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Raster Data Cube

socio-economic or
demographic data,
environmental data
time series of satellite
images.
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Introduction MMAF-guided learning Test on simulated data sets

Theory-guided machine learning

1 We define a model underlying the data, i.e., a random field
Z = (Z t(x))(t ,x)∈R×R2 (for which we have no access to its
predictive distribution, i.e. LZ t0 (x0)|Z t1 (x1),...,Z tn (xn));

2 We employ properties of the underlying model to design a
generalized Bayesian algorithm.
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Underlying model

Causal Model for serially correlated spatio-temporal data

Figure: Past and
future light cone

Figure: At(x) is called an Ambit set
(Barndorff-Nielsen et al. (2018)). Our
methodology enables forecasts just in
the space-time region At(x)+.
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Underlying model

Influenced Mixed Moving average field defined on a cone

For a constant c > 0, let

At(x) = {(s, ξ) ∈ R× R2 : s ≤ t , ∥x − ξ∥ ≤ c|t − s|}.

Then, the random field

Z t(x) =
∫
R

∫
At (x)

f (A, x − ξ, t − s) Λ(dA,dξ,ds), (t , x) ∈ R×R2

is called an influenced MMAF.

f is a deterministic function called kernel and Λ is a Lévy
basis.
A is a random parameter and its presence in the kernel
function makes it possible to obtain short and long range
dependence in space and time, see Nguyen and Veraart
(2018).
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Underlying model

Spatio-temporal Ornstein Uhlenbeck fields

Examples of MMAFs, are the STOU process

Z t(x) =
∫

At (x)
exp(−λ(t − s)) Λ(ds,dξ), (t , x) ∈ R× R2

and its mixed version called MSTOU process

Z t(x) =
∫ ∞

0

∫
At (x)

exp(−λ(t−s)) Λ(dλ,ds,dξ), (t , x) ∈ R×R2.

where λ is a random variable, typically described by a
parametric distribution function.
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Underlying model

Further Properties of MMAFs

Influenced Mixed moving average fields are:
strictly stationary: i.e., for any n ∈ N, τ, i1, . . . , in ∈ R× R2,

(Zi1+τ ,Zi2+τ , . . . ,Zin+τ )
d
= (Zi1 , . . . ,Zin);

and θ-lex weakly dependent.
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Underlying model

Asymptotic independence notions

Strong Mixing, see Bradley (2007);
Association, see Bulinskii and Shashkin (2007);
Weak Dependence, see Dedecker et al. (2007).

θ-lex weak dependence is a novel dependence notion
introduced in C., Stelzer and Ströh (2022) which extend to
random fields the notion of θ-weak dependence introduced
in Dedecker and Doukhan, "A new covariance inequality
and applications", Stoch. Proc. Appl. (2003).
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Underlying model

Lexicographic order

For distinct elements
y = (y1, y2, y3), z = (z1, z2, z3) ∈ R× R2 we say y <lex z if
and only if y1 < z1 or yp < zp for some p ∈ {2,3} and
yq = zq for q = 1, . . . ,p − 1.
Let j ∈ R× R2 and r > 0, we define

V r
j = {s ∈ R× R2 : s <lex j and ∥j − s∥∞ ≥ r}.
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Underlying model

θ-lex weak dependence

A random field Z t(x) is θ-lex-weakly dependent if

θlex(r) = sup
u∈N

θu(r) −→
r→∞

0,

where

θu(r) = sup

{
|Cov(F (ZΓ),G(Z j))|

∥F∥∞Lip(G)
, j ∈ R× R2, Γ ⊂ V r

j , |Γ| = u
}
,

where F is a bounded function and G is a bounded and
Lipschitz function. Moreover, Γ = {i1, . . . , iu}, and
ZΓ = (Z i1 , . . . ,Z iu).
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Underlying model

θ-lex weak dependence (C., Stelzer and Ströh (2022))

If the field Z admit finite moments q > 1, then it is a more
general notion of dependence than

α∞,∞-mixing defined for random fields,

and α-mixing as defined for stochastic processes.

We will use the definition of ambit set and the θ-lex weak
dependence of the underlying model to design our
predictive algorithm.
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Training a Lipschitz predictor

Data decomposition

Figure: Raster Data Cube: observe data Z̃t(x) = µt(x) + Zt(x)

.
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Training a Lipschitz predictor

Spatio-temporal embedding of N-frames

We aim to make one-time ahead ensemble forecast in a given spatial position
x∗ (supervised learning task), represented with a red pixel in the below
picture.

Figure: Exemplary training data set S = {(Xi ,Yi)
⊤}m

i=1 for ht = 1,
c =

√
2,pt = 2,at = 3, k = 1. Xi = L−

p (t0 + ia, x∗) (green pixels), with
dimension a(p, c) = 34 and Yi = Zt(x∗) (red pixel).
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Training a Lipschitz predictor

Discretized Ambit Set I(t , x∗)

We define

Xi = L−
p (t0 + ia, x∗), and Yi = Zt0+ia(x∗) for i = 1, . . . ,m,

where

L−
p (t , x∗) = (Zi1(ξ1), . . . ,Zia(p,c)(ξa(p,c)))

⊤, and (is, ξs) ∈ I(t , x∗)
for s = 1, . . . ,a(p, c) and t = t0 + ia with i = 1, . . . ,m.

We have that

I(t , x∗) := {(is, ξs) : ∥x∗ − ξs∥ ≤ c (t − is) for 0 < t − is ≤ p,
and (is, ξs) <lex (is+1, ξs+1)},

for t = t0 + ia.

The cone-geometry allows us to give a causal interpretation of
the one-time ahead ensemble forecast.

Moreover, ((X i1 ,Y i1), . . . , (X iu ,Y iu )) and (X j ,Y j) for
u ∈ N, i1, . . . iu, j ∈ Z and i1 ≤ . . . ≤ iu ≤ j are lexicographically
ordered marginals of the field Z .
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Training a Lipschitz predictor

Theory-guided machine learning

1 We use an MMAF as the model underlying the data,

2 We employ the definition of ambit set and the asymptotic
independence of the field to define a spatio-temporal
embedding of the data,

3 The latter is chosen in relation to the forecasting task we
have in mind to perform.

4 S is a realization from the identically distributed random
variables {(X i ,Y i)

⊤}m
i=1 which are jointly P-distributed and

θ-weakly dependent.
Next, we use the training data set S in a supervised
learning task.
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Training a Lipschitz predictor

Loss functions and hypothesis space

H is the space of the Lipschitz functions: e.g., linear functions,
feed-forward neural networks.

Let (X ,Y )⊤ an input-output vector, and L(h(X ),Y ) = |Y − h(X )|,
the loss function used in the learning problem is

Lϵ(h(X ),Y )) = L(h(X ),Y )) ∧ ϵ, ϵ > 0.

We define the generalization error as Rϵ(h) = E[Lϵ(h(X ),Y ))]

and the empirical error as r ϵ(h) =
1
m

m∑
i=1

Lϵ(h(Xi),Yi).
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Training a Lipschitz predictor

Parameters involved in MMAF-guided learning

Parameters Interpretation
ht discretization step Observed

a := atht translation vector Chosen by the user
k further shift parameter Chosen by the user

p := ptht past time horizon Hyperparameter

m :=
N
a

number of examples in S Oberved+Derived

c speed of information propagation Estimated
λ decay rate of the θ-lex coef. Estimated

a(p, c) dimension of input-feature space Derived
ϵ accuracy level Hyperparameter
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Training a Lipschitz predictor

Generalized Bayesian setting

Let π a probability measure on H that we call
generalized prior.
We aim to determine a conditional probability ρ̂, called
generalized posterior such that the average
generalization gap∫

H
Rϵ(h) ρ̂(h)−

∫
H

r ϵ(h) ρ̂(h)

is small with high probability.
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Training a Lipschitz predictor

Fixed-time PAC Bayesian bound

Theorem

Let S be a training data sets generated by an MMAF field, 0 < ϵ < 3,
l =

⌊m
k

⌋
and r = ka − p, π be a distribution on H such that π[Lip(h)] ≤ ∞.

Then, for any ρ̂ such that ρ̂ << π, and δ ∈ (0, 1)

P

{∣∣∣∣∣
∫
H

Rϵ(h) ρ̂(h)−
∫
H

r ϵ(h) ρ̂(h)

∣∣∣∣∣ ≤
+

(
KL(ρ̂||π) + log

(1
δ

)
+

3ϵ2

2(3 − ϵ)

) 1√
l

+
1√
l
log

(
π
[
1 + 2(Lip(h)a(p, c) + 1)3

√
l exp(3

√
l)θlex(r)

])}
≥ 1 − δ.
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Training a Lipschitz predictor

Choosing the parameters a, k in the right way!

Let λ being the decay rate of the θ-lex coefficients of the field Z ,
which we can estimate from the observed data,

at >
3
√

N + log(3
√

N) + λhtpt

khtλ
if Z admits exponentially

decaying θ-lex coef.

at >
exp(3

√
N/λ+ log(3

√
N)/λ) + htpt

kht
if Z admits power

decaying θ-lex coef.

then,
3
√

l exp(3
√

l)θlex(r) ≤ 1,

which gives us an idea on the order of magnitude of the addend in the
PAC Bayesian bound.

The fastest convergence rate that can be obtained in this
framework is O(m1/2) when choosing the parameter k = 1.
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Training a Lipschitz predictor

Any-time PAC Bayesian bound

Theorem

Let π be a distribution on H and S be a training data sets generated
by an MMAF field. If −θDecay

lex (k) > 2ϵ for ϵ > 0, then for any ρ̂ << π,
m > 0, and δ ∈ (0,1)

P

{∣∣∣∣∣
∫
H

Rϵ(h) ρ̂(h)−
∫
H

r ϵ(h) ρ̂(h)

∣∣∣∣∣ ≤ (
KL(ρ̂||π)+ log

(1
δ

)) 1√
m

− 1√
m
θDecay

lex (k)
}
≥ 1 − 2δ.
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Training a Lipschitz predictor

Details:

θDecay
lex (k) :=


log(exp(−λht(kat − pt)) if Z admits exponential decaying

θ-lex coef.
log((ht(kat − pt))

−λ) if Z admits power decaying
θ-lex coef.

represents the decay of the exponential or power function appearing in the
θlex(r) coefficient of the process Z for r = ka − p, where a, p > 0 and k ∈ N,
and 

at =
⌈ 2ϵ

kλht
+

pt

k

⌉
if Z admits exp. decaying θ-lex coef.

at =
⌈exp(2ϵ/λ)

kht
+

pt

k

⌉
if Z admits power decaying θ-lex coef.

The convergence rate of this bound is O(m1/2) and we obtain the
tightest version of the bound for k = 1.
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Training a Lipschitz predictor
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Training a Lipschitz predictor

Randomized Gibbs Estimator

Theorem (Oracle Anytime Bound)

Let π be a distribution on H such that ρ̄ << π and

d ρ̄
dπ

=
exp(−

√
mr ϵ(h))

π[exp(−
√

mr ϵ(h))]
.

If −θDecay
lex (1) > 2ϵ for ϵ > 0, then for any ρ̂ << π, m > 0, and

δ ∈ (0,1)

P
{∫

H
Rϵ(h) ρ̄(h) ≤ inf

ρ̂

(∫
H

Rϵ(h) ρ̂(h) +
(

KL(ρ̂||π)

+ log
(1
δ

)) 2√
m

)
− 2√

m
θDecay

lex (1)
}
≥ 1 − 2δ.
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Data generated from a Spatio-Temporal Ornstein Uhlenbeck
Process

Name Mean Reverting Parameter Lévy seed Random generator seed
GAU1 A = 1 Gaussian 1

GAU10 A = 4 Gaussian 10
NIG1 A = 1 NIG 1

NIG10 A = 4 NIG 10

Table: Overview on simulated data sets with N = 2000, c = 1 and
spatial dimension d = 1.
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Inference on STOU process

Let d = 1 and Z be an STOU. If
∫
|x|>1

x2 ν(dx) ≤ ∞,

γ +

∫
|x|>1

x ν(dx) = 0, then Z is θ-lex weakly dependent with

θlex(r) ≤
( c

A2 Var(Λ′) exp
(
− Amin(2, c)

c︸ ︷︷ ︸
2λ

r
)) 1

2

=
√

2Cov(Z 0(0),Z 0(r min(2, c))) := ᾱ exp(−λr)

where λ > 0 and ᾱ > 0.

We estimate the parameters A, c using the method of moments
and the parameter λ using a plug-in estimator, which ultimately
give us the right choice for the parameter at .
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Causal Forecast

0 1 2 3 4

1
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Figure: The x and y axes represent the time and spatial dimension,
respectively. We picture the last two frames of a data set with spatial
dimension d = 1 where the blue stars represent the pixels used in the
definition of the training data set, and the violet stars represent the
space-time points where it is possible to provide forecasts with MMAF
guided learning for pt = c = ht = 1. Note that the forecast in the
time-spatial position (4,3) lies in the intersection (red area) of the
future lightcones A2(5)+, A2(4)+ and A2(3)+ and represented with
green cones.
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Ensemble Forecast using linear predictors: p = 1, ϵ = 3
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Thank you very much
for your attention
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