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Extreme Value Theory in contemporary science

e Contemporary world faces growing number of unpredictable
phenomena which are extremal in their scale.
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Extreme Value Theory in contemporary science

e Contemporary world faces growing number of unpredictable
phenomena which are extremal in their scale.

¢ Therefore the Stochastic Extreme Value Theory is becoming more and
more important tool in various ares of contemporary science:
climatology, hydrology, demography, economics ...
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Extreme Value Theory in contemporary science

e Contemporary world faces growing number of unpredictable
phenomena which are extremal in their scale.

¢ Therefore the Stochastic Extreme Value Theory is becoming more and
more important tool in various ares of contemporary science:
climatology, hydrology, demography, economics ...

¢ A huge part of applications of the SEVT is related to the asymptotic
analysis of maxima of uni- and multivariate time series.
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e Contemporary world faces growing number of unpredictable
phenomena which are extremal in their scale.

¢ Therefore the Stochastic Extreme Value Theory is becoming more and
more important tool in various ares of contemporary science:
climatology, hydrology, demography, economics ... oo Value

¢ A huge part of applications of the SEVT is related to the asymptotic Theory
analysis of maxima of uni- and multivariate time series.

e We are going to present an original view into this apparently classic
theory.
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e Contemporary world faces growing number of unpredictable
phenomena which are extremal in their scale.

¢ Therefore the Stochastic Extreme Value Theory is becoming more and
more important tool in various ares of contemporary science:
climatology, hydrology, demography, economics ... oo Value

¢ A huge part of applications of the SEVT is related to the asymptotic Theory
analysis of maxima of uni- and multivariate time series.

e We are going to present an original view into this apparently classic
theory.

¢ This presentation is purely theoretical, but promising simulation studies
and analysis of real data are coming.
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A standard look at limit theorems for maxima of iid sequences

e Let Xy, Xa, ..., be ani.i.d. sequence of random variables with marginal
distribution function F and let

Mp = max X.

1<j<n
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A standard look at limit theorems for maxima of iid sequences

e Let Xy, Xa, ..., be ani.i.d. sequence of random variables with marginal
distribution function F and let

Mp = max X.

1<j<n

¢ Following Tippett, Fischer, Gnedenko, Gumbel, de Haan,... people
used to look for conditions on F guaranteeing existence of sequences
ap and by, such that

P(M, < anx + by) — K(x),x € R,

where K is non-degenerate.
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A standard look at limit theorems for maxima of iid sequences
e Let Xy, Xa, ..., be ani.i.d. sequence of random variables with marginal
distribution function F and let

Mp = max X.

1<j<n

¢ Following Tippett, Fischer, Gnedenko, Gumbel, de Haan,... people
used to look for conditions on F guaranteeing existence of sequences
ap and by, such that

P(M, < anx + by) — K(x),x € R,

where K is non-degenerate.

¢ This parallels the theory for sums, leads to the notion of max-stable
distributions, domains of attraction etc.
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A standard look at limit theorems for maxima of iid sequences

e Let Xy, Xa, ..., be ani.i.d. sequence of random variables with marginal
distribution function F and let

Mp = max X.

1<j<n

¢ Following Tippett, Fischer, Gnedenko, Gumbel, de Haan,... people
used to look for conditions on F guaranteeing existence of sequences
ap and by, such that

P(M, < anx + by) — K(x),x € R,

where K is non-degenerate.

¢ This parallels the theory for sums, leads to the notion of max-stable
distributions, domains of attraction etc.

¢ We claim that the asymptotics of 1 — F(anxo + bn) for a single xp such
that 0 < K(xo) < 1 determines everything.
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Regularity, tail equivalence, single sequence of levels
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Regularity, tail equivalence, single sequence of levels

e Gis regular (in the sense of O’Brien (1974)), if

G(G.—) =1

and

1— G(x—)

lim

X—Gy— 11— G(X)

=1

)

(G, = sup{x; G(x) < 1}).
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Let G be a regular distribution function and H be any distribution function.
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e Gisregular (in the sense of O’Brien (1974)), if Adam Jakubowsk
_ L 1-G(x-) _ i o
(&
Observation (Doukhan, J. & Lang (2015)) M

Let G be a regular distribution function and H be any distribution function.
The following are equivalent:

® There exists a sequence v, — G.— and a number v € (0, 1) such that Single sequence
G"(vp) — v, H"(vp) — 7. methods

sup |G"(x) — H"(x)| — 0, as n — oo.
XeR!




Regularity, tail equivalence, single sequence of levels MultiPhDF

e Gisregular (in the sense of O’Brien (1974)), if Adam Jakubowsk
_ L 1-G(x-) _ i o
(&
Observation (Doukhan, J. & Lang (2015)) M

Let G be a regular distribution function and H be any distribution function.
The following are equivalent:

¢ There exists a sequence v, — G.— and a number v € (0, 1) such that Single sequence
G"(vp) — v, H"(vp) — 7. methods

sup |G"(x) — H"(x)| — 0, as n — oo.
XeR!

e His regular and strictly tail-equivalent to G:

1 — H(x)

G.=H, and =G

— 1, as x — G,—.
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Phantom distribution function
¢ This notion goes back to O’Brien (1987).
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Phantom distribution function
¢ This notion goes back to O’Brien (1987).
* Let {X;} be a stationary sequence with partial maxima
Mp = max X;

1<j<n

and the marginal distribution function F(x) = P(X; < x).
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Phantom distribution function
¢ This notion goes back to O’Brien (1987).
* Let {X;} be a stationary sequence with partial maxima
Mp = max X;

1<j<n

and the marginal distribution function F(x) = P(X; < x).
e {X,} is said to admit a phantom distribution function G if

sup |P(M, < u) — G"(u)| — 0, as n — oo.
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Phantom distribution function
¢ This notion goes back to O’Brien (1987).
* Let {X;} be a stationary sequence with partial maxima
Mp = max X;

1<j<n

and the marginal distribution function F(x) = P(X; < x).
e {X,} is said to admit a phantom distribution function G if

sup |P(M, < u) — G"(u)| — 0, as n — oo.

ueR

e G is determined uniquely up to the tail equivalence!
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Phantom distribution function MultiPhDF
This notion goes back to O'Brien (1987). Adam Jakubowsk

* Let {X;} be a stationary sequence with partial maxima f, 2
cvu
Hm
Mp = max X; 2 X
1<j<n :i @
and the marginal distribution function F(x) = P(X; < x). N
e {X,} is said to admit a phantom distribution function G if
sup ’P(Mn < U) — Gn(U)‘ — 0, as n — oo. Single sequence
UER methods

G is determined uniquely up to the tail equivalence!

If G of the form G(x) = F%(x), for some 6 € (0, 1], then @ is the extremal
index due to Leadbetter (1983).



Phantom distribution function

This notion goes back to O’Brien (1987).
Let {X;} be a stationary sequence with partial maxima
Mp = max X;
1<j<n
and the marginal distribution function F(x) = P(X; < x).
{Xn} is said to admit a phantom distribution function G if

sup |P(M, < u) — G"(u)| — 0, as n — oo.
ueR

G is determined uniquely up to the tail equivalence!
If G of the form G(x) = F%(x), for some 6 € (0, 1], then @ is the extremal
index due to Leadbetter (1983).

The extremal index is a commonly used tool in applications of the
Extreme Value Limit Theory.
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Phantom distribution function

This notion goes back to O’Brien (1987).
Let {X;} be a stationary sequence with partial maxima
Mp = max X;
1<j<n
and the marginal distribution function F(x) = P(X; < x).
{Xn} is said to admit a phantom distribution function G if
sup |P(M, < u) — G"(u)| — 0, as n — oo.
ueR
G is determined uniquely up to the tail equivalence!

If G of the form G(x) = F%(x), for some 6 € (0, 1], then @ is the extremal
index due to Leadbetter (1983).

The extremal index is a commonly used tool in applications of the
Extreme Value Limit Theory.

The phantom distribution function is of essentially wider applicability.
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Existence of a continuous phantom distribution function is quite

common!
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Existence of a continuous phantom distribution function is quite AL
common ! Adam Jakubowski

Theorem (Doukhan, J. & Lang (2015))

If {X;} is a stationary a-mixing sequence with continuous marginals, then it
admits a continuous phantom distribution function.
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Existence of a continuous phantom distribution function is quite
common!

Theorem (Doukhan, J. & Lang (2015))

If {X;} is a stationary a-mixing sequence with continuous marginals, then it
admits a continuous phantom distribution function.

e There are non-ergodic sequences admitting a continuous phantom
distribution function.

e [f the covariation function r, of a standard stationary Gaussian
sequence satisfies Berman'’s condition r,In n — 0, then ®(x) is the
phantom distribution function (and the extremal index is equal to 1).
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Existence of a continuous phantom distribution function is quite
common!

Theorem (Doukhan, J. & Lang (2015))

If {X;} is a stationary a-mixing sequence with continuous marginals, then it
admits a continuous phantom distribution function.

e There are non-ergodic sequences admitting a continuous phantom
distribution function.

e [f the covariation function r, of a standard stationary Gaussian
sequence satisfies Berman'’s condition r,In n — 0, then ®(x) is the
phantom distribution function (and the extremal index is equal to 1).

e If rpis such that r,Inn — p > 0, then there is no phantom distribution
function.
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Existence of a continuous phantom distribution function is quite LS
common ! Adam Jakubowski

Theorem (Doukhan, J. & Lang (2015))

If {X;} is a stationary a-mixing sequence with continuous marginals, then it
admits a continuous phantom distribution function.
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e There are non-ergodic sequences admitting a continuous phantom
distribution function.

e [f the covariation function r, of a standard stationary Gaussian Single sequence
sequence satisfies Berman'’s condition r,In n — 0, then ®(x) is the
phantom distribution function (and the extremal index is equal to 1).

e If rpis such that r,Inn — p > 0, then there is no phantom distribution
function.

¢ There are stationary sequences for which the extremal index is
uninformative while phantom distribution functions do exist.
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The extremal index zero

¢ Following Leadbetter (1983) we say that { X;} has the extremal index
0 = 0 if P(Ms < un(7)) — 1 whenever {u,(7)} is such that
n(1 — F(up(7)) — 7 € (0, +00).
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The extremal index zero

¢ Following Leadbetter (1983) we say that { X;} has the extremal index
6 = 0 if P(M, < un(7)) — 1 whenever {un(7)} is such that
n(1 — F(un(r)) — 7 € (0, +00).

¢ [ntuitively this means that the partial maxima M, increase much slower
comparing with the independent case and that information on F alone
cannot determine the limit behavior of laws of M.
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The extremal index zero

¢ Following Leadbetter (1983) we say that { X;} has the extremal index
6 = 0 if P(M, < un(7)) — 1 whenever {un(7)} is such that
n(1 — F(up(7)) — 7 € (0, +00).

¢ [ntuitively this means that the partial maxima M, increase much slower
comparing with the independent case and that information on F alone
cannot determine the limit behavior of laws of M.

e Asmussen (1998) The Lindley process
)(j+1 - ()(_/+Zj)+7 ]: 1727"'7

where Z;, 2, . .. are i.i.d. with a subexponential distribution function H
and mean —m < 0 has the extremal index zero.
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The extremal index zero
¢ Following Leadbetter (1983) we say that { X;} has the extremal index
0 = 0 if P(Ms < un(7)) — 1 whenever {u,(7)} is such that
n(1 — F(up(7)) — 7 € (0, +00).
¢ [ntuitively this means that the partial maxima M, increase much slower

comparing with the independent case and that information on F alone
cannot determine the limit behavior of laws of M.

e Asmussen (1998) The Lindley process
)(j+1 - ()(_/+Zj)+7 ]: 1727"'7

where Z;, 2, . .. are i.i.d. with a subexponential distribution function H
and mean —m < 0 has the extremal index zero.

e Roberts, Rosenthal, Segers and Sousa (2006) The Random Walk
Metropolis Algorithm with a heavy-tailed target density has the extremal
index zero.
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The extremal index zero

Following Leadbetter (1983) we say that { X;} has the extremal index

0 = 0 if P(Ms < un(7)) — 1 whenever {u,(7)} is such that

n(1 — F(up(7)) — 7 € (0, +00).

Intuitively this means that the partial maxima M, increase much slower
comparing with the independent case and that information on F alone
cannot determine the limit behavior of laws of M.

Asmussen (1998) The Lindley process
)(j+1 - ()(_/+Zj)+7 ]: 1727"'7
where Z;, 2, . .. are i.i.d. with a subexponential distribution function H

and mean —m < 0 has the extremal index zero.

Roberts, Rosenthal, Segers and Sousa (2006) The Random Walk
Metropolis Algorithm with a heavy-tailed target density has the extremal
index zero.

In both cases a continuous phantom distribution function exists.
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Some comments

¢ In the above examples the extremal index is uninformative but still exists
(0 =0).
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¢ In the above examples the extremal index is uninformative but still exists
(6 =0).
¢ We shall show that there are stationary sequences which admit a

continuous phantom distribution function, while the extremal index does
not exist.
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Some comments MultiPhDF

Adam Jakubowski

s n
¢ In the above examples the extremal index is uninformative but still exists 5 ©
(0 =0). E E
¢ We shall show that there are stationary sequences which admit a f @i
continuous phantom distribution function, while the extremal index does K
not exist.
* Suppose {X;} admits a continuous phantom distribution G. Define
, 1 - G(x) memods
6" = limsup ———
e T F(x)
.. 1-Gx)
0~ =liminf ———=.
X—F, 1-— F(X)

e Clearly, the extremal index 6 € [0, 1] exists iff 67 = 6~ (= 9).
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* Let us consider an exchangeable sequence of random variables {X;},

sn
which is defined as an iid sequence conditional on some random é :
variable ¢ with discrete distribution . /\
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Example

* Let us consider an exchangeable sequence of random variables {X;},
which is defined as an iid sequence conditional on some random
variable ¢ with discrete distribution

o1 1 k=1,2,....

Pe=PE=K =100 "k k1

® Let v, / F, and define my = [logy k] mod 2, k > 1.
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Example

* Let us consider an exchangeable sequence of random variables {X;},

which is defined as an iid sequence conditional on some random
variable ¢ with discrete distribution

1 1 1

® Let v, / F, and define my = [logy k] mod 2, k > 1.
* P(X; < x| &= k)= Fx(x) is given by

0, x < vy,

1—1/v/n, X € (Vn, Vayq],if n< k2and mg =0,
1—1/(2y/n), x € (Vn,Vpyq],ifn< k®and my =1,
1—1/n, X € (Vn, Vnyt],n > k2.

F}(X)ZZ
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Example - continued
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Example - continued

e Using results of J. (1993) and Doukhan, J. & Lang (2015) it is easy to
show that {X;} admits a continuous phantom distribution function and
P(My < vp) — e .
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Example - continued

e Using results of J. (1993) and Doukhan, J. & Lang (2015) it is easy to
show that {X;} admits a continuous phantom distribution function and
P(My < vp) — e .

¢ On the other hand, if we choose n such that \/n is an integer, then

nPXi >va)= > pk+vn Y pe(mi+1)7

1<k<v/n vn<k
=1-1/Vn+vn > p(mc+1)7".
Vn<k
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Example - continued

e Using results of J. (1993) and Doukhan, J. & Lang (2015) it is easy to
show that {X;} admits a continuous phantom distribution function and
P(My < vp) — e .

¢ On the other hand, if we choose n such that \/n is an integer, then

nP(Xy > ve)= > pk+vn > pe(mk+1)7"

1<k<v/n vn<k
=1-1/Vn+vn > p(mc+1)7".
Vn<k

e |t is then a matter of patient calculation to see that for n = 4% we have
nP(X; > vp)=1-1/v/n+0.9,
while for n = 442 we obtain

nP(Xy > vp)=1-1/v/n+0.6.
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Example - continued

e Using results of J. (1993) and Doukhan, J. & Lang (2015) it is easy to
show that {X;} admits a continuous phantom distribution function and
P(My < vp) — e .

¢ On the other hand, if we choose n such that \/n is an integer, then

nP(Xy > ve)= > pk+vn > pe(mk+1)7"

1<k<v/n vn<k
=1-1/Vn+vn > p(mc+1)7".
Vn<k

e |t is then a matter of patient calculation to see that for n = 4% we have
nP(Xy > vp)=1-1/v/n+0.9,
while for n = 44+2 we obtain
nP(Xy > vp)=1-1/v/n+0.6.
e Consequently 6~ <1/1.9<1/1.6 <6*.
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Example - continued

e Using results of J. (1993) and Doukhan, J. & Lang (2015) it is easy to
show that {X;} admits a continuous phantom distribution function and
P(My < vp) — e .

¢ On the other hand, if we choose n such that \/n is an integer, then

nP(Xy > ve)= > pk+vn > pe(mk+1)7"

1<k<v/n vn<k
=1-1/Vn+vn > p(mc+1)7".
Vn<k

e |t is then a matter of patient calculation to see that for n = 4% we have
nP(X; > vp)=1-1/v/n+0.9,
while for n = 442 we obtain

nP(Xy > vp)=1-1/v/n+0.6.

e Consequently 6~ <1/1.9<1/1.6 <f*.Infact, 1/2 <6~ <6t <2/3.
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PhDF and the single sequence of levels
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PhDF and the single sequence of levels

¢ We have observed that maxima of iid sequences are governed by a
single sequence of levels.
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PhDF and the single sequence of levels

¢ We have observed that maxima of iid sequences are governed by a
single sequence of levels.

¢ The same is true for maxima of stationary sequences admitting a
phantom distribution function. Distributional properties of maxima can
be encoded into a single sequence of levels!
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PhDF and the single sequence of levels

¢ We have observed that maxima of iid sequences are governed by a
single sequence of levels.

¢ The same is true for maxima of stationary sequences admitting a
phantom distribution function. Distributional properties of maxima can
be encoded into a single sequence of levels!

¢ This can be clearly seen in the general criterion for existence of
phantom distribution functions.
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General criterion for d = 1
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General criterion for d = 1
Theorem (J. (1993), Doukhan, J. & Lang (2015))
Let {X;} be a stationary process. The following conditions are equivalent.
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General criterion for d = 1
Theorem (J. (1993), Doukhan, J. & Lang (2015))
Let {X;} be a stationary process. The following conditions are equivalent.
¢ {X;} admits a continuous phantom distribution function.

¢ There exist: a non-decreasing sequence {v,} and a number v € (0, 1)
such that
P(Mp < Vn) — 7,

and the following Condition B..({v,}) holds:

p,geN
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General criterion for d = 1
Theorem (J. (1993), Doukhan, J. & Lang (2015))
Let {X;} be a stationary process. The following conditions are equivalent.
¢ {X;} admits a continuous phantom distribution function.

¢ There exist: a non-decreasing sequence {v,} and a number v € (0, 1)
such that
P(Mp < Vn) — 7,

and the following Condition B..({v,}) holds:

p,geN

¢ There exist: a non-decreasing sequence {v,} and a number v € (0, 1)
such that on some dense subset Q C R™

]P}<MLHI‘J < Vn) — ’y[, te Q.
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What about random vectors?
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What about random vectors?

e Consider d = 2.
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What about random vectors? IRIA?

Adam Jakubowski

e Consider d = 2. s
® The definition is immediate: G is a phantom distribution function for a e
stationary sequence of random vectors - @i
(XD X2). (40, X2, (040 X2).... 5

with partial maxima

M, = (M,(71),M,(,2)) = ( max X-m, max X-(Z)),

1<jign 1 1gj<n !

n
sup ]P)(Mn < U) -G (u)‘ - 07 as n — oo. Multivariate time
u=(uy,up)€R? series



What about random vectors?

e Consider d = 2.

e The definition is immediate: G is a phantom distribution function for a
stationary sequence of random vectors

1 2 1 2 1 2
(4" x2), 06767, (7. X5,
with partial maxima

M, = (M,(71),M,(,2)) = ( max XY max X-(Z)),

b
1<jign 1 1gj<n !

sup
u:(U1 7u2)e]R2

P(M, <u) — G”(u)‘ — 0, as n — oo.

L . =2
e In fact, it is more convenient to take sup over R™!
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Go like R. Perfekt (1997), but our way
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Go like R. Perfekt (1997), but our way
e Find v\, i = 1,2, such that

P(M} < Vi) — py € (0,1), P(M2 <

o

)—>p2€(0,1).
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Go like R. Perfekt (1997), but our way

e Find v{", i = 1,2, such that

P(M} < vi) = py € (0,1),P(ME < v?) — ps € (0,1).

e Fors = (sq, Sp) € [0, +00]? define

_ @
Vnl(8) = (Vins,)» Yinsa))-
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Go like R. Perfekt (1997), but our way MultiPhDF

Adam Jakubowski

e Find v\, i = 1,2, such that I
[= ]
cu
P(M) < vi") — p1 € (0,1),P(MZ < vi?) — pp € (0,1). : N
: 5
e Fors = (s1,8p) € [0, +oc]? define E

_ @
Vn(8) = (Vins,)» Yinsa))-

e Consider
L={se[l,+)?; siAsp=1}.

e Assume that for some p: £ — (0,1)

P(Mn < Vn(s)) — ,O(S), sc L. g/leL:!tei\éariatetime



Go like R. Perfekt (1997), but our way
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Go like R. Perfekt (1997), but our way MultiPhDF

Adam Jakubowski
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¢ Assume that B, (va(s)) holds for every s € L, i.e. for all sequences p, 5
and g, and as n — oo ET‘:‘
(@
IPJ(I\npn-ﬁ-(h < Vn(S)) - IP)(IVI,"?n < Vn(S))P(qu < Vn(S)) — 0. ;\2
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¢ Assume that B, (va(s)) holds for every s € L, i.e. for all sequences p, 5
and g, and as n — oo ET‘:‘
(@
IPJ('\npn‘Hh < Vn(S)) - IP)(IVI,DN < Vn(S))P(qu < Vn(S)) — 0. ;‘
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Go like R. Perfekt (1997), but our way MultiPhDF

Adam Jakubowski
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¢ Assume that B, (va(s)) holds for every s € L, i.e. for all sequences p, 5
and g, and as n — oo E?‘:‘
(@
P(Mpn-HIn < Vn(S)) - IP)(I\"Pn < Vn(S)>P(qu < Vn(S)) — 0. ;\L

Theorem

e Condition B, (vx(s)) holds for every s € [0, +-oc]?.
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Go like R. Perfekt (1997), but our way

e Assume that B.(vx(s)) holds for every s € L, i.e. for all sequences p,
and g, andas n — oo

P(Mpn-HIn < Vn(S)) - IP)(I\Ill’?n < Vn(S)>P(qu < Vn(S)) — 0.

Theorem

e Condition B, (vx(s)) holds for every s € [0, +-oc]?.
e There exists H : [0, +-o0]? — [0, 1] such that

P(M,, < vo(s)) — H(s), s € [0, +oo]%.
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The form of H(s)
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The form of H(s)

Theorem

H(s) defined on [0, +-c0)? is the cumulative distribution function of a
two-dimensional extreme value distribution.
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The form of H(s)

Theorem
H(s) defined on [0, +-c0)? is the cumulative distribution function of a
two-dimensional extreme value distribution.

Moreover, if H(Y) and H(® are the marginal cumulative distribution functions,
then

HO((— log p;)s) = Ga1(s),i = 1,2,

where Gy 1(s) is the CDF of the standard Fréchet extreme value distribution.
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Phantom distribution function for random vectors
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Phantom distribution function for random vectors

Theorem
G(x) = H(n(x)),

where ,
ni(x) = sup{n e IN; vn’) <X}t i=1,2

is a phantom distribution function for Xy, Xo, . . ..
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Multivariate extremal index
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Multivariate extremal index MultiPhDF
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¢ Perfect (1997) defined an extremal index function 6(x). It mimics the 2 X AN
one-dimensional case and does not give explicit formula for a phantom v @
distribution function. s
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Multivariate extremal index MultiPhDF
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¢ Perfect (1997) defined an extremal index function 6(x). It mimics the 2 X AN
one-dimensional case and does not give explicit formula for a phantom v @
distribution function. s

¢ Our formalism leads to an extremal copula 6(x): If G is a phantom
distribution function and

G(va) = G(FX1 (X)7 FXg(y))
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Multivariate extremal index

¢ Perfect (1997) defined an extremal index function 6(x). It mimics the
one-dimensional case and does not give explicit formula for a phantom
distribution function.

¢ Our formalism leads to an extremal copula 6(x): If G is a phantom
distribution function and

G(va) = G(FX1 (X)7 FXg(y))

¢ The task is then to find an efficient description of 0(x, y) by comparison
of tails of G and F.
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