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Introduction.

In this talk we will discuss two types of decoupling re-
sults. The first type is decoupling of tangent sequences, the
second being complete decoupling.



Conditionally Independent (Tangent) Decoupling

The theory of martingale inequalities has been central in
the development of modern probability theory. This theory
has been expanded widely through the introduction of the
theory of conditionally independent (tangent) decoupling.
This approach to decoupling can be traced back to a result
of Burkholder and McConnell included in Burkholder (1983)
which represents a step in extending the theory of martin-
gales to Banach spaces.

Let {d;} and {e;} be two sequences of random variables
adapted to the o-fields {F;}. Then {d;} and {e;} are said to
be tangent with respect to {F;} if, for all 7,

E(dz‘./—"z_l) = E(Bi‘fi_l),

where L£(d;|F;_1) denotes the conditional probability law of
d; given F;_1.

Let dy, ..., d,, be an arbitrary sequence of dependent random
variables adapted to an increasing sequence of o —fields {F;}.
Then, as shown in de la Pena and Gine (1999), one can
construct a sequence e, ....,e, of random variables which
is conditionally independent given G = o(dy,...,d,). The
construction proceeds as follows: First we take e; and d; to
be two independent copies of the same random mechanism.
Having constructed dj, ..., d;_1;€1,...,€_1, the e; is an i.i.d.
copy of variables d; given F;_1. It is easy to see that using
this construction and taking

]:,1{ :]:@ \/0'(61,...,61'),
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the sequences {d;}, {e;} satisfy

L(ds|Fi-q) = L{e;|Fi_1) = L(ei|G),

1—

and the sequence eq, ...., €, is conditionally independent given;
g = F -

A sequence {e; } of random variables satisfying the above
conditions is said to be a decoupled F}-tangent version of
{d:}. :

It is important to remark that linearity of expectations
provides the canonical example of a decoupling “equality”
as we will show next.

In conditionally independent decoupling one replaces
the sequence of dependent random variables {d;} by a decoupled,G
conditionally independent sequence. ,

If E|d;| < oo for all 7, then,

i=1 =

as we show next.

EY 4= Ed = BEGIFL) = 3 BEEIF )
= E(B(el9) = BEQ_elg) =EY e
=1 i=1 i=1
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The first general decoupling inequality for tangent se-
quences was obtained by Zinn (1985) and extended by Hitczenko
(1988).

A turning point in the theory of decoupling for tangent
sequences has been a 1986 result of Kwapien and Woyczyn-
ski (see Kwapien and Woyczinsky (1992) for the exact ref-
erence). It is shown in that paper for the first time, and in
a precise manner, that one can always obtain a decoupled
tangent sequence to any adapted sequence hence, making
general decoupling inequalities widely applicable

Developments of the theory are found in hard copy in
Kwapien and Woyczynski (1992) and de la Pena and Gine
(1999).

Decoupling and Self-Normalization

Next, we present a sharp decoupling inequality with
constraints from de la Pena (1999) which naturally lead to
the development of self-normalized inequalities for martin-
gales. This result will be used later to obtain a sharp exten-
sion of Bernstein’s inequality for independent random vari-
ables to the case of self-normalized martingales.

Let {d;} and {e;} be two tangent sequence with {e;}
decoupled. Then for all g > 0 adapted to o({d;})

(1) Eg eXp{AZdi) <.|Eg? exp(Z)\Zei).
i=1

1=1

Bernstein’s Inequality. Let {z;} be a sequence of inde-
pendent random variables. Assume that E(z;) = 0 and
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E(x?) = 07 < oo and set vh = D5 3. Furthermore, as-

sume that there exists a constant 0 < ¢ < oo such that,
almost surely, E(|z;|*) < (k!/2)o7c¢* 2 for all k > 2. Then
for all z > 0,

CL‘2

2(v2 + cx)

(8) P() "z > x) < exp(— ).

=1

The following is a self-normalized analog for random
variables from de la Pena (1999).

Self-normalized Bernstein’s Inequality. Let {d;, F;}
be a martingale difference sequence. Assume the following
E(dj|Fj-1) = 0 and E(d3|F;_1) = o7 < oo (satisfied by
sub-exponential random variables) and set V,? = Z;” Xt
Furthermore, assume that there exists a constant 0 < c < 00
such that, almost surely, E(|d;|*|F;—1) < (k!/2)05 c*=2 for

all k > 2. Then for all z,y > 0,

d V2 S0
= <
P V2 >‘) E[exp( 2(1—!—0:{:)‘ V2

> 1z)] <

\/E,[exm—%%)).

Furthermore,
D i i ] z?
= < <



Proof: Use (1) to.decouple with the constraint g = 1(37 <

y). Continue conditionally on G using the fact that the €;
are conditionally independent given G.

Example: Conditionally Independent Sampling of
Simple Random Sampling Without Replacement.

In this example we show how to decouple a sample with-
out replacement and show how the decoupled sequence re-
lates to sampling with replacement. (eg. In survey sampling
we treat draws without replacement as if they were indepen-
dent, though they are actually weakly coupled). Consider
drawing samples of size n from a population C which consists
of N values. Let d, ..., d, denote a sample without replace-
ment and ¥, ..., yn & sample with replacement. A condition-
ally independent sample can be constructed as follows. At
the ith stage of a simple random sampling without replace-
ment both d; and e; are obtained sampling uniformly from
{c1,...,cn} excluding {di,...,d;—1}. This may be attained
by selectively returning items to the C' . More precisely, at
the i-th stage first draw e; and return it to the population.
Then draw d; and put its value aside. It is easy to see that
the above procedure will make {e;} tangent to {d;} with
Fn = 0o(dy,...,dn;e€1,...,e,). More over, the sequence {e;} is
conditionally independent given G = a(dl, ey AN



The tools developed have been successfully applied in di-
verse areas such as extension of martingale results to infinite
dimensions including Banach spaces, self-normalized martin-
gales, stochastic integration, empirical processes including
U-statistics and U-processes, density estimation, sequential
analysis, matrix completion. See Kwapien and Woyczyn-
ski (1992), de la Pena and Gine (1999) and de la Pena et.
al. (2009). More recent applications of conditionally inde-
pendent decoupling include Candes and Recht (2009) which
deals with exact matrix completion via convex optimization.
There is a regent surge of interest in applying and developing
the methods presented in this survey. In particular Rahk-
lyn et. al. (2015) uses conditional independent decoupling
techniques to study sequential complexities and exponential
inequalities for martingales in Banach spaces.



Complete Decoupling

Let {d;i =1, M n} be a sequence of dependent random
variables with F|d;| < co. Let {y;i =1,...,n} be a sequence
of independent variables where for each ¢, d; and y; have
the same marginal distributions. Since FEd; = Evy;, linear-
ity of expectations provides the first “complete decoupling”

equality:
EY di=E> yu.
i=1 i=1

As a concreté example for constructing the sequence
{v:}, let {dgj),i =1,...,n;j =1,...,n} be independent copies
of {d;} and take y; = dz(.i). Then, it is easy to see that {y;} is
a sequence of independent random variables since each row
in the array is independent of the others and

Ezn:di - zn:Ed,,; . iEdZ@ = iEy — Eiy
=1 =1 =1 1=1 1=1

\

In complete decoupling, one compares Ef(>_d;)to Ef(D_vi).
for more general functions than f(x) = z, including convex
and concave functions.

Example: Complete Decoupling of Simple random
Sampling without Replacement

Let the population C' consist of N values ¢, ca, ..., CN.
Let dy,ds, ...,d, denote a random sample without replace-
ment from C and let y1,¥o, ..., yn denote a random sample
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with replacement from C'. The random variables yi, ..., yn
are independent and identically distributed. Moreover, for
all i, d; and the y; have the same marginal distributions.
Hoeffding (1963) developed the following widely used com-
plete decoupling inequality. For every continuous and convex
function @

BO(Y di) < BE(Yy).

=1

Shao (2000) extended it to the case of negatively associated
random variables.

As a special case of the (sharp) complete decoupling in-
equality for sums of non-negative dependent random vari-
ables presented below, provides a reverse Ho.‘eﬂ"dihg’s in-
equality for L, moments. The price one pays is a constant.

Makarychev and Sviridenko (2018) uses the following
complete decoupling inequalities to develop algorithms for
the distribution of loads in parallel machines. More precisely
to develop stochastic optimization tools for energy efficient
routing load balancing in parallel machines.

Theorem Let 7 be a Poisson random variable with. mean
1. Assume that d;’s are a Sequénce of arbitrarily dependent
non-negative random variables. Let yi, ..., yn be independent
random variables with y; having the same distributions as d;
for all i. Assume that 7 is independent of y, ..., y,. Then,
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for all convex functions ®(-),
E‘I’(Z Yi) < E‘I’(Wzdi)-
i=1 i=1
The inequality reverses when the functions ® are concave.

In this case,

E®(r Z d;) < E@(Z Ys)-

If ®, ®(0) = 0 is concave increasing then one can show
that,

e—1

It is interesting to note that when
®(x) = z, then

E;y zEw(l)E;di :Ez_;y

A companion result involves a mean-zero martingale dif-
ference sequence {d;}

‘N n
E|Y dilf <cpB|) uil”,
=1 i=1
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For 1 <p < 2. It is easy to see that c; = 1. A stronger form
of the result is

n n
E _max ]Zdi\p < CpEIZyi\p.
j=1,...,n " &

Proof Sketch: First use the Burkholder-Davis-Gundy in-
equality to change the problem into one of non-negative vari-
ables, decouple and use the square function argument again.

Example

If the {d;} are stationary either non-negative, or a mar-
tingale difference sequence, then the {y;} are i.i.d.

The above result was introduced by de la Pena (1990)
in the case of concave and some convex functions including
powers with different constants. The sharp constants were
ﬁrst obtained in de la Pena, Ibragimov

- Sharakhmetov (2003) and Makarychev and SV1r1denko
(2018) in its full generality.

More recently in Chollette, Klass, de la Pena (2023)
we have developed a companion sharp decoupling inequality
for maximums where the d; are arbitrary dependent random
variables (no further assumptions).

P( max di>t)_<_ P( max yi>t).

i=1,....,.n =~ e— 1 1=1,...,n

for all t. The proof follows an optimization argument
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| Example.

Suppose that you wan to find the value ta,d for which

P( max d; > ta;d) < .

1=1,...,n

This can be calculated if you are able to first calculate
the value te-1 y such that

e

which might be easier due to independence.

Finally, set £, 4 = tg;_la’y.
Summary The tools developed have been successfully ap-
plied in diverse areas such as extension of martingale results
to infinite dimensions including Banach spaces, stochastic
integration, empirical processes including U-statistics and
U-processes, density estimation, sequential analysis, matrix
completion and several others. See Kwapien and Woyczyn-
ski (1992), de la Pena and Gine (1999) and de la Pena et.
al. (2009) for details. |

Additional applications of conditionally independent de-
coupling include Candes and Recht (2009) which deals with
exact matrix completion via convex optimization. There is
a recent surge of interest in applying and developing the
~ methods presented in this survey. In particular Rahklyn
et. al. (2015) uses conditional independent decoupling tech-
niques to study sequential complexities and exponential in-
equalities for martingales in Banach spaces. Makarychev
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and Sviridenko (2018) uses complete decoupling inequalities
to develop stochastic optimization tools for energy efficient
routing load balancing in parallel machines.

Summary

As can be seen from the broad range of results and appli-
cations, it is worth looking at problems using the decoupling
perspectives.
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