
Viterbi path and training
with (Bayesian) HMM

Jüri Lember

University of Tartu, Estonia

17.09.2021

EM and MM algorithm

Let p(x , y |θ) be a latent variable model. Typically:

x = x1:n = (x1, . . . , xn) – observations, y = y1:n – latent variables, θ – parameters.

EM-algorithm (parameter, classic) (
∑

y when y discrete)

θ(i+1) = arg max
θ

[∑
y

ln p(y , x |θ)p(y |θ(i), x)
]
.

increases likelihood
p(x |θ(i+1)) ≥ p(x |θ(i)).

EM and MM algorithm

EM-algorithm (parameter, Bayes) π(θ) prior (density), so

p(x , y |θ)π(θ)

p(x)
= p(y , θ|x),

θ(i+1) = arg max
θ

[∑
y

ln p(y , θ|x)p(y |θ(i), x)
]

= arg max
θ

[∑
y

ln p(y , x |θ)p(y |θ(i), x) + lnπ(θ)
]
.

increases posterior
p(θ(i+1)|x) ≥ p(θ(i)|x).

EM and MM algorithm

MM-algorithm (classic)

Replace the weighted sum
∑

y ln p(y , x |θ)p(y |θ(i), x) by the element with maximal
weight.

y (i) = arg max
y

p(y , x |θ(i)) = arg max
y

p(y |θ(i), x)

θ(i+1) = arg max
θ

p(y (i), x |θ)

θ(i) → y (i) → θ(i+1) → y (i+1) → · · · (ŷ , θ̂)

increases joint likelihood

p(y (i+1), x |θ(i+1)) ≥ p(y (i), x |θ(i+1)) ≥ p(y (i), x |θ(i)).

EM and MM algorithm

MM-algorithm (Bayes)

y (i) = arg max
y

p(y , θ(i)|x) = arg max
y

p(y , x |θ(i)) = arg max
y

p(y |θ(i), x)

θ(i+1) = arg max
θ

p(y (i), θ|x) = arg max
θ

[
ln p(y (i), x |θ) + lnπ(θ)

]
increases joint posterior

p(y (i+1), θ(i+1)|x) ≥ p(y (i), θ(i+1)|x) ≥ p(y (i), θ(i)|x).

When the goal is parameter estimation, then θ̂ is taken as output.

HMM-like models

Mixture model: Y1, . . . ,Yn iid random variables with values Y = {0, . . . ,K − 1}, and
given Yt = k , the Rd -valued observation Xt is emitted independently of everything else
from distribution with density f (·|θk), k ∈ Y.

Hidden Markov model (HMM): the same, but Y1, . . . ,Yn is a (homogenuous)
Markov chain; mixture model is a special case.

Markov switching model: Y1, . . . ,Yn is a (homogenuous) Markov chain, but the
conditional distribution of Xt depends also on Xt−1 : Xt |Yt = k ,Xt−1 = xt−1 has
density f (·|θk , xt−1). Given Y1, . . . ,Yn the observations X1, . . . ,Xn are not
(conditionally) independent any more; HMM is a special case.

In all those models the parameters of Y , typically the transition matrix P and/or initial
probabilities – transition parameters; the parameters θi (i ∈ Y) – emission parameters.

HMM-like models

Pairwise Markov model (PMM): Z1, . . . ,Zn, with Zt = (Xt ,Yt) is a (homogenuous)
Markov chain with state space Rd × Y. Now Y -process might or might not be a
Markov chain. Markov switching models is a special case.

For PMM, all HMM tools: forward-backward algorithm, Viterbi algorithm,
EM-algorithm apply. Thus

v = arg max
y∈Yn

p(y |θ, x)

can be found via Viterbi algorithm and so the MM-algorithm for estimating θ is known
as Viterbi training. The output of Viterbi algorithm is called Viterbi path.

For mixture model, no Viterbi algorithm is needed, because given the probabilities
(p0, . . . , pK−1) and emission parameters θk , the Viterbi path is found pointwise

vt = arg max
k∈Y

pk f (xt |θk), k ∈ Y, t = 1, . . . , n.

MM-algorithm (Viterbi training) for HMMs

Input: Observations x = x1:n, initial probabilities π(y1);

Initialization: Initial transition matrix P(0) and emission parameters θ
(0)
k , k ∈ Y;

Iteration: Given P(i) and θ
(i)
k , k ∈ Y find Viterbi path (using Viterbi algorithm)

y (i) = arg max
y∈Yn

p(y |x ;P(i), θ
(i)
0 , . . . , θ

(i)
K−1).

Given Viterbi path y (i) re-estimate transition parameters simply by counts:

p
(i+1)
kl =

(] pairs (k , l) in Viterbi path)

(] states k in Viterbi path))
.

MM-algorithm (Viterbi training) for HMMs

For emission parameters estimates observe that Viterbi path splits observations into K
subsamples/empirical distributions

P
(i)
k,n(A) =

1

mk

n∑
t=1

IA(xt), mk =
∑
t

Ik(y
(i)
t), k ∈ Y, A ∈ B(Rd)

and then find MLE for every sub-sample separately:

θ
(i+1)
k = arg max

θk

∫
ln f (x |θk)P

(i)
k,n(dx), k ∈ Y.

Repeat until no change/stopping criterion

Output: Parameter estimates P̂, θ̂k , k ∈ Y (and corresponding Viterbi path ŷ).

MM-algorithm (Viterbi training) for PMMs

No separation between emission and transition parameters: p(x2, y2|x1, y1; θ).

Input: Observations x = x1:n, initial probabilities π(x1, y1);

Initialization: initial parameter(s) θ(0);

Iteration: Given θ(i) find Viterbi path (using Viterbi algorithm)

y (i) = arg max
y∈Yn

p(y |x ; θ(i)).

Given Viterbi path and observations find empirical distribution P
(i)
n , where

P
(i)
n

(
(A1×k)×(A2×l)

)
=

1

n − 1

n−1∑
t=1

IA1(xt)Ik(y
(i)
t)IA2(xt+1)Il(y

(i)
t+1), Ai ∈ B(Rd), k, l ∈ Y.

MM-algorithm (Viterbi training) for PMMs

Find MLE estimate

θ(i+1) = arg max
θ

[
lnπ(x1, y

(i)
1) +

n−1∑
t=1

ln p(xt+1, y
(i)
t+1|xt , y

(i)
t ; θ)

]
= arg max

θ

[
lnπ(x1, y

(i)
1) +

∫
ln p(x2, y2|x1, y1; θ)Pn(d(x1, y1, x2, y2))

]
.

Repeat until no change/stopping criterion

Output: Parameter estimates θ̂ (and corresponding Viterbi path ŷ).

NB! One can always start with a path instead of parameters.

A (toy) example of MM algorithm going very wrong

Hidden Bernoulli model: Mixture model, where Y1,Y2, . . . Bernoulli(p); p-unknown;
emission distributions normal with common σ (known), means µ0 and µ1 (known), i.e.
Xt |Yt = k ∼ N (µk , σ

2).

Simulations: Take σ = 0.8, µ0 = 0 and µ1 = 1 (Gaussian noise is added to Bernoulli
outputs). Generate samples (say n ≥ 100) and taking p(0) = p (starting with true
value), one sees that MM-estimate is typically either 0 or 1 – extremely wrong
estimate!

A (toy) example of MM algorithm going very wrong

Theoretical explanation: In this model finding Viterbi path v means comparing xt
with threshold

s(p, µ1, µ2) =
µ1 + µ0

2
− σ2

µ1 − µ0
ln

p

1− p
, vt = 1⇔ xt > s.

With true parameters p, µ0 < µ1 as initial values and calculate p(1), µ
(1)
0 , µ

(1)
1 . With

s = s(p, µ0, µ1), we get

p
(1)
n =

m1

n
, m1 =

n∑
t=1

I1(vt) =
n∑

t=1

I[s,∞)(xt) proportion of ones in Viterbi pathv

µ
(1)
1,n =

1

m1

n∑
t=1

xt I1(vt) =

∫
xP

(1)
1,n(dx), µ

(1)
0,n =

1

n −m1

n∑
t=1

xt I0(vt) =

∫
xP

(1)
0,n(dx).

A (toy) example of MM algorithm going very wrong

When n→∞, then by SLLN (here X has true mixture distribution), a.s.

p
(1)
n → p(1) := P(X1 > s), µ

(1)
0,n → µ

(1)
0 := E [X |X ≤ s], µ

(1)
1,n → µ

(1)
1 := E [X |X > s]

Moreover the empirical measures converge

P
(1)
0,n ⇒ Q0 = P(X1 ∈ ·|X1 < s), P

(1)
1,n ⇒ Q1 = P(X1 ∈ ·|X1 > s), a.s..

Obviously the measures Qi are very far from normal as the following picture shows.

−1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

x

f(x
)

−3 −2 −1 0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

f(x
)

Figure: Mixture distributions (left σ = 0.4, p = 0.2, right σ = 0.8, p = 0.4). The dotted line is
s. The area under black curve right of s is p(1).
The measures Q0 and Q1 correspond to the truncated black curve. Corresponding means:

µ
(1)
0 = −0.0017, µ

(1)
1 = 1.12 (small σ); right: µ

(1)
0 = −0.14, µ

(1)
1 = 1.4.

A (toy) example of MM algorithm going very wrong

It turns out that when p < 0.5, then p(1) < p. This means p(1) < p and then
s(p(1)) > s(p) so that

p(2) = P(Xt > s(p(1))) < p(1)

and so the ”MM iterations” are monotonically decreasing

0.5 > p > p(1) > p(2) > p(3) > · · ·

Whether the limit is 0 or not depends on σ as the following picture shows.

A (toy) example of MM algorithm going very wrong

0.0 0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

sigma

p̂

Figure: the final estimate p̂ for different σ and p = 0.1, 0.2, 0.3, 0.4

For σ = 0.8 (used for simulations) it is 0. So the MM-estimate p̂ is very wrong
even when one starts with true parameter p and sample size n is arbitrary large!

Lack of asymptotic fixed point property

We saw E (X |X > s) = p(1) < p (when p < 0.5). So, one start with true parameter, n
is infinitely big, yet the algorithm returns something else. The same holds, when one
estimates µ0 and µ1. Indeed, (assuming p is known and n =∞) taking the initial
values as true parameters, the algorithm returns

µ
(1)
0 = E [X |X ≤ s] =

∫
xQ0(dx), µ

(1)
1 = E [X |X > s] =

∫
xQ1(dx)

and since Qi is not equal to emission distributions (normal in our example), then also

µ
(1)
i 6= µi . In our simple example, it is often so that

µ
(1)
1 > µ1, µ

(1)
0 < µ0.

We see that the MM-algorithm lacks asymptotic fixed point property – starting with
true parameters and having n arbitrarily large, the algorithm returns something else.

More general models
For mixture model, from SLLN it follows that the first iteration estimates based on
Viterbi path v converge and the limits are (in general) different from true parameters,

even when Viterbi path is found by using them. In particular P
(1)
k,n ⇒ Qk , a.s.. Do the

same convergence hold for general model?

For HMM’s and more general models not trivial to show. Recall :

Observations x1, . . . , x10. Subsamples based on Viterbi alignment (K = 2)

X : x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

−−−−−−−−−−−−−−−−−−−−−−
Viterbi : 0 1 1 0 1 0 1 1 1 0

The subsamples (empirical measures) are

x1 x4 x6 x10 P0,10 and x2 x3 x5 x7 x8 x9 P1,10

More general models

(Except the mixture model) Viterbi path is global: adding one more observation xn+1
can change the whole path and influence heavily the measures:

X : x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

−−−−−−−−−−−−−−−−−−−−−−
Viterbi : 0 1 1 0 1 0 1 1 1 0

X : x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

−−−−−−−−−−−−−−−−−−−−−−
Viterbi : 0 0 0 0 1 1 1 1 0 0 0

What about asymptotics in this case?

More general models: the Viterbi process

It can be show that under rather general conditions, the Viterbi path oh HMM
stabilizes, and there exists so-called infinite Viterbi path that can be considered as a
Viterbi decoding of x1, x2, Since X = X1,X2, . . . is a random process, the the
infinite Viterbi path/decoding forms a random process called Viterbi process
V = V1,V2

Moreover, one can show that the 2-dim process (X ,V) is regenerative. This implies

the existence of limit proportions p
(1)
kl so that

p
(1)
kl ,n =

∑n−1
t=1 Ik(Vt)Il(Vt+1)∑n−1

t=1 Ik(Vt)
→ p

(1)
kl , a.s

and the existence of limit measures Qk so that

P
(1)
k,n ⇒ Qk , a.s, ∀k ∈ Y.

More general models: the Viterbi process

Then also (under general conditions)

θ
(1)
k,n = arg max

θk

∫
ln f (x |θk)P

(i)
k,n(dx)→ θ

(1)
k , a.s,

where

θ
(1)
k := arg max

θk

∫
ln f (x |θk)Qk(dx), ∀k ∈ Y.

In general, the matrix P(1) = (p
(1)
kl) 6= P and θ

(1)
k 6= θ∗k – no asymptotic fixed point

property!

For (a large class) of HMM’s this was proven in (Kolydenko, L., 2008, 2010).

More general models: the Viterbi process

Recently the existence and (almost) regenerativity of Viterbi process were proven for (a
large class of PMM’s) in (Sova, L., 2020, 2021). For PMM’s we speak about the

measure P
(1)
n (empirical distribution of pairs (Z1,Z2)); it holds P

(1)
n ⇒ Q, a.s.,

implying that

θ
(1)
n = arg max

θ

∫
ln p(x2, y2|x1, y1; θ)Pn(d(x1, y1, x2, y2))→ θ(1),

where

θ(1) = arg max
θ

∫
ln p(x2, y2|x1, y1; θ)Q(d(x1, y1, x2, y2))

and, again, θ(1) 6= θ∗ – no asymptotic fixed point property!

Under general conditions EM-algorithm has asymptotic fixed point property!

Adjusted Viterbi training
Why MM-algorithm (Viterbi training)? Faster (bigger steps), cheaper
(computationally), easier (to implement).

We saw that in general (θ∗ true, θ(1) output of 1-st iteration θ(0) = θ∗ for n =∞)

∆(θ∗) := θ∗ − θ(1) 6= 0

Suppose θ → ∆(θ) is known. Then there is an easy way to get fixed point property:

Adjusted Viterbi training (AVT): Given θ(i) find Viterbi path and MM estimates as

previously, let that be θ
(i+1)
MM . Take

θ(i+1) = θ
(i+1)
MM + ∆(θ

(i+1)
MM).

AVT has asymptotic fixed point property.

Simulations: more correct (comparable to EM), still fast and cheap.
Problem: ∆(θ) is not known analytically (we only known it exists) except mixtures.

Segmentation with Bayes

HMM in Bayesian setup – transition matrix P has prior πtr (P) and emission parameters
have priors πem(θ) = πem(θ0) · · ·πem(θK−1), transition and emission priors
independent. Transition priorπtr models every row independently with Dirichlet priors –
typical choice. Thus

(pl ,0, . . . , pl ,K−1) ∼ Dir(αl ,0, . . . , αl ,K−1), ∀l .

A special case αl ,k = 1 – uniform: uninformative prior, every matrix is alike.

Hence – a new model (X ,Y) with law p(x , y), where for paths x = x1:n and y = y1:n

p(x , y) = p(y)p(x |y), p(y) =

∫
p(y |P)πtr (dP), p(x |y) =

∫
p(x |y , θ)πem(dθ).

Segmentation with Bayes

The new model is very far from HMM:

1) Y is not a Markov chain any more

2) Given Y , the observations X1, . . . ,Xn are not (conditionally) independent any more.

Most sadly, (X ,Y) is not a PMM.

We aim to find MAP (maximum a posteriori or Viterbi) path

v = arg max
y

p(y , x) = arg max
y

p(y |x)

but Viterbi algorithm does not apply any more – no Markov property!

Segmentation with Bayes: how to find Viterbi/MAP path?

* Simulated annealing (expensive)

* Parameters first: find θ̂ and P̂ by Bayesian EM (posterior mode) and then apply
Viterbi algorithm with these parameters.

* Variational Bayes algorithm (close to the previous one);

* Segmentation EM – just Bayesian EM algorithm with roles changed: (denoting all
parameters with θ): given y (i) update

y (i+1) = arg max
y

∫
ln p(y , θ|x)p(θ|y (i), x)dθ = arg max

y

∫
ln p(y , x |θ)p(θ|y (i), x)dθ.

It holds: p(y (i+1)|x) ≥ p(y (i)|x).

Segmentation with Bayes: how to find Viterbi/MAP path?

In our model (Dirichlet) – segmentation EM is implementable! (given emission priors
are ”nice”).

* (Segmentation) MM – the same Bayesian MM, the output is path.

Comparison of the algorithms: (Gasbarra, Koloydenko, Kuljus, L. 2020, Koloydenko,
Kuljus, L. 2021). No wonder that segmentation EM outperforms most of the other
methods – it optimizes the right criterion. Syrprisingly MM performs equally well,
sometimes even better!

Explanation why (segmentation) MM algorithm performs as well as
(segmentation) EM algorithm: toy model

Mixture model, with p ∼ Beta(α, α):

p ∼ Beta(α, α)

Y1, . . . ,Yn|p
i .i .d .∼ B(1, p)

Xi |Yi , p
ind∼ N (Yi , σ

2), i = 1, . . . , n.

The hidden process Y1,Y2, . . . is now Beta-Bernoulli process with the following law:

Let y = y1:n ∈ {0, 1} such that
∑n

i=1 yi = m (m ones), the probability of that
sequence is

p(y1:n) :=
α(α + 1) · · · (α + m − 1) · α(α + 1) · · · (α + n −m − 1)

(2α)(2α + 1) · · · (2α + n − 1)

Hidden Beta-Bernoulli model

When α ≥ 1 is an integer, then

p(y1:n) =
(α + m − 1)!

(α− 1)!

(α + n −m − 1)!

(α− 1)!

(2α− 1)!

(2α + n − 1)!
=

(2α−2
α−1

)
(2α− 1)(2α+n−2

α+m−1
)
(2α + n − 1)

and when α = 1 (uniform prior), it simplifies

p(y1:n) =
1(n

m

)
(n + 1)

.

The model is now hidden Beta-Bernoulli model: with x = x1:n and y = y1:n, it holds

p(x , y) = p(y)p(x |y) = p(y1:n)
n∏

t=1

f (xt |yt),

where f (xt |yt) is Gaussian density with mean yt evaluated at xt .

Segmentation EM for hidden Beta-Bernoulli model
Input: Start with a sequence y (0) (or the number of ones m(0));

Iteration: Given sequence y (i) define

u
(j)
1 := exp[ψ(α + m(j))− ψ(n + 2α)], u

(i)
0 := exp[ψ(α + n −m(i))− ψ(n + 2α)],

where m(i) =
∑

t y
(i)
t (number of ones in y (i)) and ψ is digamma function.

Find the sequence y (i+1) as follows (can be done pointwise)

y (j+1) = arg max
y∈Yn

[n∑
t=1

ln f (xt |yt) + ln q(i)(y)
]
,

where
q(i)(y) =

(
u
(i)
1

)∑
t yt
(
u
(i)
0

)n−∑t yt .

Output: Proceed until y (i) = y (i+1), output is the sequence y (i+1).

About digamma

If X ∼ B(α, β), then E (lnX) = ψ(α)− ψ(α + β), where

ψ(x) =
Γ′(x)

Γ(x)
.

For even moderate n, ψ(n) ≈ ln(n − 0.5). Then, if α� n

u
(j)
1 ≈

m(j) + α− 0.5

n + 2α− 0.5
, u

(j)
0 ≈

n −m(j) + α− 0.5

n + 2α− 0.5
.

We see that (for big n)

u
(j)
1 ≈

m(j)

n
proportion of ones in y (j), u

(j)
0 ≈

n −m(j)

n
proportion of zeros in y (j).

So the algorithm is close to MM algorithm.

(Segmentation) MM for hidden Beta-Bernoulli model
Input: Start with a sequence y (0) (or the number of ones m(0));

Iteration: Given sequence y (i) define

p(i) =
m(i)

n
proportion of ones in y (i)

(m(i) =
∑

t y
(i)
t is the number of ones in y (i)).

Find the sequence y (i+1) as follows (can be done pointwise)

y (i+1) = arg max
y

[n∑
t=1

ln f (xt |yt) + ln q(i)(y)
]
,

where q(i) is iid Bernoulli under parameter p(i):

q(i)(y) =
(
p(i)
)∑

t yt
(
1− p(i)

)n−∑t yt .

Output: Proceed until y (i) = y (i+1), output is the sequence y (j+1).

Posterior consistency
when α� n, the (segmentation) MM algorithm preforms almost as (segmentation)
EM algorithm. Another explanation of that similarity is posterior consistency: with
θ ∼ Beta(α, α) and m being the number of ones in y , we have

p(θ|y , x) = p(θ|y) ∼ Beta(α + m, α + n −m).

The variance of Beta(α + m, α + (n −m)) distribution is of order O(1n) and so p(θ|y)
is heavily peaked over its expectation

α + m

α + n
≈ m

n
.

This means that in the segmentation EM update the distribution p(θ|y (i), x) is peaked

over m(j)

n = θ(j) and so the integral is close to maximum:

y (i+1) = arg max
y

∫
ln p(y , x |θ)p(θ|y (i), x)dθ ≈ arg max

y
ln p(y , x |θ(j)) = arg max

y
ln p(y , θ(j)|x),

exactly what MM algorithm does.

MM: good in segmentation, bad in parameter estimation

MM-algorithm above (VT for mixtures) has formally nothing to do with Bayesian
approach (no α in it!). Yet, it aims to find maximum likelihood path in hidden
Beta-Bernoulli model with some ”relatively small α” (like uniform prior). The same
holds for Bayesian HMM’s with Dirichlet priors on transition matrix.

Conclusion: MM-algorithm (Viterbi training) might be very poor in parameter
estimation (it lacks asymptotic fixed point property, optimizes wrong criterion....), but
works well in Bayesian segmentation (under Dirichlet priors).

Why it performs well in one task (segmentation) and fails in another
(parameter estimation)?

Answer: It fails in parameter estimation just because it is good in segmentation!

Link to the statistical learning
For any model p(x , y), the Viterbi (MAP) path

v = arg max
y∈Yn

p(y |x) = arg max
y∈Yn

ln p(y , x) = arg max
y∈Yn

[ln p(x |y) + ln p(y)].

For an hidden model (either mixture model or HMM or hidden Beta-Beroulli) with
(conditionally) independent emission densities f (·|k), k ∈ Y

v = arg max
y∈Yn

[
n∑

t=1

f (xt |yt) + ln p(y)].

If emission densities are normal with common σ2 and means µk = k (as in toy model)

v = arg min
y∈Yn

[n∑
t=1

(xt − yt)
2 − 2σ2ln p(y)

]
.

Statistical learning objective, where
∑n

t=1(xt − yt)
2 – loss function (depends on data);

ln p(y) – penalty term (depends on model); σ2 – regularization constant. The bigger is
σ2, the more model matters. So, if σ is big, the v aims to maximize p(y).

Hidden Bernoulli model

The properties of MAP path depend on model p(y).

Y1,Y2, . . . is Bernoulli process. The simplest possible model. Any 0-1 model be
considered as a concatenation of blocks

000︸︷︷︸
0−block

11︸︷︷︸
1−block

00000︸ ︷︷ ︸
0−block

111︸︷︷︸
1−block

000︸︷︷︸
0−block

· · ·

Block lengths are Geometrically distributed, the expected lengths of 0-block is 1
p ,

expected length of 1-block is 1
1−p .

The path arg maxy∈Yn p(y) is constant (only 0’s or 1’s), if p < 0.5, it is constantly
0000 · · · 0 with probability (1− p)n. The (any) second best path has one 1 and its
probability is (1− p)n−1p. The ratio between the best and second best path is
constant: (1− p)/p.

Hidden Beta-Bernoulli model
Y1,Y2, . . . is Beta-Bernoulli process. Totally different properties: random variables
Y1,Y2, . . . have the same B(1,0.5) distribution, but they are positively correlated:

cov(Y1,Y2) =
α + 1

4α + 2
− 1

4
> 0.

The expected block length of both blocks is ∞, when α ≤ 1 (in particular, for uniform
law and 2α−1

α−1 otherwise). The max-likelihood path is constant (either 0000 · · · 0 or
1111 · · · 1), its probability is

α · (α + 1) · · · (α + n − 1)

2α · (2α + 1) · · · 2α + n − 1
.

In particular, for α = 1 (uniform prior),

p(0000 · · · 0) = p(1111 · · · 1) =
1

n + 1
.

We see that under Beta-Bernoulli prior p(0000 · · · 0) is much higher than under
Bernoulli model! For uniform prior: 1

n+1 � (1− p)n.

Hidden Beta-Bernoulli model

The ratio between best and second best path:

p(000 · · · 0)

p(100 · · · 0)
= α + n − 1

is much bigger than that of under Bernoulli model (constant).

For Beta-Bernoulli model the max probability path has relatively more weight than
under Bernoulli model. Similarly the paths with less blocks have relatively more
weights. This, in turn, implies that the solution to our statistical learning under
Beta-Bernoulli model has less blocks / jumps less / is more conservative than under
Bernoulli model.

MAP path jumps under Hidden Bernoulli and hidden Beta-Bernoulli model
In the picture below the number of jumps (number of blocks-1) of MAP path of
hidden Bernoulli and hidden Beta-Bernoulli model are compared. For every σ (x-axes),
100 samples of size 100 are generated and the average number of jumps are found.
Upper curve: Bernoulli model (blue line theoretical value), lower curve: Hidden
Beta-Bernoulli model. Left p = 0.2, middle p = 0.4, right p = 0.5.

We see that MAP path of hidden Beta-Bernoulli model is much more conservative. If
the number of jumps is 0, then p̂ of VT is either 0 or 1. Form σ ≥ 0.8 it is so.

Conclusion

In latent variable model: putting priors on parameter (to relaxe assumptions on
parameters) induces assumptions on paths! For example, noninformative (uniform)
priors on transition matrix in HMM induces long memory to hidden process. On the
other hand hidden Bernoulli(0.5) process – all paths are equiprobable (no assumptions
on paths), but strong assumption on parameter.

For many models (mixtures, HMM’s) MM-algorithm (VT) resembles segmentation EM
with Dirichlet priors, hence aims to find MAP of certain Bayesian model even when
user is in fully frequentist setup.

When MM performs well is Bayesian segmentation, its must be bad in parameter
estimation – the path properties are so different (MAP path is far of being typical)!

References:

About (adjusted) Viterbi training:

J. Lember, A. Koloydenko, Adjusted Viterbi training, Probability in Engineering and Information
Sciences (2007)

J. Lember, A. Koloydenko, The adjusted Viterbi training for hidden Markov model, Bernoulli (2008)

About Viterbi process:

J. Lember, A. Koloydenko, A constructive proof of the existence of Viterbi processes, IEEE
Transactions on Information Theory (2010)

J. Lember, J. Sova, Existence of infinite Viterbi path for pairwise Markov model, Stochastic Processes
and their Applications (2020)

J. Lember, J. Sova, Regenerativity of Viterbi process, Journal of Theoretical Probability (2021)

About Bayesian segmentation:

J. Lember, D, Gasbarra, A. Koloydenko, K. Kuljus, Estimation of Viterbi path in Bayesian hidden
Markov models, METRON (2019)

A. Koloydenko, K. Kuljus, J. Lember, MAP segmentation in Bayesian hidden Markov models: a case

study, Journal of Applied Statistics (2020)

