Modeling abundance time series through a GLM model

Guillaume Franchi

ENSAI, Bruz

Ecodep Conference, 22 June 2022

イロト イヨト イヨト

э

Outlines

- I. Abundance and compositional data
- II. Dirichlet GLM model for time series
- III. Estimation
- IV. Application of the model
- V. Conclusion

э.

Outlines

I. Abundance and compositional data

- Definitions
- Traditional approach

II. Dirichlet GLM model for time series

III. Estimation

IV. Application of the model

V. Conclusion

イロト イヨト イヨト

э.

Definition of abundance

Definition

Guillaume Franchi

Modeling abundance time series through a GLM model 4/42

∃ 𝒫𝔅

Definition of abundance

Definition

Standard abundance: counts of each species in the ecosystem. It describes the commonness and rarity of species.

Guillaume Franchi

Modeling abundance time series through a GLM model 4/42

(4 同) (三) (三) (

Definition of abundance

Definition

Standard abundance: counts of each species in the ecosystem. It describes the commonness and rarity of species.

Relative abundance: proportions of each species in the whole ecosystem. It describes the biodiversity of the ecosystem.

Notations

A relative abundance $y = (y_1, \ldots, y_d)$ is an element of the **simplex**:

$$S_{d-1} = \left\{ (x_1, \dots, x_d) \in]0; +\infty[^d \mid \sum_{i=1}^d x_i = 1 \right\}.$$

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 - のへで

Notations

A relative abundance $y = (y_1, \ldots, y_d)$ is an element of the **simplex**:

$$S_{d-1} = \left\{ (x_1, \dots, x_d) \in]0; +\infty[^d \mid \sum_{i=1}^d x_i = 1 \right\}.$$

For an abundance $y \in \mathcal{S}_{d-1}$, we define the **Shannon index**:

$$I_S(y) = -\sum_{i=1}^d y_i \log(y_i).$$

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 - のへで

Notations

A relative abundance $y = (y_1, \ldots, y_d)$ is an element of the **simplex**:

$$S_{d-1} = \left\{ (x_1, \dots, x_d) \in]0; +\infty[^d \mid \sum_{i=1}^d x_i = 1 \right\}.$$

For an abundance $y \in \mathcal{S}_{d-1}$, we define the **Shannon index**:

$$I_S(y) = -\sum_{i=1}^d y_i \log(y_i).$$

Furthermore, we denote $\overline{y} = (y_1, \ldots, y_{d-1})$.

Guillaume Franchi

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

When studying time series of relative abundance $(Y_t)_{t\in\mathbb{Z}}$ where $Y_t = (Y_{t,1}, \ldots, Y_{t,d})$, difficulties arise.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ● ● ● ●

When studying time series of relative abundance $(Y_t)_{t\in\mathbb{Z}}$ where $Y_t = (Y_{t,1}, \ldots, Y_{t,d})$, difficulties arise.

× From the positivity constraint: $\forall i \in \{1, \ldots, d\}, Y_{t,i} > 0.$

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 - のへで

When studying time series of relative abundance $(Y_t)_{t\in\mathbb{Z}}$ where $Y_t = (Y_{t,1}, \ldots, Y_{t,d})$, difficulties arise.

- **×** From the positivity constraint: $\forall i \in \{1, \ldots, d\}, Y_{t,i} > 0.$
- **×** From the sum constraint: $\sum_{1\leqslant i\leqslant d}Y_{t,i}=1.$

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 - のへで

When studying time series of relative abundance $(Y_t)_{t\in\mathbb{Z}}$ where $Y_t = (Y_{t,1}, \ldots, Y_{t,d})$, difficulties arise.

× From the positivity constraint: $\forall i \in \{1, ..., d\}, Y_{t,i} > 0.$ **×** From the sum constraint: $\sum Y_{t,i} = 1.$

 $1 \leq i \leq d$

→ It is impossible to apply our favourite time series models...

Outlines

I. Abundance and compositional data

- Definitions
- Traditional approach

II. Dirichlet GLM model for time series

III. Estimation

IV. Application of the model

V. Conclusion

イロト イヨト イヨト

э.

The idea proposed by Aitchison (1982) is simple:

ヘロト ヘヨト ヘヨト ヘヨト

∃ 𝒫𝔅

Traditional approach (1/2)

The idea proposed by Aitchison (1982) is simple:

1. Transform the time series:

$$Z_t = f(Y_t)$$

where $f : S_{d-1} \longrightarrow \mathbb{R}^n$ is a one to one mapping.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

The idea proposed by Aitchison (1982) is simple:

1. Transform the time series:

$$Z_t = f(Y_t)$$

where $f : \mathcal{S}_{d-1} \longrightarrow \mathbb{R}^n$ is a one to one mapping.

2. Apply the desired model on the time series $(Z_t)_{t \in \mathbb{Z}}$.

The idea proposed by Aitchison (1982) is simple:

1. Transform the time series:

$$Z_t = f(Y_t)$$

where $f : \mathcal{S}_{d-1} \longrightarrow \mathbb{R}^n$ is a one to one mapping.

- 2. Apply the desired model on the time series $(Z_t)_{t \in \mathbb{Z}}$.
- 3. Eventually transform back the fitted values Z_t :

$$\widehat{Y}_t = f^{-1}(\widehat{Z_t}).$$

・ロト ・ 一下 ・ ト ・ ト ・ ト

The idea proposed by Aitchison (1982) is simple:

1. Transform the time series:

$$Z_t = f(Y_t)$$

where $f : \mathcal{S}_{d-1} \longrightarrow \mathbb{R}^n$ is a one to one mapping.

- 2. Apply the desired model on the time series $(Z_t)_{t \in \mathbb{Z}}$.
- 3. Eventually transform back the fitted values Z_t :

$$\widehat{Y}_t = f^{-1}(\widehat{Z_t}).$$

Remark

The idea proposed by Aitchison (1982) is simple:

1. Transform the time series:

$$Z_t = f(Y_t)$$

where $f : \mathcal{S}_{d-1} \longrightarrow \mathbb{R}^n$ is a one to one mapping.

- 2. Apply the desired model on the time series $(Z_t)_{t \in \mathbb{Z}}$.
- 3. Eventually transform back the fitted values Z_t :

$$\widehat{Y}_t = f^{-1}(\widehat{Z_t}).$$

Remark

A very popular choice for f is the **additive log-ratio**:

$$f: \mathcal{S}_{d-1} \longrightarrow \mathbb{R}^{d-1}$$
$$(y_1, \dots, y_d) \longmapsto \left(\log \left(\frac{y_1}{y_d} \right), \dots, \log \left(\frac{y_{d-1}}{y_d} \right) \right)$$

Guillaume Franchi

This method has shown good results in terms of fitted values or previsions.

イロト イボト イヨト イヨト

∃ 𝒫𝔅

This method has shown good results in terms of fitted values or previsions.

BUT:

The interpretation of the model's parameters (applied to $(Z_t)_{t \in \mathbb{Z}}$) is very difficult, if not impossible.

イロト イヨト イヨト

This method has shown good results in terms of fitted values or previsions.

BUT:

The interpretation of the model's parameters (applied to $(Z_t)_{t \in \mathbb{Z}}$) is very difficult, if not impossible.

OUR GOAL:

To propose a model for the time series $(Y_t)_{t\in\mathbb{Z}}$ which is easily interpretable.

Outlines

I. Abundance and compositional data

II. Dirichlet GLM model for time seriesThe modelInterpretation of the parameters

III. Estimation

IV. Application of the model

V. Conclusion

イロト イヨト イヨト

э.

Staying in the simplex

The traditional approach lacks of interpretation due to the transformation of the initial time series.

The idea is thus to propose a model for time series which stays in the simplex:

$$\mathbb{P}(Y_{t+1} \in A \mid Y_t = y_t) = P(A/y_t)$$

where P is a transition kernel with source S_{d-1} and target S_{d-1} .

Remark

Staying in the simplex

The traditional approach lacks of interpretation due to the transformation of the initial time series.

The idea is thus to propose a model for time series which stays in the simplex:

$$\mathbb{P}(Y_{t+1} \in A \mid Y_t = y_t) = P(A/y_t)$$

where P is a transition kernel with source S_{d-1} and target S_{d-1} .

Remark

It is obviously possible to consider several lag-values (even an infinity).

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・ ・

How do we choose P?

We propose that $P(\cdot/y_t)$ follows a **Dirichlet distribution**.

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 - のへで

How do we choose P?

We propose that $P(\cdot/y_t)$ follows a **Dirichlet distribution**.

Why?

Guillaume Franchi

Modeling abundance time series through a GLM model 12/42

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 - のへで

How do we choose P ?

We propose that $P(\cdot/y_t)$ follows a **Dirichlet distribution**.

Why?

Because this distribution allows us to approach almost any kind of distribution on the simplex *(it is the generalization of the Beta distribution)*.

The Dirichlet distribution can be characterized by:

The Dirichlet distribution can be characterized by:

• a mean vector
$$\lambda = (\lambda_1, \dots, \lambda_d)$$
;

The Dirichlet distribution can be characterized by:

- a mean vector $\lambda = (\lambda_1, \dots, \lambda_d)$;
- a dispersion parameter $\varphi > 0$.

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 - のへで

The Dirichlet distribution can be characterized by:

- a mean vector $\lambda = (\lambda_1, \dots, \lambda_d)$;
- a dispersion parameter $\varphi > 0$.

We denote the Dirichlet distribution: $Dir(\lambda, \varphi)$.

The Dirichlet distribution can be characterized by:

- a mean vector $\lambda = (\lambda_1, \dots, \lambda_d)$;
- a dispersion parameter $\varphi > 0$.

We denote the Dirichlet distribution: $Dir(\lambda, \varphi)$.

Remark

The Dirichlet distribution can be characterized by:

- a mean vector $\lambda = (\lambda_1, \dots, \lambda_d)$;
- a dispersion parameter $\varphi > 0$.

We denote the Dirichlet distribution: $Dir(\lambda, \varphi)$.

Remark

Actually, for
$$Y \sim \text{Dir}(\lambda, \varphi)$$
, then $\text{Cov}(Y_i, Y_j) = -\frac{\lambda_i \lambda_j}{\varphi + 1}$ if $i \neq j$
and $\text{Var}(Y_i) = \frac{\lambda_i (1 - \lambda_i)}{\varphi + 1}$.

Back to the model

We thus propose that:

$$P(\cdot/y_t) = \text{Dir}(\lambda(\eta, y_t), \varphi(\theta, y_t))$$

where θ and η are the parameters of the model.

イロト イボト イヨト イヨト

∃ <2 <</p>
Back to the model

We thus propose that:

$$P(\cdot/y_t) = \text{Dir}(\lambda(\eta, y_t), \varphi(\theta, y_t))$$

where θ and η are the parameters of the model.

Following the GLM framework, we also propose that

$$\eta = (A,B) \in \mathbb{R}^{(d-1) \times (d-1)} \times \mathbb{R}^{d-1} \quad \text{and} \quad \theta = (\theta_1,\theta_2) \in \mathbb{R}^2$$

with the link functions:

$$\operatorname{alr}\left(\lambda(\eta, y_t)\right) = A \cdot \overline{y_t} + B \tag{1}$$

and

$$\varphi(\theta, y_t) = \exp\left(\theta_1 + \theta_2 \cdot I_S(y_t)\right).$$
(2)

イロト イヨト イヨト

3

Theorem 1

Guillaume Franchi

Modeling abundance time series through a GLM model 15/42

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 - のへで

Theorem 1

Assume the following assumptions hold true:

イロト イヨト イヨト

∃ 𝒫𝔅

Theorem 1

Assume the following assumptions hold true:

A1: θ belongs to a compact set Θ of \mathbb{R}^2 ;

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・ ・

3

Theorem 1

Assume the following assumptions hold true:

- **A1:** θ belongs to a compact set Θ of \mathbb{R}^2 ;
- **A2:** η belongs to a compact set H of $\mathbb{R}^{(d-1)\times(d-1)}\times\mathbb{R}^{d-1}$.

э.

Theorem 1

Assume the following assumptions hold true:

- **A1:** θ belongs to a compact set Θ of \mathbb{R}^2 ;
- **A2:** η belongs to a compact set H of $\mathbb{R}^{(d-1)\times(d-1)}\times\mathbb{R}^{d-1}$.

Then there exists a unique time series $(Y_t)_{t \in \mathbb{Z}}$ which is strictly stationary and ergodic such that for all $t \in \mathbb{Z}$:

$$\mathcal{L}(Y_{t+1} \mid Y_t = y_t) = \text{Dir}\left(\lambda(\eta, y_t), \varphi(\theta, y_t)\right)$$

with λ and φ satisfying equations (1) and (2).

Theorem 1

Assume the following assumptions hold true:

- **A1:** θ belongs to a compact set Θ of \mathbb{R}^2 ;
- **A2:** η belongs to a compact set H of $\mathbb{R}^{(d-1)\times(d-1)}\times\mathbb{R}^{d-1}$.

Then there exists a unique time series $(Y_t)_{t \in \mathbb{Z}}$ which is strictly stationary and ergodic such that for all $t \in \mathbb{Z}$:

$$\mathcal{L}(Y_{t+1} \mid Y_t = y_t) = \text{Dir}\left(\lambda(\eta, y_t), \varphi(\theta, y_t)\right)$$

with λ and φ satisfying equations (1) and (2).

Remark

イロト 人間ト イヨト イヨト

Theorem 1

Assume the following assumptions hold true:

- **A1:** θ belongs to a compact set Θ of \mathbb{R}^2 ;
- **A2:** η belongs to a compact set H of $\mathbb{R}^{(d-1)\times(d-1)}\times\mathbb{R}^{d-1}$.

Then there exists a unique time series $(Y_t)_{t \in \mathbb{Z}}$ which is strictly stationary and ergodic such that for all $t \in \mathbb{Z}$:

$$\mathcal{L}(Y_{t+1} \mid Y_t = y_t) = \operatorname{Dir}\left(\lambda(\eta, y_t), \varphi(\theta, y_t)\right)$$

with λ and φ satisfying equations (1) and (2).

Remark

Under assumptions A1 and A2, the kernel P actually satisfies the **Doeblin's condition**.

Guillaume Franchi

Outlines

I. Abundance and compositional data

II. Dirichlet GLM model for time series

- The model
- Interpretation of the parameters
- III. Estimation
- IV. Application of the model
- V. Conclusion

э.

Recall that the dispersion parameter of our model satisfies:

$$\varphi(\theta, y_t) = \exp(\theta_1 + \theta_2 \cdot I_S(y_t))$$

where the Shannon index $I_S(y_t) > 0$ is a measure of biodiversity in the ecosystem.

イロト イボト イヨト イヨト

Recall that the dispersion parameter of our model satisfies:

$$\varphi(\theta, y_t) = \exp(\theta_1 + \theta_2 \cdot I_S(y_t))$$

where the Shannon index $I_S(y_t) > 0$ is a measure of biodiversity in the ecosystem.

Thus, if $\theta_2 > 0$, the more diversity there is at time t, the less variability we will have at time t + 1.

イロト イボト イヨト イヨト

Recall that the dispersion parameter of our model satisfies:

$$\varphi(\theta, y_t) = \exp(\theta_1 + \theta_2 \cdot I_S(y_t))$$

where the Shannon index $I_S(y_t) > 0$ is a measure of biodiversity in the ecosystem.

Thus, if $\theta_2 > 0$, the more diversity there is at time t, the less variability we will have at time t + 1. A negative value for θ_2 is interpreted the opposite way.

Recall that the dispersion parameter of our model satisfies:

$$\varphi(\theta, y_t) = \exp(\theta_1 + \theta_2 \cdot I_S(y_t))$$

where the Shannon index $I_S(y_t) > 0$ is a measure of biodiversity in the ecosystem.

Thus, if $\theta_2 > 0$, the more diversity there is at time t, the less variability we will have at time t + 1. A negative value for θ_2 is interpreted the opposite way.

 θ_1 corresponds to a variability inherent to the process: the lower it is, the more volatile the time series is.

イロト イボト イヨト イヨト

Interpretation of parameter $\eta = (A, B)$ (1/3)

It is a more tricky explanation, and the mean parameter of our model satisfies:

$$\lambda(\eta, y_t) = \operatorname{alr}^{-1}(A \cdot \overline{y_t} + B)$$

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 - のへで

Interpretation of parameter $\eta = (A, B)$ (1/3)

It is a more tricky explanation, and the mean parameter of our model satisfies:

$$\lambda(\eta, y_t) = \operatorname{alr}^{-1}(A \cdot \overline{y_t} + B) \\ = \left(\frac{\exp(A_{1*} \cdot \overline{y_t} + B_1)}{1 + \sum_{j=1}^{d-1} \exp(A_{j*} \cdot \overline{y_t} + B_j)}, \dots, \frac{1}{1 + \sum_{j=1}^{d-1} \exp(A_{j*} \cdot \overline{y_t} + B_j)}\right)$$

where A_{j*} denotes the j^{th} line of matrix A.

・ロト ・ 四 ト ・ 日 ト ・ 日 ト

Interpretation of parameter $\eta = (A, B)$ (2/3)

The coefficients of B can be interpreted as an inherent dynamic for the abundance of each species: the higher B_i is, the higher the expected value of species i will be.

イロト イヨト イヨト

Interpretation of parameter $\eta = (A, B)$ (2/3)

The coefficients of B can be interpreted as an inherent dynamic for the abundance of each species: the higher B_i is, the higher the expected value of species i will be.

In order to interpret A, one can consider the means ratio between species i and j at time t + 1:

$$MR(i, j, y_t) = \exp\left(\left(A_{i*} - A_{j*}\right) \cdot \overline{y_t}\right).$$

イロト イボト イヨト イヨト

Interpretation of parameter $\eta = (A, B)$ (2/3)

The coefficients of B can be interpreted as an inherent dynamic for the abundance of each species: the higher B_i is, the higher the expected value of species i will be.

In order to interpret A, one can consider the means ratio between species i and j at time t + 1:

$$MR(i, j, y_t) = \exp\left(\left(A_{i*} - A_{j*}\right) \cdot \overline{y_t}\right).$$

Assume for example that the abundance is modified at time t: species of reference d increases by p, at the expense of species iand j, resulting in a new abundance:

$$z_t = y_t + \left(0, \dots, 0, -\alpha \cdot p, 0, \dots, 0, (\alpha - 1) \cdot p, 0, \dots, 0, p\right)$$

くロ と く 同 と く ヨ と 一

Interpretation of parameter $\eta = (A, B)$ (3/3)

Considering the impact the means ratio, we get:

$\frac{MR(i, j, z_t)}{MR(i, j, y_t)} = \exp\left(p\left(\alpha(A_{ij} + A_{ji} - A_{ii} - A_{jj}) + A_{jj} - A_{ij}\right)\right).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Interpretation of parameter $\eta = (A, B)$ (3/3)

Considering the impact the means ratio, we get:

$$\frac{MR(i, j, z_t)}{MR(i, j, y_t)} = \exp\left(p\left(\alpha(A_{ij} + A_{ji} - A_{ii} - A_{jj}) + A_{jj} - A_{ij}\right)\right).$$

Thus, the coefficients in A give us a precise information about how the changes in an abundance would affect the means ratio between two species.

・ロト ・雪 ト ・ヨ ト ・ ヨ ト

Outlines

- I. Abundance and compositional data
- II. Dirichlet GLM model for time series

III. Estimation

- Maximum of conditional likelihood
- Maximum of conditional pseudo-likelihood
- IV. Application of the model

V. Conclusion

э.

We consider now that we have a sample $(y_t)_{0 \le t \le n}$ of the abundance of an ecosystem along time.

イロト イボト イヨト イヨト

We consider now that we have a sample $(y_t)_{0 \le t \le n}$ of the abundance of an ecosystem along time.

We assume that this observed abundance a realization derived from the ergodic process $(Y_t)_{t\in\mathbb{Z}}$ mentioned in theorem 1.

イロト 不得 トイヨト イヨト 二日

We consider now that we have a sample $(y_t)_{0 \le t \le n}$ of the abundance of an ecosystem along time.

We assume that this observed abundance a realization derived from the ergodic process $(Y_t)_{t\in\mathbb{Z}}$ mentioned in theorem 1.

Furthermore, we consider the couple of parameters (θ,η) under its vectorized form.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Outlines

I. Abundance and compositional data

II. Dirichlet GLM model for time series

III. Estimation
Maximum of conditional likelihood
Maximum of conditional pseudo-likelihood

IV. Application of the model

V. Conclusion

э.

Maximum of conditional likelihood: definition

It is the most natural estimator, and it is defined by

$$\left(\hat{\theta}_n, \hat{\eta}_n\right) = \underset{(\theta, \eta) \in \Theta \times H}{\operatorname{argmin}} - \sum_{t=1}^n \log\left(p_{(\theta, \eta)}(y_t, y_{t-1})\right)$$

where $p_{(\theta,\eta)}(\cdot, y_{t-1})$ is the density of the kernel $P(\cdot/y_{t-1})$:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Maximum of conditional likelihood: definition

It is the most natural estimator, and it is defined by

$$\left(\hat{\theta}_n, \hat{\eta}_n\right) = \underset{(\theta, \eta) \in \Theta \times H}{\operatorname{argmin}} - \sum_{t=1}^n \log\left(p_{(\theta, \eta)}(y_t, y_{t-1})\right)$$

where $p_{(\theta,\eta)}(\cdot,y_{t-1})$ is the density of the kernel $P(\cdot/y_{t-1})$:

$$p_{(\theta,\eta)}(y_t, y_{t-1}) = \frac{\Gamma(\varphi(\theta, y_{t-1}))}{\prod_{i=1}^d \Gamma(\alpha_i(\theta, \eta, y_{t-1}))} \times \prod_{i=1}^{d-1} y_{t,i}^{\alpha_i(\theta, \eta, y_{t-1})-1} \times \left(1 - \sum_{i=1}^{d-1} y_{t,i}\right)^{\alpha_d(\theta, \eta, y_{t-1})-1}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ● ● ● ●

Proposition 1

イロト イヨト イヨト

∃ 𝒫𝔅

Proposition 1

Under assumptions A1 and A2, the estimator $(\hat{\theta}_n, \hat{\eta}_n)$ is strongly consistent and asymptotically normal.

Proposition 1

Under assumptions A1 and A2, the estimator $(\hat{\theta}_n, \hat{\eta}_n)$ is strongly consistent and asymptotically normal.

Remark

э

Proposition 1

Under assumptions A1 and A2, the estimator $(\hat{\theta}_n, \hat{\eta}_n)$ is strongly consistent and asymptotically normal.

Remark

This estimator is yet difficult to compute.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Proposition 1

Under assumptions A1 and A2, the estimator $(\hat{\theta}_n, \hat{\eta}_n)$ is strongly consistent and asymptotically normal.

Remark

This estimator is yet difficult to compute. In practice, the optimization of the application:

$$(\theta, \eta) \longmapsto -\sum_{t=1}^{n} \log \left(p_{(\theta, \eta)}(y_t, y_{t-1}) \right)$$

strongly depends on the initial value chosen for $(\theta,\eta),$ and can numerically fail.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Outlines

- I. Abundance and compositional data
- II. Dirichlet GLM model for time series

III. Estimation

- Maximum of conditional likelihood
- Maximum of conditional pseudo-likelihood

IV. Application of the model

V. Conclusion

э.

Maximum of conditional pseudo-likelihood: definition

We focus here on the parameter $\eta = (A, B)$.

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 - のへで

Maximum of conditional pseudo-likelihood: definition

We focus here on the parameter $\eta = (A, B)$.

This estimator is defined by:

$$\hat{w}_n = \underset{\eta \in H}{\operatorname{argmin}} - \sum_{t=1}^n \sum_{i=1}^d y_{t,i} \log \left(\lambda_i(\eta, y_{t-1}) \right).$$

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 - のへで

Maximum of conditional pseudo-likelihood: definition

We focus here on the parameter $\eta = (A, B)$.

This estimator is defined by:

$$\hat{w}_n = \underset{\eta \in H}{\operatorname{argmin}} - \sum_{t=1}^n \sum_{i=1}^d y_{t,i} \log \left(\lambda_i(\eta, y_{t-1}) \right).$$

Maximum of conditional pseudo-likelihood: definition

We focus here on the parameter $\eta=(A,B).$

This estimator is defined by:

$$\hat{w}_n = \underset{\eta \in H}{\operatorname{argmin}} - \sum_{t=1}^n \sum_{i=1}^d y_{t,i} \log \left(\lambda_i(\eta, y_{t-1}) \right).$$

Proposition 2

The application

$$\eta \longmapsto -\sum_{t=1}^{n} \sum_{i=1}^{d} y_{t,i} \log \left(\lambda_i(\eta, y_{t-1}) \right)$$

is convex.

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

Proposition 3

イロト イヨト イヨト

Proposition 3

Under assumptions A1 and A2, the estimator \hat{w}_n is strongly consistent and asymptotically normal.

Remark

くロ と く 同 と く ヨ と 一

э

Proposition 3

Under assumptions A1 and A2, the estimator \hat{w}_n is strongly consistent and asymptotically normal.

Remark

This time, \hat{w}_n is numerically easy to compute, due to convexity.

くロ と く 同 と く ヨ と 一

Proposition 3

Under assumptions A1 and A2, the estimator \hat{w}_n is strongly consistent and asymptotically normal.

Remark

This time, \hat{w}_n is numerically easy to compute, due to convexity.

It can be a good strategy to initialize the value of η with \hat{w}_n when looking for the maximum of conditional likelihood.

Outlines

- I. Abundance and compositional data
- II. Dirichlet GLM model for time series

III. Estimation

- IV. Application of the modelSimulated data
 - Real data

V. Conclusion

イロト イヨト イヨト

Simulation settings

We simulate a thousand time series of abundance $(y_t)_{1 \le t \le 1000}$ with d = 3 species, according to our model, with the following parameters:

・ロト ・雪 ト ・ヨ ト ・

Simulation settings

We simulate a thousand time series of abundance $(y_t)_{1 \le t \le 1000}$ with d = 3 species, according to our model, with the following parameters:

$$A = \begin{pmatrix} 4.5 & 3 \\ 5 & 6.5 \end{pmatrix}, \quad B = \begin{pmatrix} -2 \\ -4 \end{pmatrix} \quad \text{and} \quad \theta = \begin{pmatrix} 2 \\ 0.5 \end{pmatrix}.$$

・ロト ・雪 ト ・ヨ ト ・

Simulation settings

We simulate a thousand time series of abundance $(y_t)_{1 \le t \le 1000}$ with d = 3 species, according to our model, with the following parameters:

$$A = \begin{pmatrix} 4.5 & 3\\ 5 & 6.5 \end{pmatrix}, \quad B = \begin{pmatrix} -2\\ -4 \end{pmatrix} \quad \text{and} \quad \theta = \begin{pmatrix} 2\\ 0.5 \end{pmatrix}.$$

Simulation of an abundance of three species

Guillaume Franchi

< ∃ >

э.

Estimated results

With the maximum of conditional pseudo-likelihood, the mean of the estimates obtained is given by:

$$\hat{A}_1 = \begin{pmatrix} 4.48 & 2.99 \\ 5.00 & 6.49 \end{pmatrix}$$
 and $\hat{B}_1 = \begin{pmatrix} -1.98 \\ -3.99 \end{pmatrix}$.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Estimated results

With the maximum of conditional pseudo-likelihood, the mean of the estimates obtained is given by:

$$\hat{A}_1 = \begin{pmatrix} 4.48 & 2.99 \\ 5.00 & 6.49 \end{pmatrix}$$
 and $\hat{B}_1 = \begin{pmatrix} -1.98 \\ -3.99 \end{pmatrix}$.

With the maximum of conditional likelihood, we have:

$$\hat{A}_2 = \begin{pmatrix} 4.53 & 3.16\\ 5.10 & 6.63 \end{pmatrix}, \quad \hat{B}_2 = \begin{pmatrix} -2.03\\ -4.05 \end{pmatrix} \text{ and } \hat{\theta} = \begin{pmatrix} 1.53\\ 0.02 \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Comparison with the true values

How many observations are necessary to obtain a "good" estimation ?

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Comparison with the true values

How many observations are necessary to obtain a "good" estimation ?

One can find below the MSE of our estimates, depending on the number of observations used.

MSE of both estimators

- 4 同 ト 4 回 ト -

Outlines

- I. Abundance and compositional data
- II. Dirichlet GLM model for time series

III. Estimation

- IV. Application of the modelSimulated data
 - Real data

V. Conclusion

イロト イヨト イヨト

The dataset

We consider here a population of alpine birds during 38 years, from 1964 to 2001 (see (Svensson, 2006) for details).

イロト イヨト イヨト

э.

The dataset

We consider here a population of alpine birds during 38 years, from 1964 to 2001 (see (Svensson, 2006) for details).

For simplification purpose, we will focus on three particular species: Anthus pratensis, Calcarius lapponicus and Oenanthe oenanthe.

Scandinavian Birds

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・ ・

The dataset

We consider here a population of alpine birds during 38 years, from 1964 to 2001 (see (Svensson, 2006) for details).

For simplification purpose, we will focus on three particular species: Anthus pratensis, Calcarius lapponicus and Oenanthe oenanthe.

One can find below the graphics of relative abundance for these species.

Abundance of Scandinavian Birds

Guillaume Franchi

Estimation results and previsions (1/2)

We assume our time series of birds satisfies our model, and we use the 30 first observations to estimate the parameters with the maximum of conditional likelihood:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Estimation results and previsions (1/2)

We assume our time series of birds satisfies our model, and we use the 30 first observations to estimate the parameters with the maximum of conditional likelihood:

$$\hat{A} = \left(\begin{array}{cc} 4.68 & 3.43 \\ 3.83 & 5.13 \end{array} \right), \quad \hat{B} = \left(\begin{array}{c} -2.21 \\ -2.87 \end{array} \right) \quad \text{and} \quad \hat{\theta} = \left(\begin{array}{c} 1.34 \\ 0.65 \end{array} \right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Estimation results and previsions (2/2)

We can try to make previsions on the last eight years with the obtained estimates.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Estimation results and previsions (2/2)

We can try to make previsions on the last eight years with the obtained estimates.

The previsions \hat{y}_t are made "step by step" using the estimates obtained previously, and the conditional mean:

 $\widehat{y_{t+1}} = \lambda(\hat{\eta}, \hat{y_t}).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Estimation results and previsions (2/2)

We can try to make previsions on the last eight years with the obtained estimates.

The previsions \hat{y}_t are made "step by step" using the estimates obtained previously, and the conditional mean:

$$\widehat{y_{t+1}} = \lambda(\widehat{\eta}, \widehat{y_t}).$$

Prevision of the abundance for Scandinavian Birds

Guillaume Franchi

→ Coefficients in \widehat{B} are both negative.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

→ Coefficients in \widehat{B} are both negative. The abundance of the two first species are intrinsically more likely to decline than the last species.

→ Coefficients in \widehat{B} are both negative. The abundance of the two first species are intrinsically more likely

to decline than the last species.

→ Second coefficient in $\hat{\theta}$ is positive.

→ Coefficients in \widehat{B} are both negative.

The abundance of the two first species are intrinsically more likely to decline than the last species.

→ Second coefficient in $\hat{\theta}$ is positive.

The more diversity there is, the more volatile the ecosystem will be.

→ Coefficients in \widehat{B} are both negative.

The abundance of the two first species are intrinsically more likely to decline than the last species.

→ Second coefficient in $\hat{\theta}$ is positive.

The more diversity there is, the more volatile the ecosystem will be.

→ For the interpretation \widehat{A} , we can compute some different impacts on means ratios.

イロト イヨト イヨト

ightarrow Coefficients in \widehat{B} are both negative.

The abundance of the two first species are intrinsically more likely to decline than the last species.

→ Second coefficient in $\hat{\theta}$ is positive. The more diversity there is, the more volatile the ecosystem will be.

→ For the interpretation \widehat{A} , we can compute some different impacts on means ratios.

For example, if species 3 increases its abundance by p, at the expense of species 1 and 2:

$$z_t = y_t + (-\alpha \cdot p, (\alpha - 1) \cdot p, p).$$

イロト イヨト イヨト

Abundance and compositional data Dirichlet GLM model for time series Estimation Application of the model Conclusion

Interpretation of the results (2/2)

We compute:

$$\frac{MR(1,2,z_t)}{MR(1,2,y_t)} = \exp\left(p\left(\alpha\left(\hat{A}_{12} + \hat{A}_{21} - \hat{A}_{11} - \hat{A}_{22}\right)\right) + \hat{A}_{22} - \hat{A}_{12}\right)$$
$$= \exp(p(-2.55\alpha + 1.7))$$

イロト イボト イヨト イヨト

We compute:

$$\frac{MR(1,2,z_t)}{MR(1,2,y_t)} = \exp\left(p\left(\alpha\left(\hat{A}_{12} + \hat{A}_{21} - \hat{A}_{11} - \hat{A}_{22}\right)\right) + \hat{A}_{22} - \hat{A}_{12}\right)$$
$$= \exp(p(-2.55\alpha + 1.7))$$

Impacts on the means ratio

Guillaume Franchi

イロト イボト イヨト イヨト

Outlines

- I. Abundance and compositional data
- II. Dirichlet GLM model for time series
- III. Estimation
- IV. Application of the model
- V. Conclusion

イロト イヨト イヨト

э.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

→ Construction of an ergodic time series

イロト イボト イヨト イヨト

- → Construction of an ergodic time series
- ➔ Interpretation of the model's parameters

э.

- → Construction of an ergodic time series
- → Interpretation of the model's parameters
- ➔ Theoretical estimation results

- → Construction of an ergodic time series
- → Interpretation of the model's parameters
- ➔ Theoretical estimation results
- × In ecology, time series do not possess many observations

イロト イヨト イヨト
- → Construction of an ergodic time series
- → Interpretation of the model's parameters
- ➔ Theoretical estimation results
- In ecology, time series do not possess many observations
 Vse of panel data ?

イロト イヨト イヨト

3

- → Construction of an ergodic time series
- → Interpretation of the model's parameters
- ➔ Theoretical estimation results
- In ecology, time series do not possess many observations
 Vise of panel data ?
- × Data sets often possess "zero values"

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

- → Construction of an ergodic time series
- → Interpretation of the model's parameters
- ➔ Theoretical estimation results
- In ecology, time series do not possess many observations
 Vise of panel data ?
- × Data sets often possess "zero values"
 - ♀ Infer missing values ?

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

- → Construction of an ergodic time series
- ➔ Interpretation of the model's parameters
- ➔ Theoretical estimation results
- In ecology, time series do not possess many observations
 Vise of panel data ?
- × Data sets often possess "zero values"
 - **§** Infer missing values ?
 - Construction of a model on the simplex, but with a dimension which can vary ?

< ロ > < 同 > < 三 > < 三 > 、

Thank you !

Guillaume Franchi

Modeling abundance time series through a GLM model 41/42

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

References

Aitchison, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical Society: Series B (Methodological), 44(2), 139–160. Svensson, S. (2006). Species composition and population fluctuations of alpine bird communities during 38 years in the scandinavian mountain range. Ornis Svecica, 16(4), 183–210.