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The sentinel of the sea
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Point Reference Data: sea surface temperature

Figure: Spatio-Temporal reference point data in two time stamps. The
white circles illustrates the locations of the sensors recording the
temperature field values. The set {(ts, xs, Zs) for s = 1, . . . , N} is
called point reference data set. Source: Wang et al. (2019), Deep
learning for spatio-temporal data mining: a survey.
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Following the reading of one sensor

Figure: Trajectories data
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Spatio-temporal trajectories data

Non-equidistant
(random) data
in time and/or

space which are
serially correlated

How to
model?
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Time series

Mobile, networked sensors can also be carried by people,
(e.g., smartphones) or animals (e.g, animal tracking),
enabling the monitoring of heart rate, body temperature,
among other information.
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One framework
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We study renewal sampling of (Xt)t∈I
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Results

We show that if

X is strictly-stationary, η, λ, κ, ζ, θ-weakly dependent,
see Dedecker et al. (2008);

y
A renewal sampling of X is inheriting the dependence

structure of X.
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Applications

Predictions
for trajec-
tories data

Inference
on X
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Renewal Sampling

Let I ⊆ Rm and τ = (τi)i∈Z\{0} be an I-valued sequence of
non-negative (component-wise) i.i.d. random vectors with
distribution function µ such that µ{0} < 1. For i ∈ Z, we define
an I-valued stochastic process (Ti)i∈Z as

T0 := 0 and Ti :=



i∑
j=1

τj , i ∈ N,

−
−1∑
j=i

τj , −i ∈ N.

The sequence (Ti)i∈Z is called a renewal sampling sequence.
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Independence assumption

TS: Observation times depend on the measuring instrument
(typically sensors), i.e., on a random source independent
of the process X, as observed by Bardet and Bertrand
(2010).

ST: The sampling in space-time depends on the source of
randomness proper of the instrument used to record them.
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Renewal sampled process

Let X = (Xt)t∈I and let (Ti)i∈Z be a renewal sampling sequence
independent of X. We define the sequence Y = (Yi)i∈Z as the stochastic
process with values in Rd+1 given by

Yi =

(
XTi

τi

)
.

We call X the underlying process and Y the renewal sampled process.

Remark: This modeling is designed to work when the sampling scheme is
not known, i.e., it is not designed by an experimenter but just observed from
the data.
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Definition of Ψ-weak dependence

For any positive integer u, v, and functions F and G being bounded Lipschitz
or bounded measurable functions, weakly dependent processes (or random
fields) satisfy covariance inequalities of the following type:

|Cov(F (Xi1 , . . . , Xiu),G(Xj1 , . . . , Xjv ))| (1)

≤ cΨ(‖F‖∞, ‖G‖∞, Lip(F ), Lip(G), u, v) ε(r),

where

the sequence of coefficients ε = (ε(r))r∈R+ converges to zero as
r →∞,

c is a constant independent of r and dist({i1, . . . , iu}, {j1, . . . , jv}) ≥ r,
the function Ψ(·) has different shapes depending on the functional
spaces where F and G are defined, and the dependence notion under
analysis.
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Weak dependent coefficients

Theorem (Brandes, C., Stelzer)

Let Y = (Yi)i∈Z be a Rd+1-valued process with X = (Xt)t∈I being
strictly-stationary and Ψ-weakly dependent with coefficients ε = (ε(r))r∈R+ .
Then, it exists a sequence (E(n))n∈N∗ satisfying

|Cov(F̃ (Yi1 , . . . , Yiu),G̃(Yj1 , . . . , Yjv ))|

≤ C Ψ(‖F̃‖∞, ‖G̃‖∞, Lip(F̃ ), Lip(G̃), u, v) E(n)

where C is a constant independent of n, dist({i1, . . . , iu}, {j1, . . . , jv}) ≥ n,
and F̃ , G̃ are either bounded Lipschitz or bounded measurable function.
Moreover,

E(n) =

∫
I
ε(‖r‖)µ∗n(dr), (2)

with µ∗n the n-fold convolution of µ.
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Weak dependent coefficients

If X is strictly stationary and η-weakly dependent

|Cov(F̃ (Yi1 , . . . , Yiu),G̃(Yj1 , . . . , Yjv))|
≤ C uLip(F̃ )‖G̃‖∞ + vLip(G̃)‖F̃‖∞ E(n)
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α-mixing

Proposition (Brandes, C. and Stelzer)

For F and G bounded measurable functions, and

Ψ(‖F‖∞, ‖G‖∞, Lip(F ), Lip(G), u, v) = ‖F‖∞‖G‖∞

ε corresponds to the α-coefficients defined by Rosenblatt
(1956).

Remark: we perform an alternative proof to the one of Charlot
and Rachdi (2007).
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Notion of dependence for random fields

θ-lex weak dependence, (C., Stelzer, and Ströh (2021))

Lexicographic order on Rm: for distinct elements y = (y1, . . . , ym) ∈ Rm

and z = (z1, . . . , zm) ∈ Rm we say y <lex z if and only if y1 < z1 or
yp < zp for some p ∈ {2, . . . ,m} and yq = zq for q = 1, . . . , p− 1.

Let F be a bounded and G bounded Lipschitz functions, and
Iu = {i1, . . . , iu} ⊂ Rm, and j ∈ Rm be such that is <lex j for all
s = 1, . . . , u, and dist(Iu, j) ≥ r. Then,

Ψ(‖F‖∞, ‖G‖∞, Lip(F ), Lip(G), u, 1) = ‖F‖∞Lip(G),

and ε corresponds to the θ-lex-coefficients.
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Notion of dependence for random fields

Corollary (Brandes, C., Stelzer)

Let X be a strictly stationary and θ-lex weakly dependent random field
defined on Rm, and τ = (τi)i∈Z\{0} be an Rm-valued sequence of
non-negative (component-wise) i.i.d. random vector with distribution function
µ. Then Y is a strictly stationary process, and there exists a sequence E
such that

|Cov(F̃ (Yi1 , . . . , Yiu), G̃(Yj))| ≤ C ‖F‖∞Lip(G) E(n)

where C is a constant independent of n, and E are defined in (2).
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Notion of dependence for random fields

Corollary (Brandes, C. and Stelzer)

If the coefficients (E(n))n∈N are finite, and converge to zero as
n goes to infinity, then Y is Ψ-weakly dependent with
coefficients E .
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Ψ-weakly dependent renewal sampled processes

Proposition (Brandes, C. and Stelzer)

Exponential Decay: Let us assume that ε(r) ≤ Ce−γr for γ > 0 and
denote the Laplace transform of the distribution function µ of the
inter-arrival time τ by

Lµ(t) =

∫
R+

e−tr µ(dr), t ∈ R+.

Then, the process Y admits coefficients

E(n) ≤ C
( 1

Lµ(γ)

)−n
which converge to zero as n goes to infinity.
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Ψ-weakly dependent renewal sampled processes

Proposition (Brandes, C. and Stelzer)

Power decay: Let us assume that ε(r) ≤ Cr−γ for γ > 0. Let a > 0 be
a point in the support of the distribution function µ of the inter-arrival
time τ such that µ([0, a)) > 0, and set p = µ([a,∞]). Then, the process
Y admits coefficients

E(n) ≤ C(nap)−γ as n→∞.
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Applications

Predictions
for trajec-
tories data

Inference
on X



Introduction Inheritance Applications

Central limit theorems

Sufficient conditions

Given X centered, strictly stationary, and α-strongly mixing or weakly
dependent:

if E[‖X0‖δ] <∞ for some δ > 0;

the weakly dependent or strongly mixing coefficients ε satisfy a
condition

∞∑
i=1

ε(n)A(δ) <∞,

where A(δ) is a certain function of δ; then

central limit theorems exist for a sample (Xn)n∈Z.

Knowing the dependence structure of Y enable us to check if the
above condition hold for the sample (Yn)n∈Z.
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Supervised Learning

Trajectory data

Let {(ti1, xi1), . . . , (tip, x
i
p) : tij ∈ R and xij ∈ R2 for i = 1, . . . , N and j =

1, . . . , p} represents a set of m different trajectories observed in p
space-time points.

S = {(X1, Y1), (X2, Y2), . . . , (XN , YN )} a generic training set where
each example (Xi, Yi) is determined by an input-output pair that we
assume generated by a spatio-temporal random field
Z = (Zt(x))(t,x)∈R×R2 such that

Xi = Tp(x
i
p), and Yi = Ztip(xip),

where Tp(xip) = (Ztip−1
(xip−1), . . . , Zti1

(xi1)) represents the past of the

observation Ztip(xip) along the trajectory i.
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Supervised Learning

Generalization bounds for trajectory data

Future Work:

Linear predictors.

Squared and absolute loss functions.
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Thank you
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