Ecological networks, indeterminacy and reconstruction
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The living at all levels of organization is characterized by
being composed of networks that carry out four basic
functions.
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Figure 1 Wiring diagrams for complex networks. a, Food web of Little Rock Lake,
Wisconsin, currently the largest food web in the primary literature®. Nodes are
functionally distinct ‘trophic species' containing all taxa that share the same set of
predators and prey. Height indicates trophic level with mostly phytoplankton at the
bottom and fishes at the top. Cannibalism i shown with self-loops, and omnivory
{feeding on more than one trophic level) is shown by different coloured links to

consumers. (Figure provided by N. D. Martinez). b, New York State electric power grid.

Generators and substations are shown as small blue bars. The lines connecting them
aretransmission ines and transformers. Line thickness and colour indicate the
voltage level: red, 765 kV and 500 KV; brown, 345 KV; green, 230 KV: arey, 138 KV
and below. Pink dashed lines are transformers. (Figure provided by J. Thorp and

H. Wang). ¢, Aportion of the molecular interaction map for the regulatory network
that controls the mammalian cell cycle”. Colours indicate differenttypes of
interactions: black, binding interactions and stoichiometric conversions; red,
covalent modifications and gene expression; green, enzyme actions; blug,
stimulations and inhibitions. (Reproduced from Fig. Ga n ref. 6, with permission.
Figure provided by K. Kahn.)
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Diversity begets stability

MacArthur (1955) “a large number of paths through
each species is necessary to reduce the effects of
overpopulation of one species.”

“stability increases as the number of links increases”
and that stability is easier to achieve in more diverse
assemblages of species, thus linking community
stability with both increased trophic links and
increased numbers of species.



Connectance of Large Dynamic
(Cybernetic) Systems: Critical
Values for Stability

MAark R, GARDNER

iw' Ross ASHBY* NATURE VOL. 228 NOVEMBER 21 1970
Biological Computer Laboratory,
University of Illinois,
Urbana, Ilinois 61801.

We have attempted to answer: What is the chance that
a large system will be stable ? If a large systein is assembled
(connected) at random, or has grown haphazardly, should
we expect it to be stable or unstable ? And how does the
expectation change as n, the number of variables, tends to

infinity ?

Probability of stability

X = {x;, .. x,,}

Is a vector and each x; is a time dependent
Variable, with dynamics given by

X =AX 0 1t 20 a0 60 80 100
13
Connectance (per cent)

Iig. 1. Variation of stability with ¢onnectance.

Where A is a random matrix of interactions, whose values are
Taken from a uniform distribution between -1 and 1, and with Connectance (C) or percentage of connection C.



Will a Large Complex System
be Stable? —

Institute for Advanced Study,
Princeton, New Jersey 08540

Interacting networks would be stable if

aVSC < 1 -

Such examples suggest that our
model multi-species communities, for given average interaction
S= Number of species (nodes) strength and web con.nei:‘tance, \:{111 do .better if the 1nteracttops
tend to be arranged in “blocks™—again a feature observed in
many natural ecosystems.

a = average magnitude of interaction strength

C= Connectance



Interacting networks would be stable if

avSC <1

Or they are sparse such that:

Sx C1

Network Connectivity C
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East River Valley Foodweb Caribbean Reef Foodweb

Image produced with FoodWeb3D, written by R.J. Williams and provided by the Pacific
Ecoinformatics and Computational Ecology Lab (www.foodwebs.org, Yoon et al. 2004)



Foodwebs

: Species

Links: Who eats whom
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Ecological networks are more clustered
than expected by chance.

Montoya and Sole (2002)
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Co-authorships

Nodes: authors

Links: co-authorships

number of collaborators
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Metabolic Networks
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Mutualistic networks

Fruit dispersal

Redwing

Turdus iliacus
Blackcap Robin

Sylvia atricapilla Erithacus rubecula

Honeysuckle

Lonicera arborea s 3 Barberry
Berberis vulgaris

Hawthorn Yew
Crataegus monogyna  Taxus baccata

Dependence of the plant on the frugivore
mmm Dependence of the frugivore on the plant

Thompson (2006)

Bascompte et al (2006)



Pollination networks
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Asimetria: Generalistas interactuan con especialistas. Esto se asocia a
robustez o capacidad para resistir cambios (adiciones o extinciones) sin
mayores consecuencias dindmicas (extinciones secundarias).



Ecology, 69(2), 1988, pp. 508-515
© 1988 by the Ecological Society of America

THE INDETERMINACY OF ECOLOGICAL INTERACTIONS
AS PERCEIVED THROUGH PERTURBATION EXPERIMENTS!

PETER YODzIS
Department of Zoology, University of Guelph, Guelph, Ontario N1G 2W1 Canada

dN; _ f .
praie fi(N) [ =1,2,.5s

The stability of the equilibrium is determined by the eigenvalues of the “community matrix”

_ (9%
Ay = (aNj)



PRESS PERTURBATION EXPERIMENTS

Suppose we continually add members of species j to the community, at a rate I, members
per unit area per unit time. How will this affect the equilibrium densities Ne? Equation (1) is
now

dN;
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Two source of uncertainty

1. Uncertainty due to variation in interaction strengths and signs of the interction

2. Uncertainties in network topology (who affects whom)

FiG. 3. Major effects on each species of the Narragansett
Bay food web, obtained from a randomly generated plausibl
community matrix. Symbols here have the same meaning as
in Fig. 2, except that here they are based on the inverse matrix
A~! rather than on the community matrix itself.

©)
N

FiG. 4. Major effects on each species of the Narragansett
Bay food web, obtained from another randomly generated
plausible community matrix. Symbols here have the same
meaning as in Fig. 2, except that here they are based on the
inverse matrix A~' rather than on the community matrix itself.



Stochastic Approaches
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Rebolledo et al. (2019) SIAM



TROPHIC and non-trophic interactions in the
intertidal of central Chile.

A) Trophic B) Positive non-trophic C) Negative non-trophic

Kéfi et al 2015 Ecology
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Reconstruction of plant-pollinator networks
from observational data

Jean-Gabriel Young?3™ Fernanda S. Valdovinos® 34> & M. E. J. Newman® 3©



Overview Articles
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On Theory in Ecology
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PABLO A. MARQUET, ANDREW P ALLEN, JAMES H. BROWN, JENNIFER A. DUNNE, BRIAN J. ENQUIST,
JAMES F. GILLOOLY, PATRICIA A. GOWATY, JESSICA L. GREEN, JOHN HARTE, STEVE P HUBBELL, JAMES
O'DWYER, JORDAN G. OKIE, ANNETTE OSTLING, MARK RITCHIE, DAVID STORCH, AND GEOFFREY B. WEST

Santa Fe Institute in

Santa Fe New Mexico

We argue for expanding the m!c o] theory in ecology to accelerate scientific progress, enhance the ability to addrm cnwmnmrnml dmllenga
1

foster the develop of and unification, and improve the design of experiments and large-scale envi g
To achieve these goals, it is essential to foster the dewlopmeﬂl of what we call efficient theories, which have several key allnbutes Effi clem
theories are grounded in first principles, are usually exp d in the language of math ics, make few iptions and generate a large

number of predictions per free parameter, are approximate, and entail predictions that provide well-understood standards for comparison
with empirical data. We contend that the development and successive refinement of efficient theories provide a solid foundation for advancing
environmental science in the era of big data.

Keywords: theory unification, metabolic theory, neutral theory of biodiversity, maximum entropy theory of ecology, big data

BioScience 64: 701-710. (2014)




MacArthur & Wilson (1963)

S =bA*

AN EQUILIBRIUM THEORY OF INSULAR ZOOGEOGRAPHY

ROBERT H. MACARTHUR! AND EpWARD O. WILsON2




(3-4) dPs(t)

“In principle one could solve eq. 3-4....for our purpose is more useful to
find the mean M(t) and the variance, var(t), of the number of species at time t.
These can be estimated in nature by measuring the mean and variance in

number of species of a series of islands of about the same distance and are and
hence of the same A and u." pp.33-34
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Froure 19. A particular case of a predicted distribution of num-
bers of species on a family of island biotas all with identical
extinction and immigration curves and all having had time
to reach equilibrium. The histogram represents the number
of islands with each numbet of resident species in an equilibrium
situation. The species pool from which the biotas were assembled
¢ontained 16 species. If the immigration and extinction curves
were straighter, the variance of equilibrial species numbers
would be even greater; yet this large variance is ahll consistent
with the equilibrial condition.



The Unified Neutral Theory of
BIODIVERSITY AND BIOGEOGRAPHY

STEPHEN P. HUBBELI

MONOGRAPHS IN POPULATION BIOLOC

Neutral theory and relative species

abundance in ecology

Igor Volkov', Jayanth R. Banavar', Stephen P. Hubbell**
& Amos Maritan*’

Master equation for the probability of observing k species with n individuals

dPn,k(t)
dt

Assumptions:

i) The species are assumed to be demographically identical, i.e.

bn,k = b,, and d,,,k e d,,.

ii) Density independent case, i.e. b, =bsnand d,=dxn

(n>0)

Fisher’s Log-series distribution

n

<o, >= ex—
n

Number of Species

50

40

30

20

10

Rothamsted moths [0 Observed

"~ Expected, logseries

N
o]
|||||||||||illl|r.1*.1imi|.|i.;.;.:...:.:,..:.....:.. sl

1

5 10 15 20 25 30 35 40 45

Individuals per Species

where x = b/d and 6 = SPyv /d biodiversity parameter.




ME for the number of species within communities (islands)

dP,(t)
dt

= Psp1(t)pst1 + Ps—1(t)As—1 — Ps(t)(As + p1s),

ME for the number of individuals within species

dPn’k (f)
dt

s Pn—}-l,k(t)dn—i—l:k(t) Pn—l,k(t)bn—l,k 1 Pn,k(t)(bn,k & ¥ dnk)

They cannot be true at the same time!



Diffusion processes

Ronald Fisher
Sewall Wright

Andrey Kolmogorov



 The frequency of genes in a structured
population

T(4Nm)
I'(ANmp)I'(4Nmq)

poo(m) — 4qu—1(1 . x)4Nmp—1.

x = Frequency of a given allele in a local population

W = Mutation rg N= Effective population size

m = Proportion of migrating individuals among population each
generation.

p= Frequency of a given allele in the total population




Frequency or Number

(Discrete)

proportions
(Continuous)




Prof. Rolando Rebolledo

La méthode des martingales appliquée a I’étude de
la convergence en loi de processus

Mémoires de la S. M. F.,tome 62 (1979), p. 1-v+1-125.
<http://www.numdam.org/item?id=MSMF_1979__62__ R1_0>
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OFEN . On the proportional abundance
of species: Integrating population
genetics and community ecology

126 Masch 3017 PabloA. Marquet (52145, Guillermo Espinoza’, Sebastian R. Abades’, Angela Ganz’ &
& 21 November 2017 Rolando Rebolledo”*
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The Proportional Species Abundance Distribution (PSAD)
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Figure 1. Fit of the Beta distribution to different animal and plant communities. First row, from left to right Amazon birds
(community 10 in Table 1), Lepidoptera (12 in Table 1), butterflies (11 in Table 1), second row from left to right Tropical trees
(6 in Table 1), Tropical trees (2 in Table 1) and Coral reefs (14 in Table 1)
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