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Definition of abundance

Definition

Standard abundance: counts of each species in the ecosystem. It
describes the commonness and rarity of species.

Relative abundance: proportions of each species in the whole
ecosystem. It describes the biodiversity of the ecosystem.
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Notations

A relative abundance y = (y1, . . . , yd) is an element of the
simplex:

Sd−1 =

{
(x1, . . . , xd) ∈]0; +∞[d

∣∣ d∑
i=1

xi = 1

}
.

For an abundance y ∈ Sd−1, we define the Shannon index:

IS(y) = −
d∑
i=1

yi log(yi).

Furthermore, we denote y = (y1, . . . , yd−1).
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Constraints related to the relative abundance

When studying time series of relative abundance (Yt)t∈Z where
Yt = (Yt,1, . . . , Yt,d), difficulties arise.

8 From the positivity constraint: ∀i ∈ {1, . . . , d} , Yt,i > 0.

8 From the sum constraint:
∑

16i6d

Yt,i = 1.

Ü It is impossible to apply our favourite time series models...
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Traditional approach (1/2)

The idea proposed by Aitchison (1982) is simple:

1. Transform the time series:

Zt = f(Yt)

where f : Sd−1 −→ Rn is a one to one mapping.
2. Apply the desired model on the time series (Zt)t∈Z.

3. Eventually transform back the fitted values Ẑt:

Ŷt = f −1(Ẑt).

Remark

A very popular choice for f is the additive log-ratio:

f : Sd−1 −→ Rd−1

(y1, . . . , yd) 7−→
(

log

(
y1

yd

)
, . . . , log

(
yd−1

yd

))
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Ŷt = f −1(Ẑt).
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Traditional approach (2/2)

This method has shown good results in terms of fitted values or
previsions.

BUT:

The interpretation of the model’s parameters (applied to (Zt)t∈Z)
is very difficult, if not impossible.

OUR GOAL:

To propose a model for the time series (Yt)t∈Z which is easily
interpretable.
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Staying in the simplex

The traditional approach lacks of interpretation due to the
transformation of the initial time series.

The idea is thus to propose a model for time series which stays in
the simplex:

P(Yt+1 ∈ A | Yt = yt) = P (A/yt)

where P is a transition kernel with source Sd−1 and target Sd−1.

Remark

It is obviously possible to consider several lag-values (even an
infinity).
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How do we choose P ?

We propose that P (·/yt) follows a Dirichlet distribution.

Why ?

Because this distribution allows us to approach almost any kind of
distribution on the simplex (it is the generalization of the Beta
distribution).
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Reminders about the Dirichlet distribution

The Dirichlet distribution can be characterized by:

• a mean vector λ = (λ1, . . . , λd);

• a dispersion parameter ϕ > 0.

We denote the Dirichlet distribution: Dir(λ, ϕ).

Remark

Actually, for Y ∼ Dir(λ, ϕ), then Cov(Yi, Yj) = − λiλj
ϕ+ 1

if i 6= j

and Var(Yi) =
λi(1− λi)
ϕ+ 1

.
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Back to the model

We thus propose that:

P (·/yt) = Dir (λ(η, yt), ϕ(θ, yt))

where θ and η are the parameters of the model.

Following the GLM framework, we also propose that

η = (A,B) ∈ R(d−1)×(d−1) × Rd−1 and θ = (θ1, θ2) ∈ R2

with the link functions:

alr (λ(η, yt)) = A · yt +B (1)

and
ϕ(θ, yt) = exp (θ1 + θ2 · IS(yt)) . (2)
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Existence of our process

Theorem 1

Assume the following assumptions hold true:

A1: θ belongs to a compact set Θ of R2;

A2: η belongs to a compact set H of R(d−1)×(d−1) × Rd−1.

Then there exists a unique time series (Yt)t∈Z which is strictly
stationary and ergodic such that for all t ∈ Z:

L(Yt+1 | Yt = yt) = Dir (λ(η, yt), ϕ(θ, yt))

with λ and ϕ satisfying equations (1) and (2).

Remark

Under assumptions A1 and A2, the kernel P actually satisfies the
Doeblin’s condition.
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Interpretation of parameter θ

Recall that the dispersion parameter of our model satisfies:

ϕ(θ, yt) = exp(θ1 + θ2 · IS(yt))

where the Shannon index IS(yt) > 0 is a measure of biodiversity in
the ecosystem.

Thus, if θ2 > 0, the more diversity there is at time t, the less
variability we will have at time t+ 1.
A negative value for θ2 is interpreted the opposite way.

θ1 corresponds to a variability inherent to the process: the lower it
is, the more volatile the time series is.
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Interpretation of parameter η = (A,B) (1/3)

It is a more tricky explanation, and the mean parameter of our
model satisfies:

λ(η, yt)
= alr−1(A · yt +B)

=

(
exp(A1∗ · yt +B1)

1 +
∑d−1

j=1 exp(Aj∗ · yt +Bj)
, . . . ,

1

1 +
∑d−1

j=1 exp(Aj∗ · yt +Bj)

)

where Aj∗ denotes the jth line of matrix A.
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Interpretation of parameter η = (A,B) (2/3)

The coefficients of B can be interpreted as an inherent dynamic
for the abundance of each species: the higher Bi is, the higher the
expected value of species i will be.

In order to interpret A, one can consider the means ratio between
species i and j at time t+ 1:

MR(i, j, yt) = exp ((Ai∗ −Aj∗) · yt) .

Assume for example that the abundance is modified at time t:
species of reference d increases by p, at the expense of species i
and j, resulting in a new abundance:

zt = yt +

0, . . . , 0,−α · p
↑
i

, 0, . . . , 0, (α− 1) · p
↑
j

, 0, . . . , 0, p
↑
d


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Interpretation of parameter η = (A,B) (3/3)

Considering the impact the means ratio, we get:

MR(i, j, zt)

MR(i, j, yt)
= exp (p (α(Aij +Aji −Aii −Ajj) +Ajj −Aij)) .

Thus, the coefficients in A give us a precise information about how
the changes in an abundance would affect the means ratio between
two species.
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Outlines
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III. Estimation
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Settings

We consider now that we have a sample (yt)06t6n of the
abundance of an ecosystem along time.

We assume that this observed abundance a realization derived
from the ergodic process (Yt)t∈Z mentioned in theorem 1.

Furthermore, we consider the couple of parameters (θ, η) under its
vectorized form.
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Maximum of conditional likelihood: definition

It is the most natural estimator, and it is defined by(
θ̂n, η̂n

)
= argmin

(θ,η)∈Θ×H
−

n∑
t=1

log
(
p(θ,η)(yt, yt−1)

)
where p(θ,η)(·, yt−1) is the density of the kernel P (·/yt−1):

p(θ,η)(yt, yt−1) =
Γ(ϕ(θ, yt−1))∏d

i=1 Γ(αi(θ, η, yt−1))
×
d−1∏
i=1

y
αi(θ,η,yt−1)−1
t,i

×

(
1−

d−1∑
i=1

yt,i

)αd(θ,η,yt−1)−1

.
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Maximum of conditional likelihood: properties

Proposition 1

Under assumptions A1 and A2, the estimator
(
θ̂n, η̂n

)
is strongly

consistent and asymptotically normal.

Remark

This estimator is yet difficult to compute. In practice, the
optimization of the application:

(θ, η) 7−→ −
n∑
t=1

log
(
p(θ,η)(yt, yt−1)

)
strongly depends on the initial value chosen for (θ, η), and can
numerically fail.
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Maximum of conditional pseudo-likelihood: definition

We focus here on the parameter η = (A,B).

This estimator is defined by:

ŵn = argmin
η∈H

−
n∑
t=1

d∑
i=1

yt,i log (λi(η, yt−1)) .

Proposition 2

The application

η 7−→ −
n∑
t=1

d∑
i=1

yt,i log (λi(η, yt−1))

is convex.
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Maximum of conditional pseudo-likelihood: properties

Proposition 3

Under assumptions A1 and A2, the estimator ŵn is strongly
consistent and asymptotically normal.

Remark

This time, ŵn is numerically easy to compute, due to convexity.

It can be a good strategy to initialize the value of η with ŵn when
looking for the maximum of conditional likelihood.
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Simulation settings

We simulate a thousand time series of abundance (yt)16t61000 with
d = 3 species, according to our model, with the following
parameters:

A =

(
4.5 3
5 6.5

)
, B =

(
−2
−4

)
and θ =

(
2

0.5

)
.

Simulation of an abundance of three species
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Estimated results

With the maximum of conditional pseudo-likelihood, the mean of
the estimates obtained is given by:

Â1 =

(
4.48 2.99
5.00 6.49

)
and B̂1 =

(
−1.98
−3.99

)
.

With the maximum of conditional likelihood, we have:

Â2 =

(
4.53 3.16
5.10 6.63

)
, B̂2 =

(
−2.03
−4.05

)
and θ̂ =

(
1.53
0.02

)
.

Guillaume Franchi Modeling abundance time series through a GLM model 31/42



Abundance and compositional data Dirichlet GLM model for time series Estimation Application of the model Conclusion

Estimated results

With the maximum of conditional pseudo-likelihood, the mean of
the estimates obtained is given by:
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Comparison with the true values

How many observations are necessary to obtain a “good”
estimation ?

One can find below the MSE of our estimates, depending on the
number of observations used.

MSE of both estimators
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The dataset

We consider here a population of alpine birds during 38 years, from
1964 to 2001 (see (Svensson, 2006) for details).
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The dataset

We consider here a population of alpine birds during 38 years, from
1964 to 2001 (see (Svensson, 2006) for details).

For simplification purpose, we will focus on three particular species:
Anthus pratensis, Calcarius lapponicus and Oenanthe oenanthe.

(a) Anthus pratensis (b) Calcarius
lapponicus

(c) Oenanthe oenanthe

Scandinavian Birds
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The dataset

We consider here a population of alpine birds during 38 years, from
1964 to 2001 (see (Svensson, 2006) for details).

For simplification purpose, we will focus on three particular species:
Anthus pratensis, Calcarius lapponicus and Oenanthe oenanthe.

One can find below the graphics of relative abundance for these
species.

Abundance of Scandinavian Birds
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Estimation results and previsions (1/2)

We assume our time series of birds satisfies our model, and we use
the 30 first observations to estimate the parameters with the
maximum of conditional likelihood:

Â =

(
4.68 3.43
3.83 5.13

)
, B̂ =

(
−2.21
−2.87

)
and θ̂ =

(
1.34
0.65

)
.
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Estimation results and previsions (2/2)

We can try to make previsions on the last eight years with the
obtained estimates.

The previsions ŷt are made “step by step” using the estimates
obtained previously, and the conditional mean:

ŷt+1 = λ(η̂, ŷt).

Prevision of the abundance for Scandinavian Birds
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Interpretation of the results (1/2)

Ü Coefficients in B̂ are both negative.

The abundance of the two first species are intrinsically more likely
to decline than the last species.

Ü Second coefficient in θ̂ is positive.
The more diversity there is, the more volatile the ecosystem will be.

Ü For the interpretation Â, we can compute some different
impacts on means ratios.

For example, if species 3 increases its abundance by p, at the
expense of species 1 and 2:

zt = yt + (−α · p, (α− 1) · p, p).
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impacts on means ratios.

For example, if species 3 increases its abundance by p, at the
expense of species 1 and 2:

zt = yt + (−α · p, (α− 1) · p, p).
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Interpretation of the results (2/2)

We compute:

MR(1, 2, zt)

MR(1, 2, yt)
= exp

(
p
(
α
(
Â12 + Â21 − Â11 − Â22

))
+ Â22 − Â12

)
= exp(p(−2.55α+ 1.7))

,

Impacts on the means ratio
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))
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Outlines

I. Abundance and compositional data

II. Dirichlet GLM model for time series

III. Estimation

IV. Application of the model

V. Conclusion
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Conclusion

Ü Construction of an ergodic time series

Ü Interpretation of the model’s parameters

Ü Theoretical estimation results

8 In ecology, time series do not possess many observations

­ Use of panel data ?

8 Data sets often possess “zero values”

­ Infer missing values ?
­ Construction of a model on the simplex, but with a

dimension which can vary ?
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Thank you !
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