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Abstract

Concentration inequalities are widely used for ana-
lyzing machine learning algorithms. However, the
current concentration inequalities cannot be applied
to some non-causal processes which appear for in-
stance in Natural Language Processing (NLP). This
is mainly due to the non-causal nature of such in-
volved data, in the sense that each data point de-
pends on other neighboring data points. In this
paper, we establish a framework for modeling non-
causal random fields and prove a Hoeffding-type con-
centration inequality. The proof of this result is
based on a local approximation of the non-causal
random field by a function of a finite number of i.i.d.
random variables.

Random field

In this paper, we prove concentration inequalities on a
κ-dimensional non-causal random field (Xt)t∈Zκ that is
a stationary solution of the following equation.

∀t ∈ Zκ, Xt = F ((Xt+s)s∈B, εt).

Such random fields have been introduced by [2]. We
emphasize that for s ∈ B, Xt+s depends on Xt, but Xt

also depends on Xt+s. Therefore, it is no longer possible
to describe (Xt)t∈Zκ as a result of a martingale process
(this is why, we call (Xt)t∈Zκ a non-causal random field).

Notations

• SI =
∑
s∈I

Φ((Xs+t)t∈B̄) for a given subset of index
I. SI is the statistic for which we aim to prove
concentration inequalities and Φ is a Lipschitz
function.

• Let nB = Card(B) + 1 and nB̄ = Card(B̄).

Contraction hypotheses

A common hypothesis used to prove concentration
inequalities is the contraction hypothesis. This hy-
pothesis can adapted to our non-causal framework.
Standard contraction hypothesis. It exists (λt)t∈B,
such that ρ :=

∑
t∈B

λt < 1, and for any X -valued tuples

Y = (yt)t∈B and Y ′ = (y′
t)t∈B indexed by B and for all

ε ∈ E.
∥F (Y , ε) − F (Y ′, ε)∥ ≤

∑
s∈B

λs∥ys − y′
s∥.

In this paper, we introduced weaker versions
of this hypothesis. Respectively, we used
• a strong contraction hypothesis that involves

∥F ((Yt+s)s∈B, εt) − F ((Y ′
t+s)s∈B, εt)∥∞ (the uniform

norm).
• a weak contraction hypothesis that involves

∥F ((Yt+s)s∈B, εt) − F ((Y ′
t+s)s∈B, εt)∥m (the m

norm).
Our results are based on these two hypotheses, the first
one is more restrictive and therefore ensures stronger
results.

Application to statistical learning

In the full paper, we also provide an application to
learning theory (with a focus on model selection). We
adapted the approach developed under the i.i.d setting
([3, 4]) to prove an oracle bound for the model selection
problem.
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Main results

Theorem (Concentration inequalities)

• If the strong hypothesis is verified, there is a constant A such that, for all ε > 2nB̄V∞,

P (|SI − E [SI] | ≥ ε) ≤ 2 exp
 −2 (ε − 2nB̄V∞)2

(nB̄V∞)2 (1 + AnB̄n3
Bκ!2 ⌈ln(n)⌉κ n)

 .

With A such that Υ(d)2dκ ≤ A(κ!)2 ⌈ln(n)⌉κ, where Υ is a function that can be bounded
independently of nB̄, m or n.

• If the weak hypothesis is verified, there are constants A,B,C,D,E,F ,H such that, for all
ε ≥ 2F (nB̄nB)3 κ! ⌈ln(n)⌉2κ n

2
m.

P (|SI − E [SI] | ≥ ε) ≤ 2 exp


−2

(
ε
2 − F (nB̄nB)3 κ! ⌈ln(n)⌉2κ n

2
m

)2

(
HnB̄n

2
m

)2
(1 + EnB̄n3

B(κ!)2 ⌈ln(n)⌉κ n)


+ ρm

n

2nBnB̄C ⌈ln(n)⌉κ +
 D

n3
Bn2

B̄
Υ(d) ln(n)2κ


m .

Constants involved are explicits and do not increase with n.

Moment inequalities

Corollary (Moments inequalities: asymptotic equivalents)

• If the strong hypothesis is verified.

E[|SI − E [SI] |] ≤ G1(κ, ρ,V∞, nB̄, nB, n) ∼
n→∞ nBnB̄V∞υ

√
π

2
nBnB̄(Kρ(∞))κn ln(n)κ,

=
n→∞ O

(√
nln(n)κ

)
,

• If the weak hypothesis is verified.

E[|SI − E [SI] |] ≤ G2(κ, ρ,Vm, nB̄, nB, n) ∼
n→∞

nB̄nBVmυn
2
m

ρ

√
2πnB̄nBKρ(m)κ ln(n)κn

=
n→∞ O

(
n

2
m

√
nln(n)κ

)
,

with Kρ(∞) = 1
ln(ρ−1), Kρ(m) = 1− 1

m

ln(ρ−1) and ν a constants depending on κ and ρ.


