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Result on strong mixing property

Examples for exponential Hawkes process

The first result of this work is to extend the mixing property of the Hawkes process
in [1] to the multivariate case by using the presentation of Hawkes as a Poisson
cluster process. Other significant results are on the spectral analysis, they are
given based on Bartlett spectrum [2]. Especially, the explicit expression of spectral
densities function is available in the case random thinning process. This makes
great sense when data is missing.

Multivariate Hawkes process

A point process is a random process whose realizations consist of event times
falling along the line.

A counting process is a stochastic process N(t) := > ;-1 (T;<t}> associated
with the point process (7;). By convention Ny = 0.

A multivariate Hawkes process can be defined as a list of d counting processes
N = {Ny,- -, Ny} where the conditional intensity function of V;(-) is defined by
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here for each N;, H;(-) is the associated history, n; > 0 is the baseline intensity,
h;; is the reproduction function and {1'"},, are the atoms of IV;. The multivariate
Hawkes process N can also be seen as a cluster process.
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Fig. 1: An example of counting process (left) and Hawkes process represented as a collection of family trees (right).

The strong mixing coefficient can be defined as (see [5])

aN(T) = sup sup ’COV(HA(N),]IB(N))}
teR Aegl

where £” is the o-algebra generated by the cylinder sets on (a, b], and I 4(N) is the
indicator function of the cylinder set A, i.e VB € A, = {N € 91 : N(B) = n},
[4(N) = 1if N(B) = n and 0 otherwise. If an(7) — 0 as 7 — oo, then the
process Is strong-mixing or a-mixing.

The Bartlett spectrum of N admits a matrix of spectral densities given by [2]

(W) = [1- (@(-w)T] " diag (m1.- - .mg) [1 - Alw)

where m = (my,--- ,my) = E(A) = (I — M)_Nln denotes the vector of mean
intensities of the process, M := (||%;;||1), and H the matrix of component-wise
Fourier transforms of H = (h;;).
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Let N be a multivariate Hawkes process with the spectral radius of the matrix M := (||h;;]]1)
is strictly less than 1 (for stationarity reason). Assume that there exists 5 > 0 such that

1<ij<d JR

where h;‘j = h;;/||hi;ll1- Then, the process N is strong mixing. More precisely, polynomially
mixing, i.e forany 0 < v < S,
an(T) = O (7_7) .

Main steps of proof

e Using the positive association of Hawkes processes [3] and extending the results of
[5] to the multivariate case to evaluate the covariance of the indicator functions by the
covariance of the counting process.

e We rewrite covariance of counting process to that of branching process.

e Using assumption on the reproduction kernel (1), Holder's and Markov’s inequalities,
we derive an upper bound for the covariance.

Results on spectral densities functions

Bin-count process

A bin-count process with binsize A > 0 associated to N, {X;};cr = {N((tA, (t+ 1)A]) }, g
has spectral density functions given by
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Random sampling fx(w) = Asinc (5) j (K) (2)

Let X denote the process obtained from thinning N by a process Oy, i.e Xp(t) = [5 Ord(Ny),
where O; = 1 with probability m; and 0 with probability 1 — my. Then,

fx(w) = F{R(u)CN(du)}Hw) + MF{R(u)l(du) }w) + m{F{CN(du)} (w) (3)

where CN(du) is reduced covariance measure (see [2]), F is Fourier transform, R(t) auto-
covariance function of (O;) and A\; = E(N(0, 1]) is a determined constant.
Proofs

e (2) is directly obtained from [1, Section 4.1].

e The reduced moment can be related to that of the Hawkes process Ms(du) =
E(OOOU)]\%N(du) = (R(u) + m%)MQN(du). We then use the relation of reduced covari-
ance and reduced second-moment and note that the density functions is the Fourier
transform of reduced covariance measure [2].

Remarks and Perspectives

We consider the exponential model, where reproduction function A is then de-
fined as h(t) = 1Be= Pt (here 0 < u < 1). Following Example 8.2(e) in [2], the
Bartlett spectrum is
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Fig. 2: An example O; ~ Ber(p) (left) and alternating exponential distribution (right).

e Example 1. The process O; has Bernoulli distribution parameters p then
R(t) = p(1 = p)ly—p(t). Therefore,
52 +w2
- (4)

fx(w) =pA (1 —p+p52<1 EORCI

e Example 2. The duration of time ¢ stays in state £ € {0,1} of O has
exponential distribution with parameters 5y and 31, the spectral density is

fx(w) = 8+ 7™ (w) + MS(w) + miy™ (w) (5)
where each term can be calculated precisely. Inspired by results in [4], we
have
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where a, b, c depend on S, i, 51, 5y and w, and can be numerically computed.
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e The strong mixing property is pretty good (polynomial) to ensure an asymptotically
normal estimate. Furthermore, the condition (1) is easy to fulfill.

e When the arrival times are not observed, we proposed a spectral approach for the
estimation of the Hawkes process from their discrete-time counting series.

e The explicit and easily computable formulas are available for any stationary renewal
process. They can be used for the estimation method in the case of missing or unob-
served data.

e Bootstrap approach to inference in multivariate Hawkes process models.

e Question for Non causal/ non-linear/ non-stationary Hawkes processes.
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