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Ecological definitions

Consider an ecosystem with a number d of species.

Definition

Relative abundance: the vector of proportions of each species in the
whole ecosystem.

It is an element of the simplex

Sd−1 =

{
(y1, . . . , yd) ∈]0,+∞[d

/ d∑
i=1

yi = 1

}
.

One can also consider the Shannon entropy

∀y = (y1, . . . , yd) ∈ Sd−1, IS(y) = −
d∑

i=1

yi log(yi).
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Objectives

◎ Make predictions about the relative abundance of an ecosystem over
time.

◎ Understand the dynamics of this ecosystem:

➜ The dynamic of each species.

➜ The interaction between species.

➜ The impact of exogenous variables.
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An example

We consider a population of insects studied in a sugar cane field in La
Réunion, during the years 2022 and 2023.
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An example

We consider a population of insects studied in a sugar cane field in La
Réunion, during the years 2022 and 2023.

We focus on three groups of species:

(a) Coleoptera (b) Hymenoptera (c) Diptera

Guillaume Franchi Dynamic modeling of abundance data in ecology 6/33



Introduction Modeling relative abundance Modeling Absence/Presence of species

An example

We consider a population of insects studied in a sugar cane field in La
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Chain with complete connections (1/2)

We propose to model our abundance along time by a time series (Yt)t∈Z
valued in the simplex Sd−1.

The idea is to define (Yt)t∈Z as a chain with complete connections

P
(
Yt+1 ∈ A | Y −

t = y−t
)
= P

(
A | y−t

)
where:

• P is a transition kernel from source SN
d−1 and target Sd−1,

• Y −
t denotes the entire past of the time series at time t:

Y −
t = (Yt, Yt−1, . . .) .
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Chain with complete connections (2/2)

Remark

• The process (Yt)t∈Z has possibly an infinite memory.

• If P (A | Y −
t ) depends only on the p+ 1 first values of Y −

t

P (A | Y −
t ) = P̃ (A | Yt, Yt−1, . . . , Yt−p),

we obtain a Markov chain.

• It is possible to add a process of exogenous variables (Xt)t∈Z to the
dynamic of the process (Yt)t∈Z

P
(
Yt+1 ∈ A | Y −

t = y−t , X
−
t = x−t

)
= P

(
A | y−t , x

−
t

)
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Existence of the process

Theorem 1

Under assumptions A1 and A2 below, there exists a time series (Yt)t∈Z
which is strictly stationary such that

∀t ∈ Z, P(Yt+1 ∈ A | Y −
t = y−t ) = P (A | y−t ).

Furthermore, its distribution is unique and it is ergodic.

Assumptions

A1 b0 = sup
{
dTV (P (· | y), P (· | z))

/
y, z ∈ SN

d−1

}
< 1.

A2 For m ⩾ 1, we denote

bm = sup
{
dTV (P (· | y), P (· | z))

/
y, z ∈ SN

d−1, y
m
= z
}
.

We have
∑

m∈N bm < ∞.
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Dirichlet model (1/3)

A natural proposal for P (· | Y −
t ) is a Dirichlet distribution

P (· | Y −
t ) = Dir(λt, φt).

� In the context of Ecology, it has been suggested in Marquet et al. (2017)
that the relative abundance of a given species in large ecosystems is often
compatible with a Beta distribution.

Remark

The Dirichlet distribution is actually the generalization of the Beta
distribution.

The Dirichlet distribution Dir(λ, φ), supported by Sd−1 is characterized by

➜ its mean vector λ = (λ1, . . . , λd);

➜ a dispersion parameter φ > 0.
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Dirichlet model (2/3)

➜ In the spirit of the logistic regression, we propose that for all t ∈ Z

alr(λt) = η0 +
∑
k⩾1

ηkY t−k +
∑
k⩾1

ζkXt−k,

where alr is the mapping

alr : Sd−1 −→ Rd−1

y = (y1, . . . , yd) 7−→
(
log

(
y1
yd

)
, . . . , log

(
yd−1

yd

))
,

Y = (Y1, . . . , Yd−1), and the η’s and ζ’s are matrices.

➜ We also propose that for all t ∈ Z

φt = exp

θ0 +
∑
k⩾1

θkIS(Yt−k+1)

 ,

where the θk’s are real numbers.
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Dirichlet model (3/3)

� The matrices η’s give us precise information about the interactions
between species.

� The matrices ζ’s give us precise information about the impact of
exogenous variables on the abundance of species.

� The θ’s give us information about the volatility of the abundance. The
idea is to connect the biodiversity of the ecosystem and its variability.
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Return to our example (1/2)

We fit the following Dirichlet model to the population of insects in La
Réunion

alr(λt) = η0 + η1Yt + ζ1Xt

and
φt = exp (θ0 + θ1IS(Yt)) .

The vector of covariates Xt is composed by climatic variables such as the
total rainfall amount, the temperature, the ground radiation and
evapotranspiration.

An optimization of the conditional likelihood is performed to obtain an
estimation of the parameters.

Guillaume Franchi Dynamic modeling of abundance data in ecology 14/33



Introduction Modeling relative abundance Modeling Absence/Presence of species

Return to our example (1/2)

We fit the following Dirichlet model to the population of insects in La
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Return to our example (2/2)

We kept the 12 last weeks of our data apart from our estimation sample,
they are indeed used to compare our predictions with the values observed in
the reality.
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Limits of the model

✘ In practice, ecological data do not have a lot of observations along
time.

✘ In practice, there are a lot of zero values in the abundances observed,
which will lead to an error when computing our estimators.

� Use panel data.

� Model the absence/presence of species in the ecosystem.
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Dynamic probit regression

We model here the absence/presence of d species in an ecosystem at time t
by

Yt = (Y1,t, . . . , Yd,t) ∈ {0, 1}d .

We assume that for all i ∈ {1, . . . , d}

Yi,t = 1]0,+∞[ (λi,t + εi,t)

where

➜ λt =
∑p

l=1Al · Yt−l +B ·Xt−1;

➜ (Xt)t∈Z is a process of covariates;

➜ (εt)t∈Z is a sequence of i.i.d random variables with distribution
NRd(0, R).

� It is actually a dynamic version of a multivariate probit regression.
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Existence of the process

Theorem 2

Assume that the process (ζt)t∈Z defined by

ζt = (Xt−1, εt)

is strongly stationary.
There exists a strongly stationary process (Yt)t∈Z satisfying

∀i ∈ {1, . . . , d} , Yi,t = 1]0,+∞[ (λi,t + εi,t) .

In addition, its distribution is unique.

Remark

Furthermore, if (ζt)t∈Z is ergodic, (Yt)t∈Z is also ergodic.
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Estimation results (1/3)

We consider first a single trajectory of an absence/presence process
(Yt)1⩽t⩽T , and we are interested in the estimation of

θ = (A1, . . . , Ap, B,R) .

➜ Optimizing the pseudo conditional log-likelihood

θ̂ = argmax

T∑
t=p+1

log

(∫
Rk

k∏
i=1

1IYi,t
(λi,t + xi)φR(x)dx

)

where φR is the density of the distribution N (0, R) and

IYi,t =

{
]0,+∞[ if Yi,t = 1
]−∞, 0] if Yi,t = 0

.

✘ Difficult function to optimize...
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Estimation results (2/3)

We thus propose a two-step method.

➜ We first optimize with respect to γ = (A1, . . . , Ap, B)

γ̂ = argmax
T∑

t=p+1

k∑
i=1

Yi,t log(Φ(λi,t)) + (1− Yi,t) log(Φ(−λi,t)

where Φ denotes the cdf of the gaussian distribution.

➜ We then maximize all pairwise conditional likelihoods

R̂(i, j) = argmax
r ∈]−1,1[

T∑
t=p+1

log


∫
IYi,t−λ̂i,t

Φ

(
(2Yj,t − 1)

λ̂j,t + rxi√
1− r2

)
φ(xi)dxi


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Estimation results (3/3)

Proposition 1

Assume the process ζt is ergodic. Under some reasonable assumptions on
the covariates:

1) All estimators θ̂, γ̂ and R̂ are strongly consistent.

2) Moreover, we have the asymptotic normality of√
T − p

(
θ̂ − θ0

)
and

√
T − p

(
γ̂ − γ0, R̂−R0

)
.
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The case of panel data

We now consider a number of n trajectories of an absence/presence process
(Yj,t)1⩽j⩽n,1⩽t⩽T , and are still interested in the estimation of θ.

� The aim is to improve the speed of convergence of our estimators with
the number of sites.

2 Obtain a general version of Birkhoff’s ergodic theorem (Giap &
Van Quang, 2016).

2 Generalize the results about consistency and central limit theorems for
M -estimators.
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Results about M -estimators (1/2)

Usually, if we consider the estimator

θ̂ = argmax
T∑
t=1

mθ(Zt)

where mθ is a measurable mapping and (Zt)t∈Z an ergodic process, the
consistency of θ̂ relies in particular on

E
(
sup
θ

|mθ(Z0)|
)

< +∞,

and its asymptotic normality on

E
(
∥ṁθ0(Z0)∥2

)
< +∞.
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Results about M -estimators (2/2)

In the case of panel data, the same results can be obtained with

θ̂ = argmax

n∑
j=1

T∑
t=1

mθ(Zj,t),

➜ by assuming that all processes (Z1,t)t∈Z, . . . , (Zn,t)t∈Z are mutually
independent, and their distributions are identical;

➜ by modifying the “order conditions”

E
(
sup
θ

|mθ(Z0,0)|1+δ

)
< +∞ and E

(
∥ṁθ0(Z0,0)∥2(1+δ)

)
< +∞;

➜ and by adding the following “order condition”

E
(
∥m̈θ0(Z0,0)∥1+δ

)
< +∞

for some δ > 0.
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Estimation Results for panel data (1/2)

In the case of panel data, we can consider similar estimators as the ones
mentioned previously

θ̂ = argmax
n∑

j=1

T∑
t=p+1

log

∫
Rk

k∏
i=1

1IYi,j,t
(λi,j,t + xi)φR(x)dx

 ,

γ̂ = argmax
n∑

j=1

T∑
t=p+1

k∑
i=1

Yi,j,t log(Φ(λi,j,t)) + (1− Yi,j,t) log(Φ(−λi,j,t))

and

R̂(i1, i2) = argmax
n∑

j=1

T∑
t=p+1

log

∫
IYi1,j,t

−λ̂i1,j,t

Φ

(
(2Yi2,j,t − 1)

λ̂i2,j,t + rxi1√
1− r2

)
φ(xi1 )dxi1 .
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Estimation Results for panel data (2/2)

Proposition 2

Under some reasonable assumptions on the processes (ζj,t)t∈Z’s:

1) All estimators θ̂, γ̂ and R̂ are strongly consistent.

2) Moreover, we have the asymptotic normality of√
n(T − p)

(
θ̂ − θ0

)
and

√
n(T − p)

(
γ̂ − γ0, R̂−R0

)
.
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Simulations (1/3)

We simulated the absence/presence of 3 fish species, depending on the
temperature and salinity of the water, over 5 sites.

Then, four of these sites are used for estimation, the last one for testing.
Here, we have

λt = A · Yt−1 +B ·Xt−1,

where (Xt)t∈Z is the process composed by the temperature and salinity.
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Simulations (2/3)

We obtain the following estimations results

A =

 0.2 0.1 −0.2
0.5 0.1 −0.2
−0.5 0.3 0.2

 and Â =

 0.296 −0.499 −0.590
0.444 0.320 −0.138
−0.183 0.385 0.198

 ,

B =

 0.5 −0.1
0.2 −0.1
−0.3 0.1

 and B̂ =

 0.582 −0.118
0.232 −0.110
−0.317 0.096

 ,

and

R =

 1 0.2 −0.5
0.2 1 −0.3
−0.5 −0.3 1

 and R̂ =

 1 0.204 −0.436
0.204 1 −0.303
−0.436 0.204 1

 .
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Simulations (3/3)
We then make previsions at horizon 1 for the testing site, and obtain the following
accuracy.

Species 1 Species 2 Species 3

Accuracy 79.3% 83.7% 78.3%

Mean Presence 73.5% 15.7% 57.8%
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Real data (1/2)

The previous simulation is based upon a real dataset collected by the
government of Scotland: https://data.marine.gov.scot/.

We study here the absence/presence of two aquatic micro-organisms:
Alexandrium and Dinophysis.

The data were collected monthly from 1997 to 2013 on 5 different locations
in Scotland, and we have access to the covariates: Temperature, Salinity
and Oxidised Nitrogen.
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Real data (2/2)
Once again, 4 sites were used for estimation, and we use the last site to perform
previsions at horizon 1.

We obtain the following accuracy.

Alexandrium Dinophysis

Accuracy 72.7% 75.0%

Mean Presence 65.2% 64.0%
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Thank you !
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