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Abstract
We present a broad class of semi-parametric models for time series of random sums of positive variables. Our

methodology allows the number of terms inside the sum to be time-varying and is therefore well suited to many
examples encountered in the natural sciences. We study the stability properties of the models and provide a valid
statistical inference procedure to estimate the model parameters. It is shown that the proposed quasi-maximum like-
lihood estimator is consistent and asymptotically Gaussian distributed. This work is complemented by simulation
results and applied to time series representing growth rates of white spruce (Picea glauca) trees from a few dozen
sites in Québec (Canada). This time series spans 41 years, including one major spruce budworm (Choristoneura
fumiferana) outbreak between 1968 and 1991.

1 Introduction
Many ecological studies require measuring the positive dependent variables of random numbers of
statistical individuals sampled over time. This approach is often necessary, as 1) researchers cannot
observe the entire population, and 2) the individuals observed by researchers depend on time-varying
resources. Applications of this statistical approach include studies of species behaviour and ecological
services. In this paper, we evaluate the impact of climate change and insect outbreak on tree growth as
recorded by growth rings. Spruce budworm (Choristoneura fumiferana; SBW) is the most important
defoliator of conifer trees in the eastern North American boreal forest. To do so, we present a class of
semi-parametric autoregressive models and use them to investigate the relationships between climate,
SBW outbreak, and the growth of white spruce.

2 Models and stability results
We denote by Yk,t, t ∈ Z, k = 1, . . . , K the time series of the total basal area increment related to the
k−th observational site, i.e., the sum of increases in the trunk cross-sectional area for the nk,t trees
sampled for site k in year t. We aim to model the dynamics of this process both in terms of its own
past and in the presence of m additional covariates Xk,t ∈ Rm. In the empirical application presented
in empirical section, the covariate process encompasses climate variables, including temperature and
precipitation, and the level of SBW-related defoliation of the previous years.

Our model is given by

Yk,t =

nk,t∑
l=1

ζl,k,t, (1)

where conditionally on nk,t, Xk,t, n
−
k,t = (nk,t−s, s ≥ 1) and Y −

k,t = (Yk,t−s, s ≥ 1), the variables
ζl,k,t, 1 ≤ l ≤ nk,t, which represent the basal area increments of individual sampled trees, are dis-
tributed identically as a random variable ζk,t of mean λk,t. Moreover, (nk,t)t∈Z is a sequence of i.i.d
random variables where, conditionally on n−k,t, the variable nk,t is independent from Xk,t and Y −

k,t.
The mean process is given by

φδ(λk,t) =: ηk,t = ωk +

p∑
j=1

αj
Yk,t−j

nk,t−j
+ β⊤Xk,t, k = 1, . . . , K and t = 1, . . . , T, (2)

such that ωk ∈ R, αj ∈ R, β = (β1, . . . , βm) ∈ Rm, and φδ is a real-valued function defined on R+

that can depend on a parameter δ. We choose here φδ(x) = log(expx− 1− δ). It is worth mentioning,
without loss of generality, that the covariate process considered at time t is included in the specifica-
tion of λk,t because multiple lags of a given set of variables can be included by simply stacking them
into a vector. An example is the case of defoliation levels, as shown in our application, as growth can
be affected by defoliation occurring up to five years before the present (from t− 5 to t− 1).

Theorem 1. Under some mild assumptions and if
∑p

j=1 |αj| < 1, there exists a unique set of K sta-
tionary, ergodic sequences (Yk,t, nk,t, Xk,t), k = 1, . . . , K that are the solution of equations (1) and
(2) with E|ηk,0| < ∞, k = 1, . . . , K.

3 Estimation and asymptotic properties
For our application, the K time series are observed between the time points 1 and T. We provide an
asymptotic theory for the estimated parameters and present the results of a small simulation study
investigating the finite-sample properties of the estimator. In the following section, we make λk,t
dependent on the parameter θ(∈ Θ a compact set); that is

log(exp ◦λk,t(θ)−1−δ) = ωk+

p∑
j=1

αj
Yk,t−j

nk,t−j
+β⊤Xk,t =: ηk,t(θ), k = 1, . . . , K and t = 1, . . . , T,

where δ ≥ δ > 0. Let us denote the true, data-generating parameter value by θ0.
The loss function from the exponential quasi-maximum likelihood is given by

rT (θ) =
K∑
k=1

T−1
T∑
t=1

(
Yk,t

λk,t(θ)
+ nk,t log ◦λk,t(θ)

)
=:

K∑
k=1

T−1
T∑
t=1

ℓk,t(θ) =:
K∑
k=1

ℓk(θ) (3)

and
θ̂T = argmin

θ∈Θ
rT (θ). (4)

The derivative of λk,t(θ) with respect to θ is given by

∂λk,t(θ)

∂θ
=: λ̇k,t(θ)

=

(
1

1 + δ + eηk,t(θ)
,

eηk,t(θ)

1 + δ + eηk,t(θ)

(
ιk,

Yk,t−1

nk,t−1
. . .

Yk,t−p

nk,t−p
, X⊤

k,t

))⊤

.

where ιk is a vector of size K with 1 at the k−th position and 0 elsewhere. We will denote by λ̇k,t
(resp. λk,t), the vector λ̇k,t(θ) (resp. λk,t(θ)), evaluated at the point θ = θ0.

We will study the asymptotic properties of the QMLE estimator (4). To do so, we employ [5] (Thm
3.2.23), which was extended in [4]. The lemmas in our Appendix produce the general result for
the asymptotic properties of QMLE (4). The following theorem represents the consistency and the
asymptotic normality of (4) for the softplusδ link function. Let us set

Vk = E

 1

λ2k,0

(
nk,0 −

Yk,0
λk,0

)2

λ̇k,0λ̇
⊤
k,0

 ,andJk = E

[
nk,0

1

λ2k,0
λ̇k,0λ̇

⊤
k,0

]
.

Theorem 2. Under mild regularity assumptions, almost surely,

lim
T→∞

θ̂T = θ0.

Coupled with some additional mild assumptions and θ0 being located in the interior of Θ,

lim
T→∞

√
T (θ̂T − θ0) = N (0, J−1V J−⊤),

where J =
∑K

k=1 Jk and V =
∑K

k=1 Vk.

4 Results
1. Higher defoliation levels led to reduced tree-ring growth, but this effect vanished after two years;

however, note that while the direct effect vanished, expected growth remained lower in the succes-
sive years because of the large estimated first-order autocorrelation coefficient (0.8–0.9, depending
on age class) ;

2. There was no significant effect of defoliation on the following year’s growth for the youngest and
oldest trees although it produced an effect two years following the defoliation. The results differed
markedly for middle-aged trees, which were significantly affected one year after defoliation but not
in the second year ;

3. High maximum temperatures in the summer increased growth, with up to a 5.6 cm² increase in basal
area from a 10 °C increase in summer maximum temperature. However, the previous summer’s
temperature had a negative effect on growth. Finally, the spring CMI was negatively correlated
with tree-ring growth, whereas the summer CMI had a positive effect ;

4. Both the CMI and precipitation in the previous spring increased the tree-ring growth of the current
year: 100 mm greater precipitation led to at least a 6.8 cm² increase in basal area growth.

Conclusions
Here we developed a new time-series model to handle data having a time-varying number of sampled
individuals. We provided a valid statistical inference procedure and applied the model to assessing
the combined effect of climate and SBW outbreak on white spruce tree-ring growth in several sites in
eastern Canada. We assumed a fixed number of ecological sites K. For future work, we plan to in-
vestigate the case of diverging K and the length n of observed series. Because many other ecological
studies rely on binary variable or count data, it may be useful to extend the framework of this paper
to these data types.
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