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Toruń, Poland



MultiPhDF

Adam Jakubowski

Extreme Value
Theory

Single sequence
methods

An example on the
extremal index

General criterion
for d = 1

Multivariate time
series

2

This is a joint work with Thomas Mikosch,
Igor Rodionov and Natalia Soja-Kukieła



MultiPhDF

Adam Jakubowski

Extreme Value
Theory

Single sequence
methods

An example on the
extremal index

General criterion
for d = 1

Multivariate time
series

3

Extreme Value Theory in contemporary science

• Contemporary world faces growing number of unpredictable
phenomena which are extremal in their scale.
• Therefore the Stochastic Extreme Value Theory is becoming more and

more important tool in various ares of contemporary science:
climatology, hydrology, demography, economics ...
• A huge part of applications of the SEVT is related to the asymptotic

analysis of maxima of uni- and multivariate time series.
• We are going to present an original view into this apparently classic

theory.
• This presentation is purely theoretical, but promising simulation studies

and analysis of real data are coming.
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A standard look at limit theorems for maxima of iid sequences

• Let X1,X2, . . . , be an i.i.d. sequence of random variables with marginal
distribution function F and let

Mn = max
1¬j¬n

Xj .

• Following Tippett, Fischer, Gnedenko, Gumbel, de Haan,. . . people
used to look for conditions on F guaranteeing existence of sequences
an and bn such that

P
(
Mn ¬ anx + bn)→ K (x), x ∈ R1,

where K is non-degenerate.
• This parallels the theory for sums, leads to the notion of max-stable

distributions, domains of attraction etc.
• We claim that the asymptotics of 1− F (anx0 + bn) for a single x0 such

that 0 < K (x0) < 1 determines everything.
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Regularity, tail equivalence, single sequence of levels

• G is regular (in the sense of O’Brien (1974)), if

G(G∗−) = 1 and lim
x→G∗−

1−G(x−)

1−G(x)
= 1,

(
G∗ = sup{x ; G(x) < 1}

)
.

Observation (Doukhan, J. & Lang (2015))

Let G be a regular distribution function and H be any distribution function.
The following are equivalent:

• There exists a sequence vn → G∗− and a number γ ∈ (0,1) such that
Gn(vn)→ γ,Hn(vn)→ γ.
•

sup
x∈R1

∣∣Gn(x)− Hn(x)
∣∣→ 0, as n→∞.

• H is regular and strictly tail-equivalent to G:

G∗ = H∗ and
1− H(x)

1−G(x)
→ 1, as x → G∗−.
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Phantom distribution function

• This notion goes back to O’Brien (1987).
• Let {Xj} be a stationary sequence with partial maxima

Mn = max
1¬j¬n

Xj

and the marginal distribution function F (x) = P(X1 ¬ x).
• {Xn} is said to admit a phantom distribution function G if

sup
u∈R

∣∣P(Mn ¬ u)−Gn(u)
∣∣→ 0, as n→∞.

• G is determined uniquely up to the tail equivalence!
• If G of the form G(x) = F θ(x), for some θ ∈ (0,1], then θ is the extremal

index due to Leadbetter (1983).
• The extremal index is a commonly used tool in applications of the

Extreme Value Limit Theory.
• The phantom distribution function is of essentially wider applicability.
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Existence of a continuous phantom distribution function is quite
common!

Theorem (Doukhan, J. & Lang (2015))

If {Xj} is a stationary α-mixing sequence with continuous marginals, then it
admits a continuous phantom distribution function.

• There are non-ergodic sequences admitting a continuous phantom
distribution function.
• If the covariation function rn of a standard stationary Gaussian

sequence satisfies Berman’s condition rn ln n→ 0, then Φ(x) is the
phantom distribution function (and the extremal index is equal to 1).
• If rn is such that rn ln n→ ρ > 0, then there is no phantom distribution

function.
• There are stationary sequences for which the extremal index is

uninformative while phantom distribution functions do exist.
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The extremal index zero

• Following Leadbetter (1983) we say that {Xj} has the extremal index
θ = 0 if P

(
Mn ¬ un(τ)

)
→ 1 whenever {un(τ)} is such that

n(1− F (un(τ))→ τ ∈ (0,+∞).
• Intuitively this means that the partial maxima Mn increase much slower

comparing with the independent case and that information on F alone
cannot determine the limit behavior of laws of Mn.
• Asmussen (1998) The Lindley process

Xj+1 =
(
Xj + Zj

)+
, j = 1,2, . . . ,

where Z1,Z2, . . . are i.i.d. with a subexponential distribution function H
and mean −m < 0 has the extremal index zero.
• Roberts, Rosenthal, Segers and Sousa (2006) The Random Walk

Metropolis Algorithm with a heavy-tailed target density has the extremal
index zero.
• In both cases a continuous phantom distribution function exists.
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Some comments

• In the above examples the extremal index is uninformative but still exists
(θ = 0).
• We shall show that there are stationary sequences which admit a

continuous phantom distribution function, while the extremal index does
not exist.
• Suppose {Xj} admits a continuous phantom distribution G. Define

θ+ = lim sup
x→F∗

1−G(x)

1− F (x)

θ− = lim inf
x→F∗

1−G(x)

1− F (x)
.

• Clearly, the extremal index θ ∈ [0,1] exists iff θ+ = θ−(= θ).
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Example

• Let us consider an exchangeable sequence of random variables {Xj},
which is defined as an iid sequence conditional on some random
variable ξ with discrete distribution

pk = P(ξ = k) =
1

k(k + 1)
=

1
k
− 1

k + 1
, k = 1,2, . . . .

• Let vn ↗ F∗ and define mk = [log4 k ] mod 2, k ­ 1.
• P(Xj ¬ x | ξ = k) = Fk (x) is given by

Fk (x) =


0, x ¬ v1 ,

1− 1/
√

n, x ∈ (vn, vn+1] , if n < k2 and mk = 0 ,
1− 1/(2

√
n), x ∈ (vn, vn+1] , if n < k2 and mk = 1 ,

1− 1/n, x ∈ (vn, vn+1] ,n ­ k2 .
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Example - continued

• Using results of J. (1993) and Doukhan, J. & Lang (2015) it is easy to
show that {Xj} admits a continuous phantom distribution function and
P
(
Mn ¬ vn

)
→ e−1.

• On the other hand, if we choose n such that
√

n is an integer, then

nP(X1 > vn) =
∑

1¬k<
√

n

pk +
√

n
∑
√

n¬k

pk (mk + 1)−1

= 1− 1/
√

n +
√

n
∑
√

n¬k

pk (mk + 1)−1 .

• It is then a matter of patient calculation to see that for n = 44` we have

nP(X1 > vn) = 1− 1/
√

n + 0.9,

while for n = 44`+2 we obtain

nP(X1 > vn) = 1− 1/
√

n + 0.6.

• Consequently θ− ¬ 1/1.9 < 1/1.6 ¬ θ+.

In fact, 1/2 ¬ θ− < θ+ ¬ 2/3.
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PhDF and the single sequence of levels

• We have observed that maxima of iid sequences are governed by a
single sequence of levels.
• The same is true for maxima of stationary sequences admitting a

phantom distribution function. Distributional properties of maxima can
be encoded into a single sequence of levels!
• This can be clearly seen in the general criterion for existence of

phantom distribution functions.
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General criterion for d = 1

Theorem (J. (1993), Doukhan, J. & Lang (2015))

Let {Xj} be a stationary process. The following conditions are equivalent.

• {Xj} admits a continuous phantom distribution function.
• There exist: a non-decreasing sequence {vn} and a number γ ∈ (0,1)

such that
P(Mn ¬ vn)→ γ,

and the following Condition B∞({vn}) holds:

sup
p,q∈N

∣∣P(Mp+q ¬ vn
)
− P

(
Mp ¬ vn

)
P
(
Mq ¬ vn

)∣∣→ 0.

• There exist: a non-decreasing sequence {vn} and a number γ ∈ (0,1)
such that on some dense subset Q ⊂ R+

P
(
Mbntc ¬ vn

)
→ γt , t ∈ Q.
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What about random vectors?

• Consider d = 2.
• The definition is immediate: G is a phantom distribution function for a

stationary sequence of random vectors(
X (1)

1 ,X (2)
1
)
,
(
X (1)

2 ,X (2)
2
)
,
(
X (1)

3 ,X (2)
3
)
, . . .

with partial maxima

Mn =
(
M(1)

n ,M(2)
n
)

=
(

max
1¬j¬n

X (1)
j , max

1¬j¬n
X (2)

j
)
,

if
sup

u=(u1,u2)∈R2

∣∣∣P(Mn ¬ u
)
−Gn(u)

∣∣∣→ 0, as n→∞.

• In fact, it is more convenient to take sup over R2!
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Go like R. Perfekt (1997), but our way

• Find v (i)
n , i = 1,2, such that

P
(
M1

n ¬ v (1)
n
)
→ ρ1 ∈ (0,1),P

(
M2

n ¬ v (2)
n
)
→ ρ2 ∈ (0,1).

• For s = (s1, s2) ∈ [0,+∞]2 define

vn(s) =
(
v (1)
[ns1]

, v (2)
[ns2]

)
.

• Consider
L = {s ∈ [1,+∞)2 ; s1 ∧ s2 = 1}.

• Assume that for some ρ : L → (0,1)

P
(
Mn ¬ vn(s)

)
→ ρ(s), s ∈ L.
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Go like R. Perfekt (1997), but our way

• Assume that B∞(vn(s)) holds for every s ∈ L, i.e. for all sequences pn
and qn and as n→∞

P
(
Mpn+qn ¬ vn(s)

)
− P

(
Mpn ¬ vn(s)

)
P
(
Mqn ¬ vn(s)

)
→ 0.

Theorem

• Condition B∞(vn(s)) holds for every s ∈ [0,+∞]2.
• There exists H : [0,+∞]2 → [0,1] such that

P
(
Mn ¬ vn(s)

)
→ H(s), s ∈ [0,+∞]2.
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The form of H(s)

Theorem

H(s) defined on [0,+∞)2 is the cumulative distribution function of a
two-dimensional extreme value distribution.

Moreover, if H(1) and H(2) are the marginal cumulative distribution functions,
then

H(i)((− log ρi)s) = G2,1(s), i = 1,2,

where G2,1(s) is the CDF of the standard Fréchet extreme value distribution.
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Phantom distribution function for random vectors

Theorem

G(x) = H(n(x)),

where
ni(x) = sup{n ∈ N ; v (i)

n ¬ xi}, i = 1,2,

is a phantom distribution function for X1,X2, . . ..
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Multivariate extremal index

• Perfect (1997) defined an extremal index function θ(x). It mimics the
one-dimensional case and does not give explicit formula for a phantom
distribution function.
• Our formalism leads to an extremal copula θ(x): If G is a phantom

distribution function and

G(x , y) = θ
(
FX1(x),FX2(y)

)
.

• The task is then to find an efficient description of θ(x , y) by comparison
of tails of G and F .
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