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Summary

This paper addresses the retrospective detection of step
changes at unknown time points in the correlation structure of
tWo or more climate times series. Both the variance of in-
dividual series and the covariance between series ae ad-
dressed. For a sequence of vector-valued observations with an
approximate multivariate normal distribution, the proposed
method is a parametric likelihood ratio test of the hypothesis
of constant covariance against the hypothesis of a1 least one
shift in covariance. The formulation of the test Stalistic and
its asymptotic distribution are taken from Chen and Gupta
(2000). This test is applied to the series comprised of the
mean summer NINO3 index and the Indian monsoon rainfall
index for the years 187 1-2003. The most likely change poim
year was found 10 be 1980, with a resulting p-value of
0.12. The same test was applied 1o the series of NINO3 and
Northeast Brazil rainfall observations from the years 1856
2001. A shift was detected in 1982 which is significant ot
the 1% level. Some or afl of this shilt in the covariance matrix
can-be atributed 1o a change in the variance of the Northeast
Brazil rainfall. A variation of this methodology designed 10
increase power under certain multiple change point alterna-
tives, specificallly when a shift ix followed by a reversal, is
also presented. Simulations 10 assess the power of the tesi
under varions alternatives are also included, in addition 1o 4
review of the literature on alternalive meihods.

Comespondence: Lucy F. Robinson, Department of Suuistics.
Columbia Universily. 1255 Amsierdam Ave. Ith fir, MC 4409,
New York, NY 10027, USA, e-mail: 1fr24 @columbia.edu

1. Introduction

Assessing the stability over time of climate pro-
cesses and the connections between them is cru-
cial to our understanding of a changing climate.
Changes in variability or connections between
processes, if robust, can profoundly change our
assessment of climate impacts and affect climate
predictability. An area of great recent concern
is the relationship between the Indian mon-
soon rainfall (IMR) and the E} Nifio/Southern
Oscillation (ENSO) phenomenon. The existence
of a significant negative correlation between time
series has been long been observed (Walker and
Bliss 1937), but whether the strength of the rela-
tionship has decreased in recent decades is a sub-
Ject of cuirent debate.

Running correlation analysis, in which corre-
lations are computed in overlapping moving win-
dows, has frequently been used in an attempt 1o
document and understand changes in the correla-
tion between two climate indices. In particular,
the existence of low-frequency modes of vari-
ability is of current interest in many areas of
climate research, and running correlations have
been used to fepresent the muiti-decadal evoly-
tion of the relationship between wo processes.
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Indian summer monsoon rainfall and its link with ENSO
and Indian Ocean climate indices
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Abstract:

We examine the relationship between the state of the equatorial Indian Ocean, ENSO, and the Indian summer monscon
rainfall using data from 1881 ¢to 1998. The zonal wind anomalies and SST anomaly gradient over the equatorial Indian
Ocean are used as indices that represent the condition of the Tndian Ocean. Although the index defined by the zonal wind
anomalies correlates poorly with Indian summer monsoon rainfall, the linear reconstruction of Indian summer monsoon
rainfall on the basis of a multiple regression from the NINO3 and this wind index better specifies the Indian summer
meonsoon rainfall than the regression with only NINO3. Using contingency tables, we find that the negative association
between the categories of Indian summer monsoon rainfall and the wind index is significant during warm years (El Nifio) but
not during cold years (La Nifta). Composite maps of land precipitation also indicate that this relationship is significant during
El Nifio events. We conclude that there is a significant negative association between Indian summer monscon rainfall and
the zonal wind anomalies over the equatorial Indian Ocean during El Nifio events. A similar investigation of the relationship
between the SST index and Indian summer monsoon rainfall does not reveal a significant association, Copyright © 2006

Royal Meteorological Society

xBY worbps Indian summer monsoon rainfall; ENSO; Indian Ocean Dipole Mode
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1. INTRODUCTION

The all-India summer monsocon rainfall (hereafter referred
to as ISMR, Sontakke et al., 1993), is defined as the
rainfall received during the summer monsoon season
(June, July, August, and September) over India. The
ISMR has a large impact on the agriculture and related
economic activities of the region, and prediction of the
interannual variability of ISMR is thus a matter of great
concern to society. Researchers have been working on
this probiem since the late 1800s. El Nific and Southern
Oscillation (ENSO) has been known to exert the most
important external forcing on ISMR (e.g., Krishna Kumar
et al., 1999; Rasmusson and Carpenter, 1983; Webster
and Yang, 1992; Ropelewski and Halpert, 1987; Lau
and Nath, 2000; Wang ef al., 2003). As Walker found
out long ago, the anomalous high pressure over the
western Pacific—eastern Indian Ocean and anomalous low
pressure over the eastern and central Pacific associated
with El Nifio, influence the monsoon circulation. Krishna
Kumar et al, (1999), among others, suggest that El
Nifio/La Nifta shifts the location of the tropical Walker
circulation and brings about deficit/excess of rainfail by

*Comrespondence to: Chie Thara, Lamont-Doherty Barth Observatory
of Columbia University, 61 Route 9W Palisades, NY 10964-8000, New
York. E-mail: cihara@ldeo.columbia.edu

Copyright © 2006 Royal Meteorological Society

suppressing/enhancing ‘the convection over the Indian
region.

The canonical patterns of atmospheric and oceanic
variables over the Indo Pacific regions during El Nifio
and La Niiia events were described by Reason et al.
{2000), They showed that when an El Nifo occurred
during the summer, the Indian Ocean was characterized
by a slight warming of SST compared to normal, which
was associated with weaker wind magnitudes than normal
and reduced clondiness. After the summer monsoon
season, they found a clear influence of Bl Nifio over
the Indian Ocean; the SST over the entire basin was
significantly warmer than normal. At this time, large
negative wind speed anomalies around the equator were
seen in the Indian Ocean, with an increase in cloudiness
over the western Indian Ocean, and a decrease over
the eastern Indian Ocean. They also demonstrated that
the opposite configuration occirred during La Nifia
events,

The state of ENSO does not explain all the interannual
variability of ISMR (Kripalani and Kulkarni, 1997). For
example, in spite of the occurrence of strong El Nifio
events in 1914, 1963, 1976, 1983, and 1997, these
years did not experience deficlencies in ISMR (Figure 1).
Kripalani and Kulkami (1997) pointed out the existence
of the interdecadal variability of ISMR and found that
when ISMR was in the above normal interdecadal phase,
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ABSTRACT

The viability of internationa) diversification involves balancing benefits and costs. This balance hinges on
the degree of asset dependence. In light of theoretical research linking diversification and dependence,
we examine fnternational diversification using two measures of dependence: correlations and copulas.
We document several findings. First, dependence has increased over time. Second, we find evidence of
asymmetric dependence or downside risk in Latin America, but less in the G5, The results indicate very
little downside risk in East Asia. Third, East Asian and Latin American returns exhibit some correlation
complexity, Interestingly, the regions with maximal dependence or worst diversification do not com-
mand large returns. Our results suggest international limits to diversification. They are also consistent

GIs
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with 2 possible tradeolf between international diversification and systemic risk.

© 2010 Elsevier B.V. All rights reserved.

1. introduction

The net benefit of international diversification is of great impor-
tance in today's economic climate. In general, the tradeoff between
diversification's benefits and costs hinges on the degree of depen-
dence across securities, as observed by Samuelson (1967), ibragi-
mov et al. (2009b), Shin (2009), Veldkamp and Van Nieuwerburgh
(2010}, and Bai and Green {2010), among others, Economists and
investors often assess diversification benefits using a measure of
dependence, such as correlation.! it is therefore vital to have accu-
rate measures of dependence, There are several measures available
in finance, including the traditional correlation and copulas. While
each approach has advantages and disadvantages, researchers have
rarely compared them in the same empirical study? Such reliance

* Corresponding author, Tel.: +47 5183 1500; fax: +47 5183 1550,

E-mail addresses: loran.g.chollete@uis.no {L. Chollete), vp®star.columbia.edu (V.
de 1a Pefia), colu@ncon.edis.tw (C-C. Lu).

! See Solnik (1974), Ingersoll (1987, Chapter 4); Carrieri et 3l. (2008); You and
Daigler (2010). Moreover, asset prices, which reflect their diversification benefits in
equilibrium, are d using dependence or covariance. See research on CAPM and
stochastic discount methods, such as Sharpe (1964), Lintner {1965), Lucas (1978), and
Hansen and Singleton {1982)

2 Throughout, we use the word dependence as ap umbseila to cover any situation
where two or more variables move together. We adopt this practice because there are
numesous words in use {e.g. correfation, concordance, co-dependency, comovement),
and we wish to use a general tesm. We do not that any dependence is
ideal, and throughout we indgca(e advantages and disadvantages as the case may be.

0378-4266(S - sce front matter © 2010 Elsevier B.V. Alt rights reserved.
doi:10.1016/j.jbankfin 2010.08.020
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on one dependence measure prevents easy assessment of the degree
of international diversification opportunities. and how they differ
over time or across regions.

The main goal of this paper is to assess diversification opportuni-
ties available in international stock markets, using both correlations
and copulas. The recent history of international markets is interest-
ing in itself, due to the large number of financial crises, increasingly
globalized markets, and financial contagion.> We also examine some
basic implications for international asset pricing. In particular, we
investigate whether the diversification measures are selated to intes-
national stock returns, This research is valuable because consider-
ations of diversification and dependence should affect risk premia.

A secondary focus of our paper is the relation between diversi-
fication and systemic risk. We motivate this aspect by theoretical
research such as Brumelle (1974), Ibragimov et al, (2008b), and
Shin (2009), and it concerns two separate, distributional proper-
ties: heavy tails and tail dependence. The term 'heavy tail’ refers
to the tail mass of the marginal, univariate distributions, while ‘tail
dependence’ refers to the conrnection between marginal distribu-
tions at extreme quantiles.® While no general theoretical resuits link

3 See Dungey and Tambakis (2005), Reinhart {2008), Reinhart and Rogofl {2009),
Markwat et al. (2008}, and Dungey e al. (2010).

1 We formally define tail dependence and tall indices in Eqs. (5) and (9). Further,
we estimate both heavy tails and dependence in Tables 8 and 9. and Table i1,
respectively.
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FiGURE 1. 1000 random variates from two distributions with iden-
tical- Garama(3,1) marginal distributions and identical correlation
p = 0.7, but different dependence structures. ‘



A review of Probability: Marginal and Joint Distributions

o Assumptions The random variables have continuous distribu-
tions and strictly increasing cumulative distribution functions and are
real valued.

eDefinition of Probability Density Function fx(z) and cu-
mulative distribution function (CDF) Fx(z). For a random vari-
able X

Fy(za) = P(X < 24) = [_ " te(z)da.

e The density function and the cumulative distribution function are
related by the formula fx(z) = & Fx(z).

e It is common to drop the terms cumulative and function in the
CDF and to speak generically by saying that a random variable has a
given distribution.



Inverse Distribution Function and Value at Risk

Example ( Value at Risk) For 0 < o < 1 the value at risk Valiq
is the value x, for which Fx(z,) = a. In statistics, zo is called the

a - 100% percentile of Fix

Since Fx(z) is an increasing function in z, its inverse function
Fx'(x) exists and from the definition we get zo = Fix Ha).



Generating Random Variables

e The Uniform random variable is the key random variable in the
development of copulas and the generation of variables.

Definition (Uniform Random Variable). Let U be a uniform
random variable on the interval [0,1]. Then, fy(u) =1for 0 <u <1
and fy(u) = 0 otherwise.

Example (CDF of U)

Fy(u) = /Ou fu(z)de = /Ou ldu = u



Simulating Random Variables

Let U be a uniform random variable on [0,1]. Let X be a random
variable with distribution function Fx(z).

e The random variable Y = F'(U) is a random variable with
distribution function Fx ().

To see this observe that

Fy(zo) = P(Y <3q) = P(F)—El(U) < o)

= P(U < Fx(z,)) = Fx(2a).

And therefore the distribution of Fiy'(U) is the same as the distri-
bution of X.



e Key Fact

For any distribution function Fx(z), the random variable Fx (X) is
a uniform random variable.

To verify the claim we use the properties of the inverse function.

P(Fx(X) <u) = P(X < Fx'(u)) = Fx (Fx'(v) = u.



Joint Distribution Functions

Given a vector of random variables (X,Y) there is an associated
joint cumulative distribution function that describes all the probabilities
associated with the outcomes of (X,Y). The joint distribution function
of (X,Y) is given by | '

Fxy(z,y)=PX <z, Y <y).

Associated to the joint cumulative distribution function there is a joint
density function fx y(z,y) = Ef@Fx,y(:c,y). Then for any function

9(z,y)
Eg(X,Y) = / / 9@, ) Fx.v (@, y)dzdy.



Dependent Variables vs Independent Variables

e X and Y are said to be independent if for all z,y
Fxy(z,y) = Fx(z)Fy(y),
for all z,y. That is,

PX<zandY <y)=PX <z)P(Y <y).

e Intuitive Interpretation. Two variables are said to be inde-
pendent if the availability of information on the outcome of one of them
does not change the probabilities associated with the other variable.

This concept is more easily understood in the context of the prob-
ability of random events. Let A and B be two events of interest. For
example, the event that the asset value X and the liabilities Y lie on
specified intervals, A = (z; < X < 2p) and B = (y1 <Y < y2). The
definition of independence then becomes. T'wo random sets are indepen-

dent if
P(A and B) = P(A)P(B).

e Extension by measure theory



A Measure of Linear Dependence:

Pearson’s Correlation Coefficient pp(X,Y)

epp(X,Y): The most widely used measure of dependence
e p(X,Y) can take on all values between -1 and 1.

e pp(X,Y): a measure of linear association between variables

p(X,Y) = 1 if one can find constants a,b so that Y = aX + b with
a>0 Ifa<0pX,Y)=-L

| _ BE(X - EX)(Y ~ EY)
pp(XY) = SVarX)VVarY

o If (X,Y) is bivariate normal then pp(X,Y) =0 implies X and Y
are independent.

e pp(X,Y): Its scope of applicability is frequently over-estimated.

If we go away from linear relationship to a quadratic relationship
the picture changes. For example if Y = X2 the knowledge of X com-
pletely determines the value of Y and hence they are fully dependent
but pp(X,Y) is not equal to one.

e pp(X,Y) = 0 does not in general imply that X and Y are inde-
pendent.



Dependence and Risk Management

Example: Probability of Default

o V Asset value.

e L, Liabilities.

e P(V < L) Probability of default.

e Common Assumption: V and L are independent.

e If V and L are driven by a common factor T (e.g. currency or
market fluctuations), the natural assumption is that they are dependent.

e The correlation coefficient frequently will not be a good measure
of the dependence between V(T) and L(T) if V and L are driven by T

in a non-linear way.

e The copula function is a function that captures (in a very general
context) all the dependence in a vector of random variables when the
margina) distributions are given.
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What is a Copula?

Definition (Copula). A copula is a joint distribution of uniform
random variables.
In the case of two variables U, V the copula is given by
Clu,v) = P(U<u, V<o) = Fy v (u,v).

o Given any joint distribution of two random variables Fy y(z,y) =
P(X < z,Y <1y) there is an associated copula.

Calculating The Copula of (X,Y)

Step 1. Find the marginal distributions of X, and Y Fx(z) and
Fy (y).

Step 2. Calculate the inverse transforms ¥ 21 (w) and Fy @),

Step 3. Plug in in joint CDF.

C(yyv) = Fx,Y(F_rl(ﬁ))F;l@f))-



Let us check that this is indeed a copula.

Fyy (W), Fy' @) = P(X < Fx'(W), Y < Fy' @)

— P(Fx(X) < & Fy(Y) <W),

and as discussed earlier the random variables Fx(X) and Fy(Y) are
uniform random variables.



Properties of Copulas

1. The copula construction does not constrain the choice of marginal
distributions. ’

2. The copula construction provides a way of obtaining joint distri-
bution functions.

3. Sklar (1959) showed that any joint distribution function can be
written in terms of a copula. If the marginals are continuous there is

only one way of doing this.

4. If (U, V) has copula C then the vector (Fx'(U), Fy, (V) has a
distribution F(z,y) with marginals Fx(z), Fy (y).
Ao~
5. If Y = g(X) where g is a strictly . creasing function then the
copula is able to capture the relationship between X and Y. More
precisely, Cx vy (z,y) = min{z, y}.



Properties of Copulas

6. The joint density function can be obtained from the marginal
distributions and and the copula in the following way.

fxy(z,y) = fx () fy (y)Cra(Fx (z), Fy (¥)),

where Cio(u,v) = ﬁ—g—,ﬁx,y(u, v).

7. Schweizer and Wolf (1981) showed that the copula captures all
the dependence contained in the joint distribution of (X,Y) in the sense
that for any strictly increasing functions g(z), A(y), the copula associated
with (g(X), h(Y)) is the same as the copula associated with (X, Y).

e Moral

THE COPULA EXTRACTS THE WAY IN WHICH
THE VARIABLES MOVE TOGETHER

NO MATTER WHAT SCALE IS USED TO MEASURE THEM



Copulas: Main Drawbacks

¢ The copula is an entire function, not a single number as the cor-
relation.

e One needs to identify the appropriate copula to work with. This
can be hard.

¢ The calculations required are frequently linked to the particular
copula.

e The correlation coefficient pp can not be calculated by using only
the information provided by the copula.

The following transparencies will deal with methods of dealing with
these problems, including a method for generating copulas, several exam-
ples of copulas and two new correlation coefficients that can be computed
solely from the information contained by the copula.



A Method of Constructing - [ (%, ¥)

Consider a fixed vector of uniform random variables (U, V). Then
its distribution function is a copula and is given by C(u,v) = P(U <
u, V < v). To complete the construction pick arbitrary marginal distri-
butions Fy(z) and Fy(y). Then the function C(Fx(z), Fy(y)) defines
a bivariate distribution function with marginal distribution functions
Fx(z) and Fy(y) and

C(Fx(z),Fy(y)) = F(z,y) = P(X < z,Y <y).

In order to construct a copula with particular marginals we could
then follow the following steps.

e Step 1. Pick the marginal distributions of our problem. In the
case of V (Asset Values) and L (Liabilities), Fy (v) and Ff(I).

e Step 2. Pick a particular dependence structure from a library of
joint bivariate uniform distributions. Associated with this, is the copula

Clz,y).
e Step 3. Evaluate C(Fy (v), Fr(1)).

C(Fy(v), Fr(1)) = F(v,1) is a cumulative distribution function with
_ A .~ marginal probabilities Fy(v) = P(V < v) and Fi(l) =
P(L < 1).

e Valdez and Frees (1997) present formal approaches to simulate
and fit copulas based on empirical data and the above construction.
The main difficulty arises in Step 2 which is considered next.



Examples of Copulas
1. If X and Y are independent then Cxy (t;(,;’a‘,l') = Y-y

2. Gaussian Copula. Let (X,Y) be a bivariate standard normal
random vector with correlation p. Then the Gaussian copula is given
by C(u,v) = P(®(X) < v, ®(Y) <v) = P(X < &7 1(u),Y < &1 (v))

T Iy
where ®(z) = \/——;——ﬁ - exp{—u?/2}du.

3. Archimedean Copulas A method of generatmg copulas on
the basis of a single function. Let % be a .~ function
taking [0, 1] — [0, 00) such that a) ¢ is convex and strxctly decreasing b)

(1) = 0. Then, C(u,v) = ¥ (Pply) + P( 4y} is a copula.

P
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Table 1: Distribution of Various Copulas

Copuia Distribuﬁon . | ‘ Parameter Complete 'j Ind'epéndence
: Range Dependence
&oml Cy(u,v;p) = D@7 (), D1 (W) ~ \ pe(=1,1) p =‘1, or—1 | p=0
. — N - ‘
‘,S’;‘udent-t Cilu,v; p,d) = td:p(t;‘(u), t;‘(v)') pe(=1,1) p= 1.0:—1 p=0
Gumbel | Co(u,v;B) - exp{—{(~ In(1))/ + (- In(v))#¥) jﬂ €(0,1) =0 | B=1
RG ng(u,v;a:)=u+v—1+C<;(1——u,1'.—v:a) ’ ;ae(O,l), =0 ‘ =1
Clayton éc(‘u, v 6) = max ((u‘a +vd—1)-le, O) 8 e‘ {~1,00)\ {0} { 8> co 80 ‘.
RC ._:Cgc(u,v;a):u+v-—l+C'c(.1—z_:,lQV‘B) 'eé[—1,'oo)\{0} 00 80

RG and RC denote the Rotated Gumbel and Rotated Clayton copulas, respectively. The syrhbols <D;,(x, )
and #,,(x, y) denote the standard bivariate normal and Student-¢ cumulative distributions, respectively:
. X » — /
Qe = L z,.—%ﬂrexg<~%<x ENx y) Ydxdy, and ‘
taley)y= [ [ F(;ﬁT((_%;‘.lﬁ“{l +(s O s D' 252 1 sdt. The correlation

matrix is given by T = ( ; o



Measures of Dependence Using Copulas
Spearman’s pg(X,Y) and Kendall’s px (X,Y).

These coefficients are not affected by non-linear increasing transfor-
mations of X and Y unlike Pearson’s correlation coefficient. Moreover,
they can be computed using the copula associated to the vector (X,Y).

Spearman’s Coefficient

ps(X,Y) = 12B{(Fx (X) — 5)(Fr (Y) - 3)}
= 12//{C(u,v) —yv}ldu - dv

Kendall’s Coefficient

Let (X,Y) and (X,Y) be iid. vectors with distribution function
Fx y. Then,

pr(X,Y) = P((X - X)(Y - ¥) > 0) - P((X - X)(Y - Y) <0).

Kendall’s coefficient can be written in terms of the copula as well

1 1
pr(X,Y) = 4[0 ]0 C(u,v)dC(u,v) — 1



Properties of Spearman’s and Kendall’s Coefficients

e ps(X,Y) and px(X,Y) = 1 whenever Y = g(X) for a strictly
increasing function g. (e.g. Y = X?).

o ps and px = —1 whenever Y = h(X) for a strictly decreasing
function h.

e For arbitrary strictly increasing functions g1, g2

ps(X,Y) = ps(91(X), 92(Y)),

and
pr(X,Y) = pi (91(X), g2(Y)).

e Since Pearson’s correlation pp(X,Y) depends both on the joint
distribution (and hence the copula) and the marginal distributions, Pear-
son’s correlation coefficient does not have the above property.

e Recall the example when asset value V and liabilities L are driven
by a common factor T we see that the third property above could be
helpful.
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Table 10: Tail Dependence and Kendall’s 7 for various Copulas

I eft Tail Dep Right Tail Dep Kendall’s 7
Gaussian 0 0 2 arcsin p
Student-t  2t441 (—- | /(ﬁ%f’—’l) 2tis1 (-— (-41"1—)};—_—‘-’3) % arcsin p
Gumbel 0 2-2¢ 1-a
R. Gumbel 2-2° 0 1-a
Clayton 0 2% e
R. Clayton 278 0 &

The table presents analytical formulas for tail dependence and Kendall’s 7. Further
information may be obtained from Chapter 5 of Embrechts et al. (2005).

R. Clayton and R. Gumbel denote the Rotated Clayton and Rotated Gumbel copulas.
« and 6 denote dependence parameters of the Gumbel and Clayton copulas, and d
denotes the degrees of freedom of the Student-t copula.

diw= P( F (X) 2w F\/(‘/\ﬁ""\

X
= 0w, W)
Y
= A (W)
A ’”“;’i‘ y



Joumat of Banking & Finance xxx {2010) xot~xxx

;\wER

Contents lists available at SciencaDirect
Joumal of Bankmg & Fmance

journal homepage: www.-elsevier.qom/mcata/}bf

International diversification: A copula approach
Loran Chollete **, Victor de la Pefia®, Ching-Chih Lu®

* University of Stavanger. Stavanger N-4036, Norway
b Columbia- University- New York, NY 10027, USA .
¢ Narfonal Chengchi University, 64 Sec. 2, 2hi-Nan Road, Taipet 1186, Tafwan

The main: goal of this paper is to assess dlvermﬂcatmn opportum—'
tes: avallable in‘international stock markets, using both correlations
and copulas, The recent hxstory of international markets is interest- -

. mg_ in itself, due to the large number of financial crises, 1ncreaszngiy ,
globalized markéts, and financial contagion.* We also examine some

basit ‘implications .for international asset pncmg In pamcuiar ‘we

investigate whether the diversification measures are- re!ated to inter-

- national’ stock_retnms. This research is: valuable because’ cnnszder-.

ations of dwemﬁcamon and dependence should affect risk premia..

1. Introduction . -

The net benefit of international diversification is of great impor-
tance in today's economic climate. In general, the tradeoff between
diversification’s benefits and costs hinges on the degree of depen-
dence across securities, as observed by Samueison (1967), Ibragi-
mov et al. (2009b), Shin (2009), Veldkamp and Van Nieuwerburgh
(2010), and Bai and Green {2010), among others, Economists and
investors often assess diversification benefits using a measure of
dependence, such as correlation.! [t is therefore vital to have accu-
rate measures of dependence. There are several measures available
in finance. including the traditional correlation and copulas. While
each approach has advantages and disadvantages, researchers have
tarely compared them in the same empirical study.? Such reliance

* Comesponding auchor. Tel.: +47 5183 1500; fax: +47 5183 1550,
E-mail addresses: loran.g.cholleteBuis.no (L. Chollete), vp@stat.col
de la Pefta), cciv@nccu.edu.tw (C.-C. W)

! See Solnik (1974), Ingersoil (1987, Chapter 4); Carrieri e al. (2008); You and
Daigler (2010). Moreover, asset prices, which reflect their diversification benefits in
equilibrium, are 4 using dependence or ¢ e. See research on CAPM and
stochastic discount methods, such a5 Sharpe (1964), Lintner (1965), Lucas (1978), and
Hansen and Singleton (1982).

2 Througliout, we use the word dependence as an umbrefla ro cover any situation
where two or more variables move together, We adopt this pracn‘cz because there are
numerous words in use (e.g. corredation, concordance, ¢o-di dency, ¢ )
and we wish tv use a general tesm. We do not assume that any dependence measure is
ideat, and throughout we indfcate advantages and disadvantages ss the case may be.

bia.edu (V.

0378-4265(S - see front matter © 2010 Eisevier B.Y. All rights reserved,
doi: m :ms[jgbankﬁnxomos 020

on one dependence measufe prevents easy assessment of the degree
of international diversification opportunities, and how they differ
over time or across regions.

The miain goal of this paper is to assess diversification opportuni-
ties available in international stock markets, using both correlations
and copulas. The recent history of international markets is interest- -
ing in itself, due to the large number of finandial crisés, increasingly
globalized markets, and financial contagion.® We also examine some
basic implicadons for international asset pridng. In particular, we
investigate whether the diversification measures are related to inter-
national stock retums. This research is valuable because consider-
ations of diversification and dependence should affect risk premia.

A sacofidary focus of our paper is the relation between diversi-
fication and systemic risk. We motivate this aspect by theoretical
research such as Brumelle (1974), lbragimov et al, (2009b), and
Shin (2009), and it concerns two separate, distributional proper-
ties: heavy tails and tail dependence. The term ‘“heavy tail’ refers
to the tail mass of the marginal, univariate distributions, while 'tail
dependence’ refers to the connection between marginal distribu-
tions at extrerne quantiles.* While no general theoretical results link

A

J— i .

3 See Dungey and Tambakis (2005), Reinhart (2008), Reinbart and Rogoff (2009),
Markwac et af. (2009), and Dungey e al, (2010}

! We formally define rait dependence and tail indices in Eqs. {5} and {9). Fucther,
we estimate both heavy tails and dependence in Tables 8 and 9, and Table 11,
respectively.




Table 11: Tail Dependence, Kendall’s v from Different Copula Models

Panel A: GS

Left Tail Dependence Right Tail Dependence Kendall’s 7
Model  Average Max Min Average Max Min Average Max Min
Gumbel  0.0000 0.4016 0.6177 0.2344 03279  0.5329 0.1798
(FR-DE)  (P-US) (FRDE)  (JP-US)
R.Gumbel  0.4200 0.6398 0.2434 0.0000 0.3447 0.5562 0.1872
(FR-DE)  (JP-US) (FR-DE)  (JP-US)
Clayton  0.4238 0.6949 0.1680 0.0000 0.3060 0.4878 0.1627
(FR-DE)  (JP-US) (FR-DE)  (JP-US)
R.Clayton  0.0000 0.3579 0.6383 0.1359 0.2625 0.4357 0.1479
y FR-DE)  (P-US) FRDE)  (P-US)
Normal  0.0000 0.0000 0.3534 0.5491 0.1949
(FR-DE) {(JP-US)
Studentt  0.1276 ° 0.4658 0.003¢ 0.1276 0:4658 0.0036 0.3591 0.5625 0.2000
(FR-DE)  (DE-US) (FR-DE) (DE-US) (FR-DE)  (JP-US)
Panel B: East Asia
Left Tail Dependence Right Tail Dependence Kendall’s r
Models  Average ‘Max Min Average Max Min Average Max Min
Gumbel  0.0000 0.2868 0.4147 0.2031 0.2242 0.3353 0.1545
) ¢ HK-SI) (TW-TH) (HK-SI)  (TW-TH)
R. Gumbel  0.3058 0.4449 0.2261 0.0000 0.2403 0.3630 0.1731
(HK-SD)  (TW-TH) (HK-SD  (TW-TH)
Clayton  0.2681 0.4773 0.1581 0.0000 0.2103 0.3191 0.1582
(HK-S) (TW-TH) (HK-SI) (TW-TH)
R.Clayton  0.0000 0.2681 0.4773 0.1581 0.1804 0.2603 0.1248
(HK-SI) (TW-TH) (HK-SI) (TW-TH)
Normal  0.0000 0.0000 0.2499 0.3577 0.1836
HK-SI) (TW-TH)
Studentt  0.0557 0.2246 0.0031 0.0557 0.2246 0.0031 0.2523 0.3678 0.1835
HK-S) (XR-TH) (HK-S)  (KR-TH) (HK-ShH  (TW-TH)
Panel C: Latin America
Left Tail Dependence Right Tail Dependence Kendall’s v
Models  Average Max Min Average Max Min Average Max Min
Gumbel 0.0000 0.3075 0.3615 0.2562 0.2411 0.2877 0.1978
(AR-ME) (AR-CH) (AR-ME) (AR-CH)
R. Gumbel  0.3447 0.3912 02897 0.0000 0.2733 0.3140 0.2258
. (BR-ME) (AR-CH) (BR-ME) (AR-CH)
Clayton  0.3526 0.4330 0.2769 0.0000 0.2503 0.2928 0.2125
) (BR-ME) (AR-CH) (BR-ME) (AR-CH)
R.Clayton  0.0000 0.2144 0.3080 0.1418 0.1839 0.2274 0.1507
(AR-ME) (AR-CH) (AR-ME}  (AR-CH)
Normal  0.0000 0.0000 0.2719 0.3123 0.2331
(AR-ME) ({AR-CH)
Studentt  0.1207 0.1521 0.0617 0.1207 0.1527 0.0617 0.2723 0.3167 0.2267
(AR-BR) (AR-CH) (AR-BR) (AR-CH) (AR-ME) (AR-CH)




Maximum Likelihood Estimation

Remark: Let (X,Y) be a vector of random variables with cumu-
lative distribution function Fx y(z,y). One can recover the associated
joint density function of fx y(z,y) from the knowledge of the marginal
density functions and the copula Cx y (u, ) associated to (X,Y). This
remark is important in developing maximum likelyhood estimators.

Let Cia(u,v) = 24Cx y( ,"). Then,

fx,v(@,y) = fx (@) fy (¥)Cra(Fx (2), Fy (y)).

If (x;,x;) are independent realizations of the vector (X,Y) with
fixed copula C then the log-likelihood for this sequence is

> log(fx (i) fr (9:) Cra(Fx (23), Fy (9:)))-

i=1



Table 4: Comparing Dependence Structures using Information Criteria

Pahél A: GS _
Models AIC BIC

Gumbel -269.17 -264.44
Rotated Gumbel  -312.37 -307.64
Clayton ~ -275.46 -270.73
Rotated Clayton  -206.26  -201.53
Normal -302.82 -298.10
Stadent t  -316.20 -306.75

Mixed Copula  -318.18  -294.57 .

Panel B: Bast Asia -
Models AIC BIC

Gumbe!l -111.25 -106.53
Rotated Gumbel  -139.43  -134.77
Clayton -122.70 -117.98
Rotated Clayton  -87.31 -82.59
Normal -132.38 -127.66
Student + -138.47 -129.02
Mixed Copula -138.98 -115.36

Panel C: Latin America
Models AIC BIC

Gumbel -121.23 -116.51

Rotated Gumbel  -183.97  -179.25
Clayton -171.26 -166.54

Rotated Clayton  -86.50  -81.78
Normal -153.02 -148.30
. Studentt -167.56 -158.12
Mixed Copula -179.22 -155.61

AIC and BIC are the average Akaike and Bayes
Information Criteria for countries in each region.

Table 5: Comparing Dependence Structures using Mixture Weights

Weights GS Eas? Asia Latin America
Poumbet  OBL 815 ©084)
Pe.oumbe 031 03 S8
¥Normal 3% (81'{3%) - oldh

W; denotes the average weight on copula { in each region, where i =
Gumbel, Rotated Gumbel (R. Gumbel), and normal. The average
standard deviation of weights for each region is in parentheses.

-



Table 6: Comparing Dependence Structures using Likelihood Methods

A. G-5 Counrries
FR-DE FR-JP FR-UK FR-US DE-IP DE-UK DE-US JP-UK IP-Us UK-US
Normal vs. Clayton -1.05 0.14 2,72 2719 i.16 -0.71 -2.33 0.34 -0.57 -243
Nomal vs. R. Clayton -6.49 -4.36 -6.25 -4.30 -4.90 -1.01 -5.21 -4.21 -2.25 491
Normat vs. Gumbel 175 -3.19 -3.00 -2.50 -3.10 -3.37 -3.49 -2.39 -0.6¢ ~3.00
Normal vs. R. Gumbel 1.89¢++ 0713 -0.02 -0.66 1.28* 1.18 -0.52 071 027 -0.65
Normal vs. ¢ 0.00 0.44 0.19 038 0.13 0.05 025 0.11 0.19 0.62
Normal vs, Mixed 3.344* 1.16 1.35¢* 1.32¢ 1.52* 2.44*+ 1.19 L46* t.16 0.32
1 vs, Clayton -0.01 -0.24 -0.98 -2.94 0.07 -0.09 -2.44 -0.07 -0.29 -2.68
t vs. R. Clayton 0.0l -3.68 -196 -4.50 0,90 -037 -5.12 -0.57 -0.57 -5.01
t vs. Gumbel -1757 -3.19 -3.00 250 -3.10 -3.37 =349 -2.39 -0.61 -3.00
¢ vs. R, Gumbet 0.00 0.22 -0.18 -0.86 0.14 0.00 -0.57 0.00 0.12 -3.82
1 vs. Mixed 0.00 043 0.07 1.06 0.14 0.03 117 0.04 0.02 0.50
B. Asian Countries . 4
HK-KR HK-St HK-TW  HK-TH KR-S1 KR-TW  KR-TH SIFTW SI-TH TW-TH
Normal vs. Clayton -1.39 0.12 -0.46 025 -1.32 -0.93 -1.99 -0.28 -1.36 -0.02
Nonmal vs. R. Clayton - -3.55 -5.07 -3.50 <342 -3.31 -2.84 -2.38 -3.30 -3.46 -2.83
Normal vs. Gumbel 271 -2.50 -2.62 209 -2.46 <200 <241 -2.00 -1.77 -2.63
Nommal vs. R. Gumbel 0.25 1.75%* 0.53 0.98 -0.28 0.17 -0.61 043 049 051
Normal vs. ¢ 0.35 0.02 0.69 0.09 0.63 0.8¢ 0.65 o 0.0? 0.66
Normal vs. Mixed 0.94 2.61** 1.58% 195+ 065 114 0.45 1.10 1.90%* 0.98
£ vs. Clayton -1.60 -0.02 -0.81 411 -1.53 -1.29 -2.18 -0.55 -0.16 0.31
t vs. R. Clayton -3.76 -0.08 -3.68 -0.39 =342 -3.09 -3.07 <378 -0.30 -3.04
1 vs. Gombel 2N -2.50 -2.62 -2.09 =246 -2.00 -2H -2.00 -1.77 <2.63
tvs. R. Gumbel -0.38 0.00 0.25 0.01 -0.39 -0.05 073 0.18 -0.03 0.36
t vs. Mixed 0.78 0.01 1.11 0.06 0.36 079 0.13 0.73 0.02 0.81
C. Latin American Countries
AR-BR AR-CH AR-ME BR-CH BR-ME CH-ME
Nommal vs. Clayton £.53* 1.44% -0.45 068 2.10%* 1.78**
Normal vs. R. Clayton -4.35 -4.53 421 -3.84 -6.03 -4.61
. Normal vs. Gumbel -2.41 <3.34 -2.67 -2.58 -$.89 -3.54
Normal vs. R. Gumbel 1913+ 1.28# 1,04 1.49* 2.38* 1.85**
Nomnal vs. ¢ 0.01 0.13 0.08 0.03 0.08 0.04
Normal vs. Mixed 2.27%* 132+ 1.974* 1.97%* 2,53 2,00+
t vs. Clayton 0.00 0.15 -0.11 -0.02 0.14 0.02
tvs. R, Clayton -0.04 -1.05 -0.46 0.13 -0.66 -0.17
t vs. Gumbel -2.41 -334 -2.67 -2.58 -4.89 -3.54
tvs. R. Gombel 0.01 0.20 0.03 0.01 0.18 0.04
1v8, Mixed 0.01 0.20 0.0 0.02 0.19 0.04

Test statistics are generated using the pseudo-likelihood o test of Chen and Fan (2006). * and ** denote significance at the 10% and 5% levels, respectively. R. Gumbel
and R. Clayton represent the Rotated Gumbel and Rotated Clayion copulas, respectively.

Chhew MJ Tan (2006



Table 8: Tail Index Measured by the Hill Estimator

Left Tail Right Tail
5% 15% 10% 5% 7.5% 10%
FR 278 230 245 309 329 3.17
0.43) (0.29) (027) (0.48) (0.42) (0.35)
DE 276° 233 215 336 3.18 3.12
(0.43) (0.30) (0.24) (0.52) (0.40) (0.34)
JP 400 3.14 280 316 272 244
(0.62) (0.40) (0.31) (0.49) (0.34) (0.27)
UK 309 322 276 364 3.04 3.15
0.43) (0.41) (0.30) (0.56) (0.39) (0.35)
US 331 305 225 3438 3.00 2.37
(0.51) (0.39) (025) (0.54) (0.38) (0.26)
HK 242 217 207 38 314 3.39
(0.37) (0.28) (023) (0.59) (0:40) (0.37)
KR 286 260 249 279 253 2.58
0.44). (033) (027) (043) (0.32) (0.28)
SI 279 211 221 371 297 2.62
043) (0.27) (024) (0.57) (0.38) (0.29)
TW 267 280 259 262 262 2.43
(0.41) (036) (0.28) (0.40) (0.33) 0.27)
TH 344 269 . 208 3.14 3.6 2.37
(0.53) (034) (0.23) (0.48) (0.40) (0.26)
AR 351 292 255 318 252 2.08
(0.54) . (037) (028) (0.49) (0.32) (0.23)
BR 226 236 195 3.00 260 279
(0.35) (0.30) (021) (0.46) (0.33) (0.31)
‘CH 292 274 265 323 299 2.41
(0.45) (0.35) (0.29) (0.50) (0.33) (0.26)
ME 2.62 250 226 294 270 2.41

(0.40) (0.32) (0.25) (0.45) (0.34) (0.26) .

The table presents estimates of right and left tail indices for each
series, corresponding to the 5%, 7.5%, and 10% most extreme
observations in the distribution. The tail index is estimated using
~ the non-parametric estimator of Hill (1975). Standard errors, in
parentheses, are calculated using the asymptotic variance of the
Hill estimator, and obtained by the Delta method.



Table 9: Tail Index Measured by OLS log-log rank-size regression

DE

HK

KR

SI

W

TH

AR

BR

CH

ME

5%

Left Tail

1.5%

10%

5%

Right Tail

7.5%

10%

3.48
(0.76)

3.61

0.79) .

S.11
(1.12)

3.84
(0.84)

- 379

(0.83)

3.26
(0.7

2.78
(0.61)

3.13
(0.68)

3.17
(0.69

4.33
(0.94)

3.73
(0.81)

2.88
(0.63)

3.23
0.71)

2.83
(0.62)

3.00
(0.54)

3.14
(0.56)

4.32
(0.78)

3.51
(0.63)

3.51
(0.63)

2.74
(0.49)

2.74
0.49)

2,78
(0.50}

3.02
(0.54)

3.57
0.64)

3.40
0.61)

2.60
0.47)

3.06
(0.55)

2.70
(0.49)

2,77
0.43)

2,78
(0.43)

3.71
(0.58)

3.30
0.51)

3.12
(0.48)

2.52
0.39)

2.71
(0.42)

2.52
(0.39)

2.88
(0.45)

3.01
(0.47)

3.21
(0.50)

2.46
(0.38)

2.98
(0.46)

2.59
(0.40)

321
0.70)

3.63
(0.79)

3.67
(0.80)

3.28
0.72)

3.89
(0.85)

4.44
0.97)

3.77
(0.82)

3.71
0.31)

3.33
0.73)

3.34
0.73)

3.50
(0.76)

4,01
0.837)

3.5
(0.82)

3.49
(0.76)

3.21
(0.58)

3.49
(0.63)

3.44
0.62)

3.33
(0.60)

3.57
(0.64)

4,05
(0.73)

3.14
(0.56)

3.64
(0.65)

3.06
(0.55)

3.28
(0.59)

3.18
0.57)

3.28
(0.59)

3.49
(0.63)

3.21
(0.58)

3.20
(0.50)

3.39
(0.53)

3.10
(0.48)
3.29
(0.51)

3.15
(0.49)

3.76
(0.58)

2.94
(0.46)

3.34
(0.52)

2.89
(0.45)

3.05
047

2.80
(0.43)

3.06
0.47)

3.19
(0.49)

2.94
(0.46)

The table presents estimates of right and left tail indices
for each series, corresponding to the 5%, 7.5%, and 10%
most extreme observations in the distribution. The tail
index is estimated using the log log rank-size estimator
of Gabaix and Ibragimov (2009). Standard deviations
are in parentheses.
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Theorem | A4 ﬂmctz’én F:R™ - — [0, 1] s a jomt cdf with one-dzmenszonal
marginal cdf’s Fy(zx), ox € R, k = 1,...,n, absolutely continuous with respect

to the product of marginal cdf s Hk_ Fk (xk), zf and only if there exist functions
i, R R, 1< 21 << <n, e=2,...,n, satisfying conditions

Al (integrability):
’ ‘ Elg?:l:-ua";c (€i1'> < ;€ic)l < o9,

A2 (degeneracy):

E(gz'1,...,£c (63'.1; cor iy €$k;§ik+1) cey fic)lgiu vy iy ‘Sik+u < !gic) =

. Lo R )
/ IR (P » G ZTigy Siggrr - - -  &ie )AFy, (24,) = 0, (a.5.)

—CQ

I<i<-<ie<nyk=1,2,...,¢c,c=2,...,n,

A3 (positive definiteness):

U;(gl, b)) = Z Z ir e (&ins -1 6ic) 2 —1(as.)

e=2 1< < <he <0’

and such that the following representation holds for F'
. ' 2, o . . 23
AU F(xl,...,atﬂ.)r—*/ / (1+Un(h,...,tn))Hng(t@).

Moreover, gi,, i, (6iry -, &) = Firpoic(€iny -y 6ir) (a-8.), 1 < iy < o <de S,
c=2,...,m where

. ¢ ' dF(z4,. .., 24,)
. . . . — — c—k 31 2 - Jk - " .
fgl’._“gc (211, e e ).m'bc) § :( 1) 2 ( dF:)l “ e d jk 1)

k=2 - 1<h <’"'<jke'{'ilv-'sic}



Applications to eepulas.
Let Uy, ...,Un denote indepehdent r.v.’s uniformly distributed on [0, 1].

Theorem A function C : {0,1]".— [0, 1] is an absolutely continuous n—dimensiona’
copula if and only if there exist functions Gir,ic 'RE—=2 R, 1< <0<

i < m, ¢c=2,...,n, satisfying the integrability, degeneracy and non-negativity
conditions ~ |

1 1
/ / !g,;l’._,,,;c(til, ~-';ti¢)ldti1mdtic < 0,
J O 0 ’
E(g’il,...,ic(Uiu ey Uik_l ’ Uik) Uik.*.u ceey Uic)lUiu ooy Uik_l) Uik.;.l yreey Uic) =
1
/ §i1,-..,ic(Ui1) veey Uik_l ) t‘ik) Uik.;.s, 3 eeny Uic )dtik = O(a's'))
0 .

i, ER, j=1,2,..,¢, j#k 1 <41 <. <i <, k=1,2,...,c, c=2,..,m,

n . '
Z Z gila-";ic(Uil) teey U‘ic) 2 “1(&.8.)
e=21<43<...<ic<n
and such that

A ©q Un k) n
Cug, .oy un) =/ / 1+ Z Z Gig,oorig(igy s ti) Hdt,;.
0 0

e=21<41 <. <he<n i=1



. The above results provide a general device for constructing multivariate
copulas and joint distributions. E.g., taking n = 2 in the representation,
G1,2(t1,82) = afl — 2¢;)(1 ~ 2t2), o € [—1,1], we get the family of bivariate
Eyraud~Farl1e~GumbeI-Mongenstern copulas

- Co(u1,u2) = ugus (1 + ol = u1)(1l — uz))
and éorrespbnding Bivariaté disﬁributions
Fa(o1,32) = Fi(@1)Fa(as) (1 + o1 = F(@1))(1 — Fa(aa)).
More generally, taking §i,,...i.(tsy, 0 %i,) = 0,1 <43 < . < i < my ¢ =

2,50 =1, G1,2,.n(t1,t2, v tn) = a(l — 2t;)(1 — 2¢3)...(1 — 2t,), we obtain
the following multivariate Eyraud-Farlie-Gumbel-Mongenstern copulas

O ('U-l,’lLQ, 'U,n) = Hui (1 + OZII(I - u’l»))
i=1
and corresponding multivariate distributions
Fa(ml;m% ;wn) = HFz(:B?) (1 + OﬁH(l - E(mt))) '
=1 $=1

. Taking n = 2, §1,2(t1, t2) = Oc(ty,t2), where ¢ is a continuous function on the
unit square [0, 1] satisfying the properties

1 1
/ C(tl,tg)dtl = [ C(tl, tz)dtz = 0,
¢ . 0

1+ 90(t1,t2) >0

for all 0 < #1,t2 < 1, one obtains the class of bivariate densities studied by
Long and Krzysztofowicz (1995)

f(z1,2) = fi(®1) fa(22)(1 + Oc(Fi(21), Fa(z2))

with the covariance characteristic ¢ and the covariance scalar 6. Furthermore,
it follows that representation in fact holds for an a,rbltrary density function
and the function fc(t1,12) is unique.



N Y

 B&ig9i5(6,6) =0,1<i<j<n.



Characterizations of classes of dependent random variables

The followmg Corollaries glve characterizations of different classes of de-
pendent r.v.’s in terms of functions g that appear in the representations for
joint distributions obtained before.' Completely similar results hold for the
functions g that enter corresponding representations for copulas.

Corollary-0.-R.v.’s X1,..., X;; with the one-dimensional cdf’s Fk(mk), Z €
R, k =1,..,n, are mdependent if and only if the functions g,,...;. in the
representa.tlon satisfy the conditions g;,,....i.(&iy, &) = 0 (a8.), 1 <4 <
e <t <My, c=2,..50 .

Definition 1 A sequence of r.v.’s {Xn} is called strictly stationary if the
vector (X, , ..., Xj, ) has the same distribution as the vector (Xjy+hy ooor Kjy4h)
forall1 <j; <..<jr k=12,..,and all h =0,1,2,..

Corollary 1 A sequence of r.v.’s {X,,} is strictly stationary if and only if the
functions g;, ... ;, in the representations for any finite-dimensional distribution
satisfy the conditions gi, 4h.... otk (Eirs oo Eic) = GivyicEiny e &ie) (2:8.) 1 <
I <. <t.<m,c=2,3,..., h=0,1,...

Definition 2 A sequence of r.v.’s {X, } with EXy = 0, EX? < 00,k =1,2,...,
is called weakly stationary if the function f(s,t) = cov(Xs, X;) depends only
onft—s|,t,s=12,..

Corollary 2 A sequence of r.v.’s {X,} with EXy =0, EX} < 00, k=1,2,.
is weakly stationary if and only if the functions g in the representations for a,ny
finite-dimensional distribution have the property that the function h(s,t) =
EE.€195:(€5,&L), depends only on jt—s|, t,s = 1,2,... where {£,} is a sequence
. of independent r.v.’s such that & is 1dent1ca11y dlstnbuted with X, k=1,2,.

Definition 3 Rv.’s Xy, ..., X, with BX; = 0, i = 1,...,n, are called orthog- _
onal if EX;X;=0foralll1<i<j<n '

I

Corollary 8 R.v.’s Xj,.., Xn with EX; = 0, k = 1,...,n, are orthogo-
nal if and only if the functions g in representations satisfy the conditions



- Definition 4 R.v.’s X3, ..., X,, are called exchangeable of all n! permutations
(Xx(@1)s s Xn(n)) Of the r.v.’s have the same joint distributions.

Corollary 4 Identically distributed r.v.’s X3, ..., X, are exchangeable if and
only if the functions g;,,... ;. in representations satisfy the conditions

iy, i (67’1 Yy €7vc) gzw(l)s ybar(e) (gtvr(l) 10 €3w(zc))

(a.s) forall1 <4; <. < zc <n,c=2,..,n, and all permutations 7 of
‘the set {1 o7} ' |

Definition 5 R.v.’s Xj,..., X,, are called m—dependent (1 < m < n) if any
- two vectors A - '

(XJN Jas- X:ia—qua) and (‘Xja+17X.’ia+2’ XJ: 13X.?'z)» Wh?re .
1<n<.<fe<a<is<na=12.,1-1,1=2,.,7, joi1 — Jo > m,
are independent.

Corollary 5 R.v.’s X,..., X,, are m—dependent if a,nd only if the functions
g in representations sa.tlsfy the conditions :

gﬁlvnﬁk;‘lk-{-l v--,ic (61'1 LIRS} g'tk ) gzk.*.u seey é&c) g%; ,...,ik (é’tq_ PR | {ik )gik+1,...,ic(§ik+1 y s

Cforalll1 <i; <. < <1 <te Ny tppr—tk >Mmk=1,..,c~1,
C= 2.y M.

)gic)
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Abstract This paper presents an overview of the literature on applications of copulas
in the modelling of financial time series. Copulas have been used both in multivariate
time series analysis, where they are used to charaterise the (conditional) cross-sectional
dependence between individual time series, and in univariate time series analysis, where
they are used to characterise the dependence between a sequence of observations of a scalar
time series process. The paper includes a broad, brief, review of the many applications of

copulas in finance and economics.

1 Introduction

The central importance of risk in financial decision-making directly implies the importance
of dependence in decisions involving more than one risky asset. For example, the variance
of the return on a portfolio of risky assets depends on the variances of the individual assets
and also on the linear correlation between the assets in the portfolio. More generally, the
distribution of the return on a portfolio will depend on the univariate distributions of the
individual assets in the portfolio and on the dependence between each of the assets, which
is captured by a function called a ‘copula’.

The number of papers on copula theory in finance and economics has grown enormously

in recent years. One of the most influential of the ‘early’ papers on copulas in finance is

IThis paper was prepared for the forthcoming Handbook of Financial Time Series, T. G. Ander-
sen, R. A. Davis, J.-P. Kreiss and T. Mikosch (eds.}, Springer Verlag. 1 would particularly like to
thank B. Beare, P. Embrechts, J.-D. Fermanian, T. Mikosch and J. Rosenberg for detailed comments
and suggestions on this chapter. I would also like to thank Y. Fan, J.-C. J.-P. Kreiss, Rodriguez, C.
Schleicher and T. Schuermann for helpful comments. Some Matlab code for copulas is available from

http:/ /www.economics.ox.ac.uk/members/andrew.patton/code.html.



assets will exhibit more extreme returns than identical assets with a Normal copula.

2 Copula-based models for time series

The application of copulas to time series modelling currently has two distinct branches.
The first is the application to multivariate time series, where the focus is in modelling
the joint distribution of some random vector, X¢=[X1s, Xat, ..., Xni] , conditional on some
information set F;_;. (The information set is usually F;_1 = o (X;—j; 7 > 1), though this
need not necessarily be the case.) This is an extension of some of the early applications of
copulas in statistical modelling where the random vector of interest could be assumed to be
independent and identically distributed (iid) , see Clayton (1978) and Cook and Johnson
(1981) for example. This application leads directly to the consideration of time-varying
copulas.

The second application in time series is to consider the copula of a sequence of ob-
servations of a univariate time series, for example, to consider the joint distribution of
[X¢, Xs41, ---» Xean) . This application leads us to consider Markov processes and general
nonlinear time series models. We discuss each of these branches of time series applications

of copulas below.

2.1 Copula-based models for multivariate time series

In this sub-section we consider the extension required to consider the conditional distribu-
tion of X; given some information set F;_;. Patton (2006a) defined a “conditional copula®
as a multivariate distribution of (possibly correlated) variables that are each distributed
as Uni form (0, 1) conditional on F;—;. With this definition, it is then possible to consider
an extension of Sklar’s theorem to the time series case:

Ft(x]ft—}) == Ct(Fl t($1lft~1) F2,z (wzlfz— Fn ¢ (-Tnp:t—-l) ifc 1), V x € R®, (4)

A

PESREBwEICE B e e

The key comphcatlzxn mtroduced when applymg Skiar’s theorem to conditional distri-
butions is that the conditioning set, F;—1, must be the same for all marginal distributions

and the copula. Fermanian and Wegkamp (2004) and Fermanian and Scaillet (2005) con-
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MEASURING REPRODUCIBILITY OF HIGH-THROUGHPUT
EXPERIMENTS?

By QunHUA LI, JAMES B. BRown,
Harvan HuANG AND PETER J. BICKEL

University of California at Berkeley

Reproducibility is essential to reliable scientific discovery in high-
throughput experiments. In this work we propose a unified approach
to measure the reproducibility of findings identified from replicate
experiments and identify putative discoveries using reproducibility.
Unlike the usual scalar measures of reproducibility, our approach cre-
ates a curve, which quantitatively assesses when the findings are no
longer consistent across replicates. Our curve is fitted by a copula
mixture model, from which we derive a quantitative reproducibility
score, which we call the “irveproducible discovery rate” (IDR) anal-
ogous to the FDR. This score can be computed at each set of paired
replicate ranks and permits the principled setting of thresholds both
for assessing reproducibility and combining replicates.

Since our approach permits an arbitrary scale for each replicate,
it provides useful descriptive measures in a wide variety of situations
to be explored. We study the performance of the algorithm using
simulations and give a heuristic analysis of its theoretical proper-
ties. We demonstrate the effectiveness of our method in a ChiP-seq
experiment.

1. Introduction. High-throughput profiling technologies play an indis-
pensable role in modern biology. By studying a large number of candidates
in a single experiment and assessing their significance using data analyti-
cal tools, high-throughput technologies allow researchers to effectively select
potential targets for further studies. Despite their ubiquitous presence in
biological research, it is known that any single experimental output from
a high-throughput assay is often subject to substantial variability. Repro-
ducibility of high-throughput assays, such as the level of agreement between
results from replicate experiments across (biological or technical) replicate
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R21EY019094.
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algorithm, irreproducible discovery rate, high-throughput experiment, genomics.
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REPRODUCIBILITY OF HIGH-THROUGHPU'T EXPERIMENTS 11

the replicates to be independent, that is, pp = 0; whereas, since genuine sig-
‘nals usually are positively associated between replicates, we expect p; >0,
though py is not required to be positive in our model. It also seems natural
to assume that the underlying latent variables, reflecting replicates, have
the same marginal distributions. Finally, we note that if the marginal scales
are unknown, we can only identify the difference in means of the two latent
variables and the ratio of their variances, but not the means and variances
of the latent variables. Thus, the parametric model generating our copula
can be described as follows:
Let K; ~ Bernoulli(m;) and (zi1,2i2) be distributed as

) 2 2
(2.58)  “ ‘KizkwN w9k PRZRNY D k=01,
25,2 p'k pkUk Uk

where o =0, 111 >0, 0(2):1, po=0,0<pm < 1.
Let

u;1 = G2i,1) = Z’”"i‘b (%Eﬂ) +mo®(zi,1),
(2.5b)

7" zn ——
uio = G(zi2) = -0—1‘1’ (—z’%;-&) +mp®(2i2).

Qur actual observations are

zi1 = F7  (wig)
(2.5¢) ) ’
@ig = Fy “(u32),

where Fy and F, are the marginal distributions of the two coordinates, which
are assumed continuous but otherwise unknown.

Thus, our model, which we shall call a copula mixture model, is a semi-
parametric model parametrized by 8 = (71, p1, a%, p1) and (F1, Fy). The cor-
responding mixture likelihood for the data is

L(0) = [ [Imoho(G™ (Fi(®:,1)), G~ (Fa(wi2)))

i=1
(2.68) +mha (G (Fi(2:,0)), G (Fa(2i2)))]
(2.60) = []le(Fi(zi,0), Palwi2))g(G ™ (Fi(@i,1)))9(G " (Falzi2)))],

i=1
where |
moho(G 1 {(w1), G~ Hug)) + 7Rt (G (u1), G~ ug))
9(GH11))g(GH(u2))

(2.7) clur,uz) =



