t)$ for some convex *h*.

- Are there any other interesting functions β_t ?
- Surely: set $h(x) = B \exp(C \cdot x)$, B, C > 0. Then $\beta_t = h(\log t) = Bt^C$.
- Returning to the previous *F^α*-scheme we have

$$\mathbb{P}(M_{[nt]} \leq v_n) = \left(F(v_n)^{n^C}\right)^{(1/n^C)\sum_{k=1}^{[nt]} e^{\alpha_k}} \to exp(-B \cdot t^C),$$

if $F(v_n)^{n^c} \rightarrow e^{-1}$ and

$$\frac{1}{n^C}\sum_{k=1}^{[nt]} e^{\alpha_k} \to B \cdot t^C, \quad t > 0.$$

AIRM

Adam Jakubowski

Cooking mathematics and steaks

Phantom distribution functions

Markov chains

AIRM