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Monthly number of burglaries

Monthly number of burglaries on the south side of Chicago from 2010-2015. Counts
registered for N = 552 blocks; (Clark and Dixon, 2021)

Census block groups in South Chicago. Undirected network, edge between block i and j is
set if locations share a border.



Multivariate Count Autoregressions



Integer Autoregressive Models

For a recent survey, see Fokianos (2022).

Multivariate Integer AR models:

Yt =
p

∑
j=1

Aj ◦ Yt−j + ϵt,

where ◦ denotes the thinning operation. Introduced by Latour (1997) (but see also
Franke and Rao (1995)). Some properties of this model have been recently discussed
by Pedeli and Karlis (2013a,b) and Karlis (2016).

Estimation by LSE or MLE (but computationally demanding).



Parameter Driven Models

▶ The observed process is driven by an unobserved process.

▶ A state space model for multivariate longitudinal count data has been suggested
by Jørgensen et al. (1999).

▶ Jung et al. (2011) suggested a factor model for multivariate count time series.

▶ More recent contributions include Aktekin et al. (2018) (see also Gamerman
et al. (2013)) Berry and West (2020), Serhiyenko (2015), Ravishanker et al.
(2014), Ravishanker et al. (2015). The previous articles and the recent work of
Davis et al. (2021) give further references and list other approaches.



Observation Driven Models

Fokianos et al. (2020a) studied a broad class of observation-driven models whose
dynamics are driven by past observations plus noise. In particular their contribution is
the following:

▶ Study a class of linear and log-linear models for multivariate count time series

▶ Prove ergodicity and stationarity by employing Markov chain theory and weak
dependence approaches

▶ Suggest a class of estimating functions for QMLE inference and study the
properties of the estimators.

▶ Apply these results to real data.



Multivariate Modeling 1

Assume that {Yt = (Yi,t)} denotes a N�dimensional count time series and suppose
further that {λt = (λi,t)} is a corresponding p-dimensional intensity process, for
t = 1, 2, . . . , T.

Questions

▶ How can we describe the joint distribution of Yt given the past?

▶ Can we develop autoregressive models for count time series?

▶ Estimation

▶ Prediction
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Multivariate Modeling 2

The multivariate linear model is given by (see also Heinen and Rengifo (2007), Jung
et al. (2011), Liu (2012))

Yi,t | FY ,λ
t−1 ∼ independent Poisson(λi,t), i = 1, 2, . . . , N,

λt = d + Aλt−1 + BYt−1, (1)

where d, A and B are matrices with non-negative elements.

▶ The above speci�cation implies that Yi,t are marginally Poisson processes with
parameter λi,t, i = 1, 2, . . . , N.

▶ However, their joint distribution is not multivariate Poisson, as we explain next.

▶ In fact, our construction allows for dependence between Yi,t and Yj,t, for i ̸= j.
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Multivariate Modeling 3

Suppose that λ0 = (λ1,0, . . . , λN,0) is some starting value. Then:

▶ Generate Ul = (U1;l, . . . , UN;l) for l = 1, 2, . . . , K, from a copula C(u1, . . . , uN).
Then Ui;l, l = 1, 2, . . . , K follow marginally the uniform distribution on (0, 1),
i = 1, 2, . . . , N.

▶ Introduce the transformation

Xi,l = −
log Ui,l

λi,0
, i = 1, 2, . . . , N.

The marginal distribution of Xi,l, l = 1, 2, . . . , K is exponential with parameter
λi,0, i = 1, 2, . . . , N.

▶ If Xi,1 > 1, set Yi,0 = 0, otherwise

Yi,0 = max

{
K :

K

∑
l=1

Xi,l ≤ 1

}
, i = 1, 2, . . . , N.

Then Y0 = (Y1,0, . . . , YN,0) is marginally a Poisson process with parameter λ0.

▶ Use model (1) to obtain λ1.

▶ Back to step 1 to obtain Y1, and so on
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Multivariate Modeling 4

▶ Easy conceptual construction.

▶ Multivariate Poisson distribution available in the literature are hard to work with.

▶ Keeping the Poisson process property marginally.

▶ Copula is imposed on continuous random variables.

▶ Can be extended to other marginal count processes if they can be generated by
continuous inter arrival times (mixed Poisson processes).
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An example

Joint p.m.f of a bivariate count distribution using a Gaussian copula with correlation
coe�cient ρ. (a) ρ = 0 (independence) (b) ρ = 0.8 (positive correlation) (c) ρ = −0.8
(negative correlation). Plots are based on 10000 independent observations where the
marginals are Poisson with λ1 = 3 and λ2 = 10. (d) Joint p.m.f of negative multinomial
distribution.
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Multivariate Modeling 5

Consider the case of p = 2. Then the second equation of (1) becomes

λ1,t = d1 + a11λ1,t−1 + a12λ2,t−1 + b11Y1,t−1 + b12Y2,t−1,

λ2,t = d2 + a21λ1,t−1 + a22λ2,t−1 + b21Y1,t−1 + b22Y2,t−1,

where di is the ith element of d and aij (bij, respectively) is the (i, j)th element of A
(B, respectively).

1. When a12 = b12 = 0, then λ1t depends only on its own past. If this is not true,
then the parameters denote the linear dependence of λ1t on λ2,t−1 and Y2,t−1 in
the presence of λ1,t−1 and Y1,t−1.

2. Similar results hold when a21 = b21 = 0.
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Multivariate Modeling 6

Similarly, we can de�ne a log-linear model (Fokianos and Tjøstheim (2011)) for
multivariate count time series:

Yi,t | FY ,λ
t ∼ marginally Poisson(λi,t), νt = d + Aνt−1 + B log(Yt−1 + 1p), (2)

where νt ≡ log λt is de�ned componentwise (i.e. νi,t = log λi,t) and 1p denotes the
p�dimensional vector which consists of ones.
A log-linear model enjoys the following properties:

1. Modeling is done on the logarithmic scale (more suitable for count data).

2. Parameters are allowed to get negative values.

3. Encompasses both positive and negative correlation.

4. Covariates can be included.

5. Interpretation of the parameters as in the case of linear model.
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Network Autoregression



What is a network time series?

Network N nodes, index i = 1, . . . N ⇐⇒ adjacency matrix A = (aij) ∈ RN×N

aij = 1, if i → j (e.g. user i follows j),
aij = 0, otherwise

Undirected graphs are allowed (i ↔ j), A = AT.

A nonrandom : reasonable for various applications (e.g. social networks, space
points, transportation).

Let Yt = (Yi,t, i = 1, 2 . . . N, t = 1, 2 . . . , T) ∈ RN. High-dimensional

Network time series: Mult. t.s. + Network structure

Target: Assess the network e�ect on Yt over time.

Model Yt by vector autoregressive model (VAR) ⇒ parameters O(N2) ≫ T.



Network Autoregression

Network autoregression, NAR(1), (Zhu et al., 2017):

Yi,t = β0 + β1n−1
i

N

∑
j=1

aijYj,t−1 + β2Yi,t−1 + εi,t , εi,t ∼ IID(0, σ) ∀i, t

ni = ∑N
j=1 aij out-degree.

β1 network e�ect: average impact of node i's connections ∑N
j=1 wijYj,t−1

β2 autoregressive e�ect: impact of past Yi,t−1

wij = aij/ni for j = 1, . . . , N weights

∑N
j=1 wij = 1, for i = 1, . . . , N.

Main limits:

▶ Only for continuous variables.

▶ Relies on IID assumption

▶ OLS



Results for linear models

{Yt} multiv. count time series, λt = E(Yt|Ft−1) ∈ RN
+ , Ft = σ(Ys, s ≤ t).

Poisson Network Autoregression, PNAR(1):

Yi,t|Ft−1 ∼ Pois(λi,t) , λi,t = β0 + β1n−1
i

N

∑
j=1

aijYj,t−1 + β2Yi,t−1 (3)

Non IID errors, ξi,t = Yi,t − λi,t, Martingale di�. (MDS)

Yt = Nt(λt), λt = β0 + GYt−1 (4)

G = β1W + β2IN , W = diag
{

n−1
1 , . . . , n−1

N

}
A

W nonrandom matrix carrying network information.

{Nt} is a sequence of N-variate copula-Poisson processes.



Stability Results

PNAR(p):

λi,t = β0 +
p

∑
h=1

β1h

n−1
i

N

∑
j=1

aijYj,t−h

+
p

∑
h=1

β2hYi,t−h ,

where β0, β1h, β2h ≥ 0 for all h = 1 . . . , p. If p = 1, β11 = β1, β22 = β2 to obtain (3).

Yt = Nt(λt), λt = β0 +
p

∑
h=1

GhYt−h , (5)

where Gh = β1hW + β2hIN, for h = 1, . . . , p.

Proposition 1

Consider model (5). Suppose that ∑
p
h=1(β1h + β2h) < 1. Then the process

{Yt, t ∈ Z} is stationary, ergodic and max1≤i≤N E
∣∣Yi,t

∣∣r < Cr < ∞, ∀r ≥ 1. (even
when N → ∞)

Note: similarly to Multiv. ARMA models, stability conditions independent of the
correlations in the innovation.



Nonlinear Network Autoregression

{Yt} multiv. count time series, λt = E(Yt|Ft−1) ∈ RN
+, Ft = σ(Ys, s ≤ t).

Nonlinear Poisson Network Autoregression

Yt = Nt(λt), λt = f (Yt−1, W, θ(1), θ(2)) (6)

W = diag
{

n−1
1 , . . . , n−1

N

}
A carrying network information.

ni = ∑N
j=1 aij out-degree

f (·) satis�es suitable smoothness conditions

▶ θ(1) m1 × 1 vector of linear model parameters.

▶ θ(2) m2 × 1 vector of nonlinear parameters.

{Nt} is a sequence of N-variate copula-Poisson processes. (Fokianos et al., 2020b)



Nonlinear Models

Why linear models?

▶ Evidence of signi�cant usefulness of nonlinear model (e.g. modelling
economic/�nancial time series, existence of di�erent states of the world or
regimes (Zivot and Wang, 2006, Ch. 18))

▶ Government agencies, research institutes and central banks may typically employ
nonlinear models (Teräsvirta et al., 2010, p. 16).

▶ In social network analysis nonlinear behaviors are often encountered; e.g.
�superstars" with huge number of followers having an exponentially higher
impact on other users' behavior with respect to the �standard" user (Zhu et al.,
2017).



Nonlinear model examples

▶ Intercept drift NAR (ID-NAR), γ ≥ 0, linearity γ = 0

λi,t =
β0

(1 + Xi,t−1)γ
+ β1Xi,t−1 + β2Yi,t−1 ,

▶ Smooth Transition NAR (ST-NAR), γ ≥ 0 smoothing par., lin. α = 0

λi,t = β0 + (β1 + α exp(−γX2
i,t−1))Xi,t−1 + β2Yi,t−1 ,

▶ Threshold NAR (T-NAR), lin. α0 = α1 = α2 = 0

λi,t = β0 + β1Xi,t−1 + β2Yi,t−1 + (α0 + α1Xi,t−1 + α2Yi,t−1)I(Xi,t−1 ≤ γ) ,

I(·) indicator function, γ is the threshold par.

Many other models fall within this framework; see Teräsvirta et al. (2010).



Stability condition

De�ne f (·, W, θ) = f (·).

(I) Set F = µ1W + µ2IN, µ1, µ2 ≥ 0 and

|f (y)− f (y∗)|vec ⪯ F |y − y∗|vec ,

Theorem 1
Consider model (6). Suppose (I) holds with µ1 + µ2 < 1. Then, when N → ∞,
there exists a unique strictly stationary solution {Yt ∈ NN , t ∈ Z} to the
Nonlinear Poisson NAR model. Moreover, max1≤i<∞ E

∣∣Yi,t
∣∣r ≤ Cr < ∞, ∀r ≥ 1.

Def. stationarity with increasing dimension (Zhu et al., 2017).

▶ NAR: β1 + β2 < 1
▶ ID-NAR: max {β1, β0γ − β1}+ β2 < 1
▶ ST-NAR: β1 + β2 + α < 1
▶ ...



Log-linear model

Log-linear PNAR(p):

Yi,t|Ft−1 ∼ Poisson(exp(νi,t)),

νi,t = β0 +
p

∑
h=1

β1h

n−1
i

N

∑
j=1

aij log(1 + Yj,t−h)

+
p

∑
h=1

β2h log(1 + Yi,t−h) ,

where νi,t = log(λi,t) for every i = 1, . . . , N.

▶ Better link to the GLM theory (McCullagh and Nelder, 1989).

▶ Allows covariates and coe�cients in R.

Analogous results established.



Quasi maximum likelihood inference

For parameters θ ∈ Θ ⊂ Rm
+, quasi log-likelihood:

lNT(θ) =
T

∑
t=1

N

∑
i=1

(
Yi,t log λi,t(θ)− λi,t(θ)

)
(7)

Copula structure C(. . . , ρ) not included. (7) allows inference.

SNT(θ) =
∂lNT(θ0)

∂θ
=

T

∑
t=1

sNt(θ) ,

HN = E
[
− ∂2lNT(θ0)

∂θ∂θ′

]
, BN = E

[
sNt(θ0)s′Nt(θ0)

]

▶ N can be large in applications =⇒ Interest in the asymptotics with N → ∞.



Main result

Theorem 2
Under mild assumptions as {N, TN} → ∞, the equation SNT(θ) = 0m has a

unique solution, θ̂, s.t. θ̂
p−→ θ0 and

√
NT(θ̂− θ0)

d−→ N(0, H−1BH−1).

where {N, TN} → ∞ is shorthand for N → ∞ and TN → ∞.

▶ Result holds for all models

▶ Assumptions depend on network structure

▶ Assumption guarantee existence of Hessian and information matrices.



Why testing for linearity?

1. (Evidence) Provide evidence to the researcher.

2. (Model selection) Theory might give indication of nonlinearity, but no clue on
the type of nonlinearity. Linearity tests give guidance.

3. (Consistent inference) Nonlinear models nesting the linear model su�er from
identi�ability issues, when the �true" model is linear but instead a nonlinear
model is estimated. Inference will be inconsistent. (link)

4. (Practical usefulness) In practice, testing linearity convenient before attempting
estimation of complex nonlinear models.

5. (General inspection) Not only to provide alternative speci�cations but can be
used as a general tool; e.g. for detecting latent variables, change point testing,
checking adequacy of Box-Cox transformations, etc.

�Thus linearity testing has to precede any nonlinear modelling and estimation"
(Teräsvirta et al., 2010, Sec. 5.1,5.5).



Testing linearity

H0 : θ(2) = θ
(2)
0 vs. H1 : θ(2) ̸= θ

(2)
0 , componentwise .

where under H0, the linear NAR model is restored. SNT(θ) =
(

S(1)
NT(θ), S(2)

NT(θ)
)′

Quasi-score test statistic:

LMNT = S(2)′
NT (θ̂)ΣNT(θ̂)

−1S(2)
NT(θ̂) ,

where ΣNT(θ̂) suitable estimator for covariance matrix Σ = Var[S(2)
NT(θ̂)].



Two cases

▶ Identi�able parameters:

LMNT
d−→ χ2

k

▶ Non-identi�able parameters
▶ SNT(γ), LMNT(γ) depend on γ =⇒ Standard theory not applicable. (Davies,

1987)

▶ SNT(γ) ⇒ S(γ) and LMNT(γ) ⇒ LM(γ) where

LM(γ) = S(2)′(γ)Σ−1(γ, γ)S(2)(γ) .

is a chi-square process.

▶ In general, asymptotic distribution of g(LM(γ)) cannot be tabulated.



Implementation of p-values

Bound for p-values (Davies, 1987)

P

[
sup
γ∈ΓF

(LM(γ)) ≥ M

]
≤ P(χ2

k ≥ M) + VM
1
2 (k−1) exp(−M

2 )2−
k
2

Γ( k
2 )

, (8)

where M is the maximum of the test statistic LMNT(γ), computed by the available
sample and ΓF = (γL, γ1, . . . , γl, γU) is a grid of values for Γ = [γL, γU]. V is the
approximated total variation

V =

∣∣∣∣LM
1
2
NT(γ1)− LM

1
2
NT(γL)

∣∣∣∣+ · · ·+
∣∣∣∣LM

1
2
NT(γU)− LM

1
2
NT(γl)

∣∣∣∣
1. Simple and fast.

2. Only a bound =⇒ conservative test.

3. Only for scalar γ.

4. Requires di�erentiability of LM(γ) w.r.t. γ (Threshold NAR)



Bootstrap on stochastic permutations (Hansen, 1996)

▶
{

νt,b : t = 1, . . . , T
}
∼ N(0, 1) for b = 1, . . . , B

▶ Sb
NT(γ) = ∑T

t=1 sNt(θ̂, γ)× νt,b

▶ LMb
NT(γ) and gb

NT = supγ∈Γ LMb
NT(γ)

▶ pB
NT = B−1 ∑B

b=1 I(gb
NT ≥ gNT)

Does not su�er from 2-4 but time consuming when N is large.



Application

Monthly number of burglaries on the south side of Chicago from 2010-2015. Counts
registered for N = 552 blocks. (Clark and Dixon, 2021)

Figure 1: Census block groups in South Chicago.

Undirected network, edge between block i and j is set if locations share (at least) a
border.



Table 1: Estimation results for Chicago crime data.

Linear PNAR(1) Log-linear PNAR(1)

Estimate SE (×102) p-value Estimate SE (×102) p-value
β0 0.4551 2.1607 <0.01 -0.5158 3.8461 <0.01
β1 0.3215 1.2544 <0.01 0.4963 2.8952 <0.01
β2 0.2836 0.8224 <0.01 0.5027 1.2105 <0.01

Linear PNAR(2) Log-linear PNAR(2)

Estimate SE (×102) p-value Estimate SE (×102) p-value
β0 0.3209 1.8931 <0.01 -0.5059 4.7605 <0.01
β11 0.2076 1.1742 <0.01 0.2384 3.4711 <0.01
β21 0.2287 0.7408 <0.01 0.3906 1.2892 <0.01
β12 0.1191 1.4712 <0.01 0.0969 3.3404 <0.01
β22 0.1626 0.7654 <0.01 0.2731 1.2465 <0.01

Table 2: Information criteria for Chicago crime data. Smaller values in bold.

AIC×10−3 BIC×10−3 QIC×10−3

linear log-linear linear log-linear linear log-linear
PNAR(1) 115.06 115.37 115.07 115.38 115.11 115.44
PNAR(2) 111.70 112.58 111.72 112.60 111.76 112.68



Table 3: Chicago burglaries counts. Linearity is tested against:
ID-NAR model, with χ2

1 asymptotic test;

ST-NAR model, p-values computed by (DV) Davies bound (8), bootstrap sup test (pB
NT);

T-NAR model (only bootstrap). Boot. replications J = 499.

Models χ2
1 DV pB

NT
ID-NAR 0.005 - -
ST-NAR - 0.01 0.90
T-NAR - - 0.77

Conclude for nonlinear shift in intercept but no clear evidence of regime switching.



Conclusion

▶ New useful models allowing to measure impact of networks on multivariate time
series of counts.

▶ Non IID errors ξt.

▶ Minimal stationarity conditions.

▶ QMLE with standard and double asymptotics N → ∞, T → ∞.



Further developments

▶ Problem of unknown network =⇒ Challenging extension adjacency matrix W
stochastic.

▶ Overdispersion, heavy tails, zero in�ation.

▶ More suitable estimation tools (GEE).

▶ Time-varying networks

▶ ...

▶ Suggestions are welcome!



▶ M. Armillotta and K. Fokianos: �Poisson Network Autoregression", 2024, to
appear in Journal of Time Series Analysis

Available at https://arxiv.org/pdf/2104.06296.pdf

▶ M. Armillotta and K. Fokianos: �Nonlinear Network Autoregression", 2023,
Annals of Statistics

Available at https://arxiv.org/pdf/2202.03852.pdf

▶ M. Tsagris, M. Armillotta, K. Fokianos. R Package `PNAR', 2024 to appear in
R-Journal ,

https://cran.r-project.org/web/packages/PNAR/index.html

https://arxiv.org/pdf/2104.06296.pdf
https://arxiv.org/pdf/2202.03852.pdf
https://cran.r-project.org/web/packages/PNAR/index.html


Retirement may be an ending, a closing, but it is also a new beginning!!

Figure 2: RATS 2012�Protaras, Cyprus
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