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Abstract

The first result of this work is to extend the mixing property of the Hawkes process
in [1] to the multivariate case by using the presentation of Hawkes as a Poisson
cluster process. Other significant results are on the spectral analysis, they are
given based on Bartlett spectrum [2]. Especially, the explicit expression of spectral
densities function is available in the case random thinning process. This makes
great sense when data is missing.

Multivariate Hawkes process

A point process is a random process whose realizations consist of event times
falling along the line.
A counting process is a stochastic process N(t) :=

∑
i≥1 I{Ti≤t}, associated

with the point process (Ti). By convention N0 = 0.
A multivariate Hawkes process can be defined as a list of d counting processes
N = {N1, · · · , Nd} where the conditional intensity function of Nj(·) is defined by

λ∗j(t) := lim
h→0

E[Nj(t + h)−Nj(t)|Hj(t)]
h

= ηj +

d∑
i=1

∑
{n:Tni <t}

hij(t− Tni ),

here for each Nj, Hj(·) is the associated history, ηj > 0 is the baseline intensity,
hij is the reproduction function and {Tni }n are the atoms of Ni. The multivariate
Hawkes process N can also be seen as a cluster process.
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Fig. 1: An example of counting process (left) and Hawkes process represented as a collection of family trees (right).

Strong mixing and The Bartlett spectrum

The strong mixing coefficient can be defined as (see [5])

αN(τ ) = sup
t∈R

sup
A∈E t−∞
B∈E∞t+τ

∣∣Cov
(
IA(N), IB(N)

)∣∣
where Eba is the σ-algebra generated by the cylinder sets on (a, b], and IA(N) is the
indicator function of the cylinder set A, i.e ∀B ∈ AB,n = {N ∈ N : N(B) = n},
IA(N) = 1 if N(B) = n and 0 otherwise. If αN(τ ) → 0 as τ → ∞, then the
process is strong-mixing or α-mixing.

The Bartlett spectrum of N admits a matrix of spectral densities given by [2](
γN
ij(ω)

)
=
[
I−

(
H̃(−ω)

)ᵀ]−1
diag (m1, · · · ,md)

[
I− H̃(ω)

]−1

where mmm = (m1, · · · ,md) = E(λλλt) = (I−M)−1ηηη denotes the vector of mean
intensities of the process, M := (‖hij‖1), and H̃ the matrix of component-wise
Fourier transforms of H = (hij).

Result on strong mixing property

Let N be a multivariate Hawkes process with the spectral radius of the matrix M := (‖hij‖1)
is strictly less than 1 (for stationarity reason). Assume that there exists β > 0 such that

ν1+β = sup
1≤i,j≤d

∫
R
t1+βh∗ij(t)dt <∞ (1)

where h∗ij = hij/‖hij‖1. Then, the process N is strong mixing. More precisely, polynomially
mixing, i.e for any 0 < γ < β,

αN(τ ) = O
(
τ−γ

)
.

Main steps of proof

• Using the positive association of Hawkes processes [3] and extending the results of
[5] to the multivariate case to evaluate the covariance of the indicator functions by the
covariance of the counting process.

• We rewrite covariance of counting process to that of branching process.

• Using assumption on the reproduction kernel (1), Hölder’s and Markov’s inequalities,
we derive an upper bound for the covariance.

Results on spectral densities functions

Bin-count process

A bin-count process with binsize ∆ > 0 associated to N, {Xt}t∈R =
{

N
(
(t∆, (t+ 1)∆]

)}
t∈R

has spectral density functions given by

fX(ω) = ∆sinc2
(ω

2

)
γN
ij

(ω
∆

)
(2)

Random sampling

Let X denote the process obtained from thinning N by a processOt, i.e XB(t) =
∫
BOtd(Nt),

where Ot = 1 with probability m1 and 0 with probability 1−m1. Then,

fX(ω) = F{R(u)C̆N
2 (du)}(ω) + λ2

1F{R(u)`(du)}(ω) + m2
1F{C̆

N
2 (du)}(ω) (3)

where C̆N
2 (du) is reduced covariance measure (see [2]), F is Fourier transform, R(t) auto-

covariance function of (Ot) and λ1 = E(N(0, 1]) is a determined constant.
Proofs

• (2) is directly obtained from [1, Section 4.1].

• The reduced moment can be related to that of the Hawkes process M̆2(du) =
E(O0Ou)M̆N

2 (du) = (R(u) + m2
1)M̆N

2 (du). We then use the relation of reduced covari-
ance and reduced second-moment and note that the density functions is the Fourier
transform of reduced covariance measure [2].

Remarks and Perspectives

• The strong mixing property is pretty good (polynomial) to ensure an asymptotically
normal estimate. Furthermore, the condition (1) is easy to fulfill.

• When the arrival times are not observed, we proposed a spectral approach for the
estimation of the Hawkes process from their discrete-time counting series.

• The explicit and easily computable formulas are available for any stationary renewal
process. They can be used for the estimation method in the case of missing or unob-
served data.

• Bootstrap approach to inference in multivariate Hawkes process models.

• Question for Non causal/ non-linear/ non-stationary Hawkes processes.

Examples for exponential Hawkes process

We consider the exponential model, where reproduction function h is then de-
fined as h(t) = µβe−βt (here 0 < µ < 1). Following Example 8.2(e) in [2], the
Bartlett spectrum is

γN (ω) = λ1
β2 + ω2

β2(1− µ)2 + ω2

where λ1 = η(1− µ)−1.
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Fig. 2: An example Ot ∼ Ber(p) (left) and alternating exponential distribution (right).

• Example 1. The process Ot has Bernoulli distribution parameters p then
R(t) = p(1− p)1{t=0}(t). Therefore,

fX(ω) = pλ1

(
1− p + p

β2 + ω2

β2(1− µ)2 + ω2

)
. (4)

• Example 2. The duration of time t stays in state k ∈ {0, 1} of Ot has
exponential distribution with parameters β0 and β1, the spectral density is

fX(ω) = S ∗ γN (ω) + λ2
1S(ω) + m2

1γ
N (ω) (5)

where each term can be calculated precisely. Inspired by results in [4], we
have

S(ω) =
2β1β0

(β1 + β0)
(
ω2 + (β1 + β0)2

).
S ∗ γ(ω) =

λ1β0β1

β0 + β1

(
a

β(1− µ)
+
bω + c

β1 + β0

)
where a, b, c depend on β, µ, β1, β0 and ω, and can be numerically computed.
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