Comparing CART trees using subsampling

Pierre-Yves Boëlle¹, **Felix Cheysson**², Olivier Lopez²

¹ Institut Pierre-Louis d'Epidémiologie et de Santé Publique ² Sorbonne Université, LPSM

> EcoDep Conference 2022 June 24th 2022

Motivation

2 Comparing CART trees

- Bootstrap based hypothesis test
- Some convergence results via U-statistics

The test in practice

- Numerical experiments
- An application to the Covid-19 data

Covid-19 dataset from EDS database: all hospitalised patients in AP-HP hospitals with a diagnosis of Covid-19 (PCR analysis or lung X-ray).

dt.first	dt.last	outcome	sex	age	diabetes
2020-03-17	2020-04-05	alive	F	45	no
2020-03-14	2020-03-25	alive	F	29	no
2020-03-18	2020-03-29	death	Н	80	no
2020-03-11	2020-03-15	death	Н	62	no
2020-03-04	2020-03-09	death	F	72	yes
2020-03-16	2020-03-20	death	Н	92	no

- Motivation: Identify the risk factors of the disease, the groups at risk, and determine whether they evolve through the pandemic.
- **Objective**: Improve patient management and care when changes in the vulnerability of groups at risks are detected.

Statistical framework: supervised learning

• Independent learning sets $\mathbb{X} = \{X_i\}_{1 \leq i \leq m}$ and $\mathbb{Y} = \{Y_j\}_{1 \leq j \leq n}$, where X_i and Y_j are doublets $(u, v) \in \mathcal{U} \times \{0, 1\}$ with d.f. P_X and P_Y .

Statistical framework: supervised learning

• Independent learning sets $\mathbb{X} = \{X_i\}_{1 \leq i \leq m}$ and $\mathbb{Y} = \{Y_j\}_{1 \leq j \leq n}$, where X_i and Y_j are doublets $(u, v) \in \mathcal{U} \times \{0, 1\}$ with d.f. P_X and P_Y .

Statistical motivation

Compare $\mathbb{E}_{P_X}[V \mid U = u]$ and $\mathbb{E}_{P_Y}[V \mid U = u]$ for arbitrary $u \in \mathcal{U}$.

Felix Cheysson

4 / 22

Statistical framework: supervised learning

- Independent learning sets $\mathbb{X} = \{X_i\}_{1 \leq i \leq m}$ and $\mathbb{Y} = \{Y_j\}_{1 \leq j \leq n}$, where X_i and Y_j are doublets $(u, v) \in \mathcal{U} \times \{0, 1\}$ with d.f. P_X and P_Y .
- Decision tree $T_{\mathbb{X}} = T(X_1, \dots, X_m)$ generated from sample \mathbb{X} .
- $T(u) \in [0,1]$ denotes the prediction of the tree T at $u \in \mathcal{U}$.

Statistical motivation

Compare $\mathbb{E}_{P_X}[V \mid U = u]$ and $\mathbb{E}_{P_Y}[V \mid U = u]$ for arbitrary $u \in \mathcal{U}$.

Felix Cheysson

Comparing CART using subsampling EcoDep

EcoDep 2022, 2022-06-24

4 / 22

Classification and Regression Trees (CART)

Introduced by Breiman et al., 1984.

- Construct binary tree by recursively splitting the sample space \mathcal{U} along one of the covariate dimensions:
 - Find the node A, the dimension d and the value z such that the split (A, d, z)maximises the decrease in impurity:

 $\Delta i(A, d, z) = i(A) - p_L i(A_L) - p_B i(A_B);$

- Label the node through majority vote;
- Stop when a stopping rule is achieved.
- Prune the tree to reduce overfitting. Extensions include randomised ensembles: random forests, bagging, etc.

Classification and Regression Trees (CART)

Introduced by Breiman et al., 1984.

- Construct binary tree by recursively splitting the sample space \mathcal{U} along one of the covariate dimensions:
 - Find the node A, the dimension d and the value z such that the split (A, d, z)maximises the decrease in impurity:

 $\Delta i(A, d, z) = i(A) - p_L i(A_L) - p_R i(A_R);$

- Label the node through majority vote;
- Stop when a stopping rule is achieved.
- Prune the tree to reduce overfitting. Extensions include randomised ensembles: random forests, bagging, etc.

Classification and Regression Trees (CART)

Introduced by Breiman et al., 1984.

- Construct binary tree by recursively splitting the sample space \mathcal{U} along one of the covariate dimensions:
 - Find the node A, the dimension d and the value z such that the split (A, d, z)maximises the decrease in impurity:

 $\Delta i(A, d, z) = i(A) - p_L i(A_L) - p_R i(A_R);$

- Label the node through majority vote;
- Stop when a stopping rule is achieved.
- Prune the tree to reduce overfitting. Extensions include randomised ensembles: random forests, bagging, etc.

- Handles missing data, interpretable (particularly for MDs).
- Theoretical properties:
 - Breiman et al., 1984: \mathbb{L}^2 -consistency of tree structured regression and classification, though not pointwise.
 - Gey and Nedelec, 2005; Gey, 2012: Non asymptotic risk for pruned procedure.
- Empirical results (variance of prediction):
 - Bar-Hen, Gey, and Poggi, 2015: influence functions derived from robust estimation theory.
 - Wager, Hastie, and Efron, 2014: variance of bagged predictors.

Problem: CART are sensitive to perturbations in the learning set.

• Study predictions rather than structure of the tree: what is the variance associated with the sampling of the learning set?

Hypothesis test for the comparison of trees

- Independent learning sets $\mathbb{X} = \{X_i\}_{1 \leq i \leq m}$ and $\mathbb{Y} = \{Y_j\}_{1 \leq j \leq n}$, where X_i and Y_j are doublets $(u, v) \in \mathcal{U} \times \{0, 1\}$ with d.f. P_X and P_Y .
- Decision tree $T_{\mathbb{X}} = T(X_1, \dots, X_m)$ generated from sample \mathbb{X} .
- $T(u) \in [0,1]$ denotes the prediction of the tree T at $u \in \mathcal{U}$.

Hypothesis test for the comparison of trees

- Independent learning sets $\mathbb{X} = \{X_i\}_{1 \leq i \leq m}$ and $\mathbb{Y} = \{Y_j\}_{1 \leq j \leq n}$, where X_i and Y_j are doublets $(u, v) \in \mathcal{U} \times \{0, 1\}$ with d.f. P_X and P_Y .
- Decision tree $T_{\mathbb{X}} = T(X_1, \dots, X_m)$ generated from sample \mathbb{X} .
- $T(u) \in [0,1]$ denotes the prediction of the tree T at $u \in \mathcal{U}$.
- (Dis)similarity between $T_{\mathbb{X}}$ and $T_{\mathbb{Y}}$ at a collection of test points (u_1,\ldots,u_t) via the kernel h

$$h(\mathbb{X};\mathbb{Y}) = \sum_{i=1}^{t} d\big(T_{\mathbb{X}}(u_i), T_{\mathbb{Y}}(u_i)\big).$$

- Null hypothesis $\mathcal{H}_0: \forall u \in \mathcal{U}, \ \mathbb{E}_{P_X}[V \mid U = u] = \mathbb{E}_{P_Y}[V \mid U = u].$
- Question: What is the d.f. of h(X; Y) under \mathcal{H}_0 ?

U-statistics for CART

- Mentch and Hooker, 2016; Peng, Coleman, and Mentch, 2019.
- Base learners $h(X_1,\ldots,X_r;Y_1,\ldots,Y_s)$ on subsamples of size r and s.
- Bagging predictions from ensemble method yields a U-statistic

$$U_{m,n,r,s} = \binom{m}{r}^{-1} \binom{n}{s}^{-1} \sum_{(m,r)} \sum_{(n,s)} h(X_{i_1}, \dots, X_{i_r}; Y_{j_1}, \dots, Y_{j_s}).$$

Extension to incomplete U-Statistics

$$U_{m,n,r,s,N} = N^{-1} \sum_{(m,r)} \sum_{(n,s)} \rho_{ij} h(X_{i_1}, \dots, X_{i_r}; Y_{j_1}, \dots, Y_{j_s}),$$

with (ρ_{ij}) a multinomial with N trials and probabilities $1/\binom{m}{r}\binom{n}{s}$.

- Introduced by Halmos, 1946 and Hoeffding, 1948.
- Generalisation of the mean to sum of dependent variables.
- Suppose we are interested in the expected value of a kernel h which is permutation symmetric in its r arguments:

$$\theta = \mathbb{E}h(X_1, \ldots, X_r).$$

• For an *i.i.d.* sample (X_1, \ldots, X_n) , define the *U-statistic with kernel* h:

$$U_n = \binom{n}{r}^{-1} \sum_{(n,r)} h(X_{i_1},\ldots,X_{i_r}).$$

• Examples of U-statistics: sample mean and variance, signed rank statistic, Mann-Whitney statistic ($\mathbb{P}(X < Y)$), ...

A gentle reminder on U-statistics (cont'd)

By projecting U_n on the space \mathcal{S}_1 (Hájek projection),

$$\mathcal{S}_1 = \left\{ \sum_{i=1}^n g_i(X_i) : \mathbb{E}g_i^2(X_i) < \infty \right\},\,$$

it can be shown that:

Theorem

If $\mathbb{E}h^2(X_1,\ldots,X_r)<\infty$, then

$$\sqrt{n}(U_n - \theta) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, r^2 \zeta_1),$$

where

$$\begin{aligned} \zeta_1 &= \operatorname{Var} \big(\mathbb{E}[h(X_1, X_2, \dots, X_r) \mid X_1] - \theta \big) \\ &= \mathbb{E} \big[h(X_1, X_2, \dots, X_r) h(X_1, X'_2, \dots, X'_r) \big] - \theta^2. \end{aligned}$$

Felix Cheysson

U-statistics for CART

- Mentch and Hooker, 2016; Peng, Coleman, and Mentch, 2019.
- Base learners $h(X_1,\ldots,X_r;Y_1,\ldots,Y_s)$ on subsamples of size r and s.
- Bagging predictions from ensemble method yields a U-statistic

$$U_{m,n,r,s} = \binom{m}{r}^{-1} \binom{n}{s}^{-1} \sum_{(m,r)} \sum_{(n,s)} h(X_{i_1}, \dots, X_{i_r}; Y_{j_1}, \dots, Y_{j_s}).$$

Extension to incomplete U-Statistics

$$U_{m,n,r,s,N} = N^{-1} \sum_{(m,r)} \sum_{(n,s)} \rho_{ij} h(X_{i_1}, \dots, X_{i_r}; Y_{j_1}, \dots, Y_{j_s}),$$

with (ρ_{ij}) a multinomial with N trials and probabilities $1/\binom{m}{r}\binom{n}{s}$.

U-statistics for CART

Theorem

Suppose

- $m/(m+n) \rightarrow \lambda \in [0,1]$ (relative proportion of samples),
- $r/m \sim s/n \rightarrow 0$ (size of subsamples),
- N = o(n/s) (number of subsamples).
- Let $heta_{r,s}=\mathbb{E}h$, $\zeta_{r,s}=\operatorname{Var}(h)$ and assume $\mathbb{E}h^6<\infty.$ Then

$$\frac{U_{m,n,r,s,N} - \theta_{r,s}}{\sqrt{\zeta_{r,s}/N}} \xrightarrow{d} \mathcal{N}(0,1).$$

- Stronger rate of convergence possible with some conditions on the conditional moments of h (Hoeffding decomposition).
- Possible to establish CLTs for the sample *p*-quantiles of *h*.

Under \mathcal{H}_0 , the parameters $heta_{r,s}$ and $\zeta_{r,s}$ are unknown.

Idea: Generate a bootstrap approximation $h(X^*; Y^*)$ to the d.f. of h(X; Y) under \mathcal{H}_0 :

• Build average predictions \bar{T} under the null:

$$\bar{T}(u) = \frac{m}{m+n} T_{\mathbb{X}}(u) + \frac{n}{m+n} T_{\mathbb{Y}}(u);$$

- \bullet Generate bootstrapped trees $T^*_{\mathbb{X}}$ and $T^*_{\mathbb{Y}}$ of sizes r and s resp.:
 - Subsample the inputs: u^* ;
 - Draw $v^* \sim B(\bar{T}(u^*));$
 - Build the tree T^* on $\{(u^*,v^*)\},$ using the same control parameters as the subsampled trees.
- Estimate $\theta_{r,s}$ and $\zeta_{r,s}$ with the $\{h(\mathbb{X}^*, \mathbb{Y}^*)\}$.

Numerical experiments

<u>Generative model</u> \mathcal{M} for both \mathbb{X} and \mathbb{Y} :

- Continuous variable (age): $U_1 = p_a U_a + (1 - p_a) U_b$, where $U_a \sim \mathcal{N}(\mu_a, \sigma_a)$ and $U_b \sim \mathcal{N}(\mu_b, \sigma_b)$;
- Discrete variable (gender): $U_2 \sim B(p_f)$;
- Binary outcome (death): $V \mid U_1, U_2 \sim B(p_d)$,

$$\operatorname{logit}(p_d) = \beta_0 + \beta_1 U_1 + \beta_2 U_2.$$

<u>Scenarii, n = m = 1,000, r = s = 50, N = 50:</u>

- \mathcal{H}_0 Test points (u_1,\ldots,u_t) are generated from \mathcal{M}_i
- \mathcal{H}_0' Test points (u_1,\ldots,u_t) are generated from \mathcal{M} with $p_a=.85;$
- \mathcal{S}_1 As for \mathcal{H}_0' , with $eta_1=0.06$ (higher risk for old);
- \mathcal{S}_2 As for \mathcal{H}_0' , with $eta_2=0.7$ (higher risk for male).

(Dis)similarity between T_X and T_Y at a collection of test points (u_1, \ldots, u_t) via the kernel (d a distance)

$$h(\mathbb{X};\mathbb{Y}) = \sum_{i=1}^{t} d\big(T_{\mathbb{X}}(u_i), T_{\mathbb{Y}}(u_i)\big).$$

• Based on
$$\mathbb{L}^2$$
-consistency:

• L2:
$$d(p,q) = (p-q)^2$$
;
• L1: $d(p,q) = |p-q|$;

• cross:
$$d(p,q) = -p\log q - q\log p$$
;

• max:
$$h(\mathbb{X}; \mathbb{Y}) = \sup_{1 \le i \le t} |T_{\mathbb{X}}(u_i) - T_{\mathbb{Y}}(u_i)|.$$

p-values for 100 simulations under \mathcal{H}_0

Felix Cheysson

17 / 22

p-values for 100 simulations under \mathcal{H}'_0

Felix Cheysson

p-values for 100 simulations for scenarii \mathcal{S}_1 and \mathcal{S}_2

Felix Cheysson

19 / 22

Applications to death rates during first wave

Felix Cheysson

Comparing CART using subsampling

subsampling EcoDep 2022, 2022-06-24

Comparing death rates for the first three waves

- Data from AP-HP's EDS (*Entrepôt de Santé*), covering 39 hospitals.
- Pandemic waves occurring:
 - From mid-March to end of June 2020;
 - From early-Sept. to end of Nov. 2020;
 - From early-Feb. to end of May 2021.

	Healthy < 50 y.o.		Elder	Elderly > 60 y.o.	
	Rate	p-value	Rate	p-value	
1 st wave	0.029		0.214		
2 nd wave	0.019	0.34	0.184	< 0.01	
3 rd wave	0.015	0.61	0.216	0.03	

Some methodological innovations

- Two-sample test of conditional expectations,
- Adapted to decision trees and ensemble methods,
- And distributional results for the test statistic under \mathcal{H}_0 .

Some crucial perspectives

- Convergence of the bootstrap approximation for the d.f. of the test statistic under \mathcal{H}_0 .
- Under \mathcal{H}_1 : find the test points (u_1, \ldots, u_t) so that the test is most powerful.
- Full application to complex Covid-19 data, including more explanatory covariates.

Thank you for your attention.

Bar-Hen, Avner, Servane Gey, and Jean-Michel Poggi (2015). "Influence Measures for CART Classification Trees". In: J. Classif. 32.1, pp. 21-45. ISSN: 0176-4268. DOI: 10.1007/s00357-015-9172-4. arXiv: 1610.08203. 🔋 Biau, Gérard and Erwan Scornet (2016). "A random forest guided tour". In: TEST 25.2, pp. 197-227. ISSN: 1133-0686. DOI: 10.1007/s11749-016-0481-7. arXiv: 1511.05741. 📄 Breiman, Leo et al. (1984). Classification and regression trees. The Wadsworth statistics / probability series. CRC, p. 366. ISBN: 0-412-04841-8. 📔 Fernholz, Luisa Turrin (1983). von Mises Calculus for Statistical Functionals. Lecture Notes in Statistics. New York: Springer-Verlag, p. 133. ISBN: 9788578110796. arXiv: arXiv:1011.1669v3.

- Gey, Servane (2012). "Risk bounds for CART classifiers under a margin condition". In: *Pattern Recognit.* 45.9, pp. 3523-3534. ISSN: 00313203. DOI: 10.1016/j.patcog.2012.02.021. arXiv: 0902.3130.
 Gey, Servane and Elodie Nedelec (2005). "Model Selection for CART Regression Trees". In: *IEEE Trans. Inf. Theory* 51.2, pp. 658-670. ISSN: 0018-9448. DOI: 10.1109/TIT.2004.840903.
 Halmos, Paul R. (1946). "The Theory of Unbiased Estimation". In: *Ann. Math. Stat.* 17.1, pp. 34-43. ISSN: 0003-4851. DOI: 10.1214/aoms/1177731020.
- Hoeffding, Wassily (1948). "A Class of Statistics with Asymptotically Normal Distribution". In: Ann. Math. Stat. 19.3, pp. 293–325. ISSN: 0003-4851. DOI: 10.1214/aoms/1177730196.

- Lopes, Miles E., Suofei Wu, and Thomas C. M. Lee (2020). "Measuring the Algorithmic Convergence of Randomized Ensembles: The Regression Setting". In: SIAM J. Math. Data Sci. 2.4, pp. 921–943. DOI: 10.1137/20m1343300. arXiv: 1908.01251. 📕 Mayer, Michael (2009). "U-Quantile-Statistics". In: pp. 1–9. arXiv: 0906.1266. Mentch, Lucas and Giles Hooker (2016). "Quantifying uncertainty in random forests via confidence intervals and hypothesis tests". In: J. Mach. Learn. Res. 17, pp. 1-41. ISSN: 15337928. arXiv: 1404.6473. 📔 Peng, Wei, Tim Coleman, and Lucas Mentch (2019). "Asymptotic Distributions and Rates of Convergence for Random Forests via Generalized U-statistics". In: DOI: 10.1214/19-EJS1643. arXiv:
 - 1905.10651.

- Scornet, Erwan, Gerard Biau, and Jean Philippe Vert (2015).
 "Consistency of random forests". In: Ann. Stat. 43.4, pp. 1716–1741.
 ISSN: 00905364. DOI: 10.1214/15-A0S1321. arXiv: 1405.2881.
- Vaart, A. W. van der (2000). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, p. 460.
- Wager, Stefan (2014). "Asymptotic Theory for Random Forests". In: pp. 1–17. arXiv: 1405.0352.
- Wager, Stefan, Trevor Hastie, and Bradley Efron (2014). "Confidence Intervals for Random Forests: The Jackknife and the Infinitesimal Jackknife.". In: J. Mach. Learn. Res. 15.1, pp. 1625–1651. ISSN: 1532-4435.

Proof follows Peng, Coleman, and Mentch, 2019:

• Hoeffding decomposition: study the variance by projecting $U_{m,n,r,s}$ on the pairwise orthogonal spaces $S_{i,j}$ of square-integrable functions, of the form

$$\mathcal{S}_{i,j} = \left\{ \sum_{(m,i)} \sum_{(n,j)} g_{i,j}(X_{\alpha_1}, \dots, X_{\alpha_i}; Y_{\beta_1}, \dots, Y_{\beta_j}) \right\}.$$

- We have that $r\zeta_{1,0} \leq \zeta_{r,s}$, similarly for $\zeta_{0,1}$: r and s must be chosen such that the assumption is valid.
- Example: for the one-sample OLS estimator, $(r\zeta_1)^{-1}\zeta_s \rightarrow 1$ (Peng, Coleman, and Mentch, 2019).