Efficiency and consistency of model selection for time series

Joint work with K. Kare (Paris 1) and W. Kengne (Cergy)

Jean-Marc Bardet, SAMM, Université Paris 1, France bardet@univ-paris1.fr

EcoDep 2022 Conference

Paris, June 24

Outline

1 An example

- 2 Family of causal affine models
- 3 Risks and model selection procedure
- 4 New efficiency results
- 5 Numerical results

Example

Observe the daily observations of PM10 at Marseille 01/2018 to 12/2019 :

 \implies Aims : Chosing an "optimal" model for these data from a family $\mathcal M$ of models. For instance,

$$\begin{split} \mathcal{M} &= \big\{ \mathsf{ARMA}(p,q) \text{ or } \mathsf{GARCH}(p',q'), \\ & \text{ with } 0 \leq p, p' \leq p_{\mathsf{max}}, \ 0 \leq q,q' \leq q_{\mathsf{max}} \big\} \end{split}$$

Outline

An example

2 Family of causal affine models

3 Risks and model selection procedure

4 New efficiency results

5 Numerical results

Two intuitive definitions

Let $(X_t)_{t\in\mathbb{Z}}$ be a time series (sequence of r.v. on $(\Omega, \mathcal{A}, \mathbb{P})$)

• $(X_t)_{t\in\mathbb{Z}}$ is a stationary process if $\forall k\in\mathbb{N}^*$, $\forall (t_1,\ldots,t_k)\in\mathbb{Z}^k$,

$$ig(X_{t_1},\ldots,X_{t_k}ig) \stackrel{\sim}{\sim} ig(X_{t_1+h},\ldots,X_{t_k+h}ig) \quad ext{for all } h\in\mathbb{Z}.$$

• Assume that $(\xi_t)_{t\in\mathbb{Z}}$ is a white noise (centered i.i.d.r.v.)

 $(X_t)_{t\in\mathbb{Z}}$ causal process if $\exists H : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$ such as $X_t = H((\xi_{t-k})_{k\geq 0})$.

Causal $\mathsf{AR}[\infty]$ and $\mathsf{ARCH}(\infty)$ models

With $(\xi_t)_{t\in\mathbb{Z}}$ a white noise,

- AR(∞) processes $X_t = \sum_{i=1}^{\infty} \theta_i X_{t-i} + \xi_t$ \implies Causal ARMA(p, q) processes $X_t + \sum_{i=1}^{p} a_i X_{t-i} = \xi_t + \sum_{i=1}^{q} b_i \xi_{t-i}$.
- ARCH (∞) processes, (Robinson, 1991), with $b_0>0$ and $b_j\geq 0$

$$\begin{cases} X_t = \sigma_t \xi_t, \\ \sigma_t^2 = \phi_0 + \sum_{j=1}^{\infty} \phi_j X_{t-j}^2. \end{cases}$$
$$\implies \text{GARCH}(p,q) \text{ processes, with } c_0 > 0, \ c_j, \ d_j \ge 0, \ c_p, \ d_q > 0 \\ \begin{cases} X_t = \sigma_t \xi_t, \\ \sigma_t^2 = c_0 + \sum_{j=1}^p c_j X_{t-j}^2 + \sum_{j=1}^q d_j \sigma_{t-j}^2 \end{cases}$$

A common frame for studying time series

A common class of models for AR, ARMA, ARCH and GARCH processes :

Causal affine models : class $\mathcal{CA}(M, f)$ $X_t = M(X_{t-1}, X_{t-2}, \ldots) \xi_t + f(X_{t-1}, X_{t-2}, \ldots), \quad \forall \ t \in \mathbb{Z}, \text{ a.s.}.$

• $M(\cdot)$ and $f(\cdot)$ are real valued function on $\mathbb{R}^{\mathbb{N}}$;

• $(\xi_t)_{t\in\mathbb{Z}}$ a white noise with $\mathbb{E}[\xi_0] = 0$ and $\mathbb{E}[|\xi_0|^r] < \infty$, $r \ge 1$.

Extensions of univariate ARCH models

• TGARCH(∞) processes, (Zakoïan, 1994), with $b_0, \ b_i^+, \ b_i^- \geq 0$

$$\begin{cases} X_t = \sigma_t \xi_t, \\ \sigma_t = b_0 + \sum_{j=1}^{\infty} [b_j^+ \max(X_{t-j}, 0) - b_j^- \min(X_{t-j}, 0)] \end{cases}$$

• APARCH (δ, p, q) processes, (Ding *et al.*, 1993)

$$\begin{cases} X_t = \sigma_t \zeta_t, \\ \sigma_t^{\delta} = \omega + \sum_{j=1}^{p} \alpha_i (|X_{t-i}| - \gamma_i X_{t-i})^{\delta} + \sum_{j=1}^{q} \beta_j \sigma_{t-j}^{\delta}, \\ \text{with } \delta \ge 1, \ \omega > 0, \ -1 < \gamma_i < 1 \text{ and } \alpha_i, \ \beta_j \ge 0. \end{cases}$$

Combinations of models

• ARMA-GARCH processes, (Ding et al., 1993, Ling and McAleer, 2003)

$$\begin{cases} X_t = \sum_{i=1}^{p} a_i X_{t-i} + \varepsilon_t + \sum_{j=1}^{q} b_j \varepsilon_{t-j}, \\ \varepsilon_t = \sigma_t \zeta_t, \quad \text{with} \quad \sigma_t^2 = c_0 + \sum_{i=1}^{p'} c_i \varepsilon_{t-i}^2 + \sum_{j=1}^{q'} d_j \sigma_{t-j}^2 \end{cases}$$

• ARMA-APARCH processes, (Ding et al., 1993)

$$\begin{cases} X_t = \sum_{i=1}^p a_i X_{t-i} + \varepsilon_t + \sum_{j=1}^q b_j \varepsilon_{t-j}, \\ \varepsilon_t = \sigma_t \zeta_t, \quad \text{with} \quad \sigma_t^{\delta} = \omega + \sum_{j=1}^{p'} \alpha_i (|X_{t-i}| - \gamma_i X_{t-i})^{\delta} + \sum_{j=1}^{q'} \beta_j \sigma_{t-j}^{\delta} \end{cases}$$

Existence and stationarity of causal affine models

$$X_t = M(X_{t-1}, X_{t-2}, ...) \xi_t + f(X_{t-1}, X_{t-2}, ...), \quad \forall \ t \in \mathbb{Z},$$

Our main tool for studying those models :

Assume that $\begin{cases} \frac{\partial}{\partial x_i} f((x_k)_{k \ge 1}) \\ \frac{\partial}{\partial x_i} M((x_k)_{k \ge 1}) \end{cases}$ exist on \mathbb{R}^{∞} for any $i \ge 1$.

Proposition (from Doukhan and Wintenberger, 2007)

If $\mathbb{E}[|\xi_0|^r] < \infty$ with $r \ge 1$, there exists a unique causal solution $(X_t)_{t \in \mathbb{Z}}$ which is stationary, ergodic, such as $\mathbb{E}(|X_0|^r) < \infty$, when

$$\sum_{j=1}^{\infty} \sup_{x \in \mathbb{R}^{\infty}} \left| \frac{\partial}{\partial x_j} f((x_k)_{k \ge 1}) \right| + \left(\mathbb{E} \left[|\xi_0|^r \right] \right)^{1/r} \sum_{j=1}^{\infty} \sup_{x \in \mathbb{R}^{\infty}} \left| \frac{\partial}{\partial x_j} M((x_k)_{k \ge 1}) \right| < 1$$

Examples

Conditions on stationarity become :

• Causal AR[
$$\infty$$
] :
 $X_t = \sum_{j=0}^{\infty} a_j \xi_{t-j} \Longrightarrow \sum_{j=0}^{\infty} |a_j| < 1;$

• Causal ARCH[
$$\infty$$
]:

$$X_t = \xi_t \sqrt{c_0 + \sum_{j=1}^{\infty} c_j X_{t-j}^2} \Longrightarrow \left(\mathbb{E} \left[|\xi_0|^r \right] \right)^{1/r} \sum_{j=1}^{\infty} \sqrt{c_j} < 1;$$

• Causal TARCH[
$$\infty$$
]:

$$X_t = \xi_t \left(b_0 + \sum_{j=1}^{\infty} \left[b_j^+ \max(X_{t-j}, 0) - b_j^- \min(X_{t-j}, 0) \right] \right)$$

$$\implies \left(\mathbb{E} \left[|\xi_0|^r \right] \right)^{1/r} \sum_{j=1}^{\infty} \max \left(b_j^-, b_j^+ \right) < 1;$$

∋⊳

Additivity of causal affine models

Proposition

Let $\Theta_1 \subset \mathbb{R}^{d_1}$, $\Theta_2 \subset \mathbb{R}^{d_1}$, $M_{\theta_1}^{(1)}$, $f_{\theta_1}^{(1)}$, $M_{\theta_2}^{(2)}$, $f_{\theta_2}^{(2)}$ for $\theta_1 \in \Theta_1$, $\theta_2 \in \Theta_2$. There exist $\max(d_1, d_2) \leq d \leq d_1 + d_2$, $\Theta \subset \mathbb{R}^d$, and M_{θ} , f_{θ} with $\theta \in \Theta$, such as for any $\theta_1 \in \Theta_1 \subset \mathbb{R}^{d_1}$ and $\theta_2 \in \Theta_2 \subset \mathbb{R}^{d_2}$,

 $\Big\{\mathcal{CA}(M_{\theta_1}^{(1)}, f_{\theta_1}^{(1)}) \bigcup \mathcal{CA}(M_{\theta_2}^{(2)}, f_{\theta_2}^{(2)})\Big\} \subset \Big\{\mathcal{CA}(M_{\theta}, f_{\theta})\Big\}.$

Consequence :

• For any family
$$\mathcal{M} = \bigcup_{i \in I} \mathcal{CA}(M_{\theta_i}^{(i)}, f_{\theta_i}^{(i)})$$
,

$$\implies \exists d \in \mathbb{N}^*, \ M_\theta \text{ and } f_\theta \text{ such as } \mathcal{M} = \bigcup_{i \in I} \left\{ \mathcal{CA}(M_\theta, f_\theta) \right\}_{\theta \in \Theta_i \subset \mathbb{R}^d}$$

Finite family of causal affine models

If $\mathcal M$ is a finite family of $\mathcal C\mathcal A$ models :

- $\mathcal{M} \sim \{m, \text{ with } m \subset \{1, \ldots, d\}\}$;
- for a model $m \in \{1, \ldots, d\}$, $\exists \Theta(m) \subset \mathbb{R}^d$ such as

$$X \in \mathcal{CA}(M_{\theta}, f_{\theta}) \text{ with } \theta \in \Theta(m) \subset \{(x_1, \ldots, x_d) \in \mathbb{R}^d, x_i = 0 \text{ if } i \notin m\}.$$

Now assume :

$$\Theta(m) \subset \Theta \subset \left\{ \theta \in \mathbb{R}^d, \ \sum_{j=1}^{\infty} \sup_{x \in \mathbb{R}^{\infty}} \left| \partial_{x_j} f_{\theta}(x) \right| + \left(\mathbb{E} \left[|\xi_0|^r \right] \right)^{1/r} \ \sum_{j=1}^{\infty} \sup_{x \in \mathbb{R}^{\infty}} \left| \partial_{x_j} M_{\theta}(x) \right| < 1 \right\}$$

 \implies Semi-parametric model selection...

Outline

An example

2 Family of causal affine models

3 Risks and model selection procedure

4 New efficiency results

5 Numerical results

Gaussian QMLE of causal affine model

Denote $m^* \in \mathcal{M}$ so-called the true model :

 $\begin{array}{ll} (X_1,\ldots,X_n) & \text{observed trajectory of } \mathcal{CA}(M_{\theta^*},f_{\theta^*}) \text{ with } \theta^* \in \Theta(m^*) \\ \implies & X_t = M_{\theta^*}(X_{t-1},X_{t-2},\ldots) \, \xi_t + f_{\theta^*}(X_{t-1},X_{t-2},\ldots), & \forall \ t \in \mathbb{Z}. \end{array}$

• With
$$f_{\theta}^{t} = f_{\theta}(X_{t-1}, X_{t-2}, ...), M_{\theta}^{t} = M_{\theta}(X_{t-1}, X_{t-2}, ...),$$

Gaussian conditional log-density : $q_t(\theta) = -\frac{1}{2} \Big[\frac{(X_t - f_{\theta}^t)^2}{(M_{\theta}^t)^2} + \log((M_{\theta}^t)^2) \Big]$ • Let $\widehat{f}_{\theta}^t = f_{\theta}(X_{t-1}, \dots, X_1, 0, \cdots)$ and $\widehat{M}_{\theta}^t = M_{\theta}(X_{t-1}, \dots, X_1, 0, \cdots)$,

Quasi conditional log-density : $\widehat{q}_t(\theta) = -\frac{1}{2} \Big[\frac{(X_t - \widehat{f}_{\theta}^t)^2}{(\widehat{M}_{\theta}^t)^2} + \log ((\widehat{M}_{\theta}^t)^2) \Big].$

$$\implies \text{Gaussian QMLE} : \widehat{\theta}_n = \operatorname{argmax}_{\theta \in \Theta} \widehat{L}_n(\theta) \text{ with } \widehat{L}_n(\theta) = \sum_{\substack{n \\ \alpha \in \Theta}} \widehat{q}_t(\theta).$$

A risk for a family of causal affine models

Let $X \in \mathcal{CA}(M_{ heta}, f_{ heta})$ and $heta \in \Theta \subset \mathbb{R}^d$, define its risk by :

$$R(\theta) = -2 \times \mathbb{E}[q_1(\theta)] = \mathbb{E}[\gamma(\theta, X_1)], \quad \gamma(\theta, X_t) = \frac{(X_t - f_{\theta}^t)^2}{(M_{\theta}^t)^2} + \log\left((M_{\theta}^t)^2\right)$$

where
$$f_{\theta}^{t} = f_{\theta}(X_{t-1}, X_{t-2}, ...), \ M_{\theta}^{t} = M_{\theta}(X_{t-1}, X_{t-2}, ...).$$

Assumption A1 : for $\theta, \theta' \in \Theta$, $(f_{\theta}^0 = f_{\theta'}^0 \text{ and } M_{\theta}^0 = M_{\theta'}^0) \text{ a.s.} \implies \theta = \theta'.$

From Assumption A1, for $m \in \mathcal{M}, \ \theta_m^*$ exists and is unique with

 $\theta_m^* = \underset{\theta \in \Theta(m)}{\operatorname{argmin}} R(\theta)$

$$\implies \theta^*_{m^*} = \theta^* \quad \text{and if } \underset{a}{m^*} \subset \underset{a}{m^*}, \quad \underset{a}{\theta^*} = \theta^*$$

Empirical risk and computable empirical risk

Define the empirical risk :

$$R_n(\theta) = \frac{1}{n} \sum_{t=1}^n \gamma(\theta, X_t).$$

Not computable ! Define the computable empirical risk :

$$\widehat{R}_{n}(\theta) = \frac{1}{n} \sum_{t=1}^{n} \widehat{\gamma}(\theta, X_{t}) \quad \text{with } \widehat{\gamma}(\theta, X_{t}) := \frac{(X_{t} - \widehat{f}_{\theta}^{t})^{2}}{(\widehat{M}_{\theta}^{t})^{2}} + \log\left((\widehat{M}_{\theta}^{t})^{2}\right)$$
where $\widehat{f}_{\theta}^{t} = f_{\theta}(X_{t-1}, \dots, X_{1}, 0, \cdots)$ and $\widehat{M}_{\theta}^{t} = M_{\theta}(X_{t-1}, \dots, X_{1}, 0, \cdots)$

Finally, for $m \in \mathcal{M}$, the QMLE $\widehat{ heta}_m$ is

$$\widehat{\theta}_m = \operatorname*{argmin}_{\theta \in \Theta(m)} \widehat{R}_n(\theta).$$

Model selection procedure

Define a penalty function $m \in \mathcal{M} \mapsto \text{pen}(m) \in \mathbb{R}^+$, possibly data-dependent, such as $\text{pen}(m_1) \leq \text{pen}(m_2)$ when $m_1 \subset m_2$.

Then define the penalized contrast and the model selected by it :

$$\widehat{m}_{\mathsf{pen}} = \operatorname*{argmin}_{m \in \mathcal{M}} \left\{ \widehat{C}_{\mathsf{pen}}(m) \right\}$$
 with $\widehat{C}_{\mathsf{pen}}(m) := \widehat{R}_n(\widehat{\theta}_m) + \mathsf{pen}(m).$

Natural aim : find $\widehat{m}_{id} = \underset{m \in \mathcal{M}}{\operatorname{argmin}} R(\widehat{\theta}_m).$

 \implies Let the ideal penalty be defined by

$$\operatorname{pen}_{id}(m) = R(\widehat{\theta}_m) - \widehat{R}_n(\widehat{\theta}_m).$$

Outline

An example

- 2 Family of causal affine models
- 3 Risks and model selection procedure
- 4 New efficiency results

5 Numerical results

Assumptions

- A0 : Θ for r > 8, where $\mathbb{E}[\xi_0^2] = 1$;
- A1 : for $\theta, \theta' \in \Theta$, $(f^0_{\theta} = f^0_{\theta'} \text{ and } M^0_{\theta} = M^0_{\theta'}) \text{ a.s.} \implies \theta = \theta'.$
- A2 : $\exists \underline{M} > 0$ such that $M_{\theta}(x) \geq \underline{M}$ for all $\theta \in \Theta$, $x \in \mathbb{R}^{\mathbb{N}}$.
- A3 : For any $m \in \mathcal{M}$, θ_m^* belongs to the interior of $\Theta(m)$.
- A4 : For any $\theta \in \Theta$, $x \in \mathbb{R}^{\infty}$, $\partial_{x_k} \partial_{\theta^2}^2 f_{\theta}(x)$ and $\partial_{x_k} \partial_{\theta^2}^2 M_{\theta}(x)$ exist and $a / \sup_{\theta \in \Theta} \left(\sup_{x \in \mathbb{R}^{\infty}} |\partial_{x_k} f_{\theta}(x)| + \sup_{x \in \mathbb{R}^{\infty}} |\partial_{x_k} M_{\theta}(x)| + \sup_{x \in \mathbb{R}^{\infty}} ||\partial_{x_k} \partial_{\theta} f_{\theta}(x)|| + \sup_{x \in \mathbb{R}^{\infty}} ||\partial_{x_k} \partial_{\theta} M_{\theta}(x)|| \right) = O(k^{-\delta}) \text{ with } \delta > 7/2$

$$b/ \sup_{\theta \in \Theta} \Big(\sum_{k=1}^{\infty} \sup_{x \in \mathbb{R}^{\infty}} \left\| \partial_{x_{k}} \partial_{\theta^{2}}^{2} f_{\theta}(x) \right\| + \sup_{x \in \mathbb{R}^{\infty}} \left\| \partial_{x_{k}} \partial_{\theta^{2}}^{2} M_{\theta}(x) \right\| \Big) < \infty$$

Asymptotic normality of the estimator

Théorème

Under Assumptions A0-A4, for any $m \in \mathcal{M}$,

$$\sqrt{n}\left((\widehat{\theta}_m)_i - (\theta_m^*)_i\right)_{i \in m} \xrightarrow[n \to \infty]{} \mathcal{N}\left(0, \left(F_m(\theta_m^*)\right)^{-1} G_m(\theta_m^*) \left(F_m(\theta_m^*)\right)^{-1}\right),$$

with G_m and F_m defined by

•
$$G_m(\theta) = \frac{1}{4} \left(\sum_{t \in \mathbb{Z}} cov(\partial_{\theta_i} \gamma(\theta, X_0), \partial_{\theta_j} \gamma(\theta, X_t)) \right)_{i,j \in m}$$

 $\implies G_m(\theta^*) = \frac{1}{4} \left(cov(\partial_{\theta_i} \gamma(\theta^*, X_0), \partial_{\theta_j} \gamma(\theta^*, X_0)) \right)_{i,j \in m} \quad \text{if } m^* \subset m$
• $F_m(\theta) = -\frac{1}{2} \left(\mathbb{E} \left[\partial_{\theta_i \theta_j}^2 \gamma(\theta, X_0) \right] \right)_{i,j \in m}.$

• Could be applied to all cited processes ARMA, ARCH, APARCH,...

Consequences of asymptotic normality

Proposition

Under Assumptions A0-A4, there exists $N_0 \in \mathbb{N}$ such as for any $n \geq N_0$,

$$\mathop{\operatorname{argmin}}_{m\in\mathcal{M}}\mathbb{E}ig[Rig(\widehat{ heta}_mig)ig]=m^*.$$

Proposition

Under Assumptions A0-A4 and for any $m \in M$, \exists a bounded sequence $(v_n^*)_{n \in \mathbb{N}^*}$, not depending on m when $m^* \subset m$, satisfying

$$\mathbb{E}\big[pen_{id}(m) \big] \underset{n \to \infty}{\sim} - \frac{2}{n} \operatorname{Trace}\Big(\big(F_m(\theta_m^*) \big)^{-1} \, G_m(\theta_m^*) \Big) \Big) + \frac{v_n^*}{n}.$$

$$\operatorname{Rem} : -2\operatorname{Trace}((F_m(\theta_m^*))^{-1}G_m(\theta_m^*)) = \begin{cases} 2|m| & \text{Gaussian process} \\ 2|m| & \text{ARMA process} \\ (\mu_4 - 1)|m| & \text{GARCH process} \\ \end{cases}$$

Efficiency

Théorème

Under Assumptions A0-A4, and if for any $\varepsilon > 0$, $\exists K_{\varepsilon} > 0$ such as

$$\limsup_{n\to\infty}\max_{m\in\mathcal{M}}\mathbb{P}\Big(n\operatorname{pen}(m)\geq K_{\varepsilon}\Big)\leq\varepsilon.$$

Then for any $\varepsilon > 0$, $\exists M_{\varepsilon} > 0$ and $\exists N_{\varepsilon} \in \mathbb{N}^*$ such as for any $n \ge N_{\varepsilon}$,

$$\mathbb{P}\Big(R\big(\widehat{\theta}_{\widehat{m}_{pen}}\big) \leq \min_{m \in \mathcal{M}} \big\{R\big(\widehat{\theta}_m\big)\big\} + \frac{M_{\varepsilon}}{n}\Big) \geq 1 - \varepsilon.$$

Example : Satisfied for $pen(m) = \mathbb{E}[pen_{id}(m)]$, not for $pen(m) = \frac{\log n}{n}$.

Efficiency (2)

Théorème

Assume that there exists $g : \mathcal{M} \to [0, \infty[$ such as $pen(m) = \frac{g(m)}{n}$ for any $m \in \mathcal{M}$. Then, under Assumptions A0-A4,

 $\liminf_{n\to\infty} \ \mathbb{P}\big(\widehat{m}_{pen} \text{ overfits}\big) > 0.$

and there exists M > 0 such as for n large enough,

$$\mathbb{E}[R(\widehat{\theta}_{\widehat{m}_{pen}})] \geq \min_{m \in \mathcal{M}} \mathbb{E}[R(\widehat{\theta}_m)] + \frac{M}{n}.$$

Example : Satisfied for $pen(m) = \mathbb{E}[pen_{id}(m)]$, not for $pen(m) = \frac{\log n}{n}$.

Efficiency and consistency

Théorème

Under Assumptions A0-A4 and if for any $\varepsilon > 0$,

$$n \mathbb{P}(pen(m) \ge \varepsilon) \xrightarrow[n \to +\infty]{} 0 \text{ for any } m \in \mathcal{M}.$$

Then,

$$n \mathbb{P}(m^* \not\subset \widehat{m}_{pen}) \xrightarrow[n \to +\infty]{} 0.$$

 \implies if the penalty decreases to 0 (in proba), \widehat{C}_{pen} does not select a misspecified model asymptotically.

Efficiency and consistency (2)

Théorème

Under Assumptions A0-A4, if the penalty pen satisfies (25), and if for $m^* \subset m$, $e_n(m) = pen(m) - pen(m^*) > 0$ satisfies

$$n \mathbb{E}[e_n(m)] \xrightarrow[n \to +\infty]{} \infty \quad and \quad n \mathbb{E}[|e_n(m) - \mathbb{E}[e_n(m)]|] \xrightarrow[n \to +\infty]{} 0,$$

$$then \quad \mathbb{P}(\widehat{m}_{pen} = m^*) \xrightarrow[n \to +\infty]{} 1.$$
For any $\varepsilon > 0$ and $\eta > 0$, $\exists N_{\varepsilon,\eta} \in \mathbb{N}^*$ such as for any $n \ge N_{\varepsilon,\eta},$

$$\begin{cases} \mathbb{P}\Big(R(\widehat{\theta}_{\widehat{m}_{pen}}) \le R(\widehat{\theta}_{m^*})) + \frac{\eta}{n}\Big) \ge 1 - \varepsilon \\ \mathbb{E}[R(\widehat{\theta}_{\widehat{m}_{pen}})] \le \min_{m \in \mathcal{M}} \mathbb{E}[R(\widehat{\theta}_m)] + \frac{\eta}{n}. \end{cases}$$

 \implies Results valid for instance for BIC penalty pen $(m) = \frac{\log n}{n}$.

A new consistent criterion

Théorème (Laplace approximation)

Under Assumptions A0-A4, and for any $x \in R^{\infty}$, the functions $\theta \to M_{\theta}$ and $\theta \to f_{\theta}$ are $C^{6}(\Theta)$, then

$$-2 \times \log \left(\mathbb{P}((X_1, \dots, X_n) \mid m) \right) = -2 \times \widehat{L}_n(\widehat{\theta}_m) + \log(n) \mid m \mid -2 \log \left(b_m(\widehat{\theta}_m) \right) \\ -\log(2\pi) \mid m \mid + \log \left(\det \left(-\widehat{F}_n(m) \right) \right) + 2 \log(\mid \mathcal{M} \mid) + O(n^{-1}) \quad a.s.$$

where $\widehat{F}_n(m) := \left(\partial^2_{\theta_i \theta_j} \widehat{R}_n(\widehat{\theta}_m)\right)_{i,j \in m}$ and b_m a bounded function on Θ .

Consequences : Using this approximation :

•
$$\widehat{m}_{BIC} = \operatorname*{argmin}_{m \in \mathcal{M}} \left\{ -2 \widehat{L}_n(\widehat{\theta}_m) + \log(n) |m| \right\}, \text{ (Schwarz, 1978)}$$

• $\widehat{m}_{KC} = \operatorname*{argmin}_{m \in \mathcal{M}} \left\{ -2 \widehat{L}_n(\widehat{\theta}_m) + \log(n) |m| + \log \left(\det \left(-\widehat{F}_n(m) \right) \right) \right\},$

A new consistent criterion (2)

 \Longrightarrow By taking more terms in the Laplace approximation, define :

 $\begin{aligned} \widehat{\mathit{KC'}}(m) &= \mathit{BIC}(m) - \log(2\pi) |m| + \log\left(\det\left(-\widehat{\mathit{F}}_n(m)\right)\right) + 2\log\left(|m|\right) \\ \text{and} \quad \widehat{m}_{\mathit{KC'}} &= \operatorname*{argmin}_{m \in \mathcal{M}} \left\{\widehat{\mathit{KC'}}(m)\right\} \end{aligned}$

Corollary

The criteria BIC, KC and KC' are consistent model selection criteria and satisfy o(1/n) efficiency.

Outline

An example

- 2 Family of causal affine models
- 3 Risks and model selection procedure
- 4 New efficiency results

5 Numerical results

Simulation results for classical models

Consider the following test bench :

where $(\xi_t)_t$ is a Gaussian white noise with variance unity.

Simulation results (2)

	n	200 AIC BIC	KC' AIC	500 BIC	KC' AIC	1000 B∣C	KC' AIC	2000 BIC	кс
DGP	True U Wrong a	17.2 36.2 82.8 63.8	35.6 30.4 64.4 69.6	73.2 26.8	78.2 36.4 21.8 63.6	87.4 13.6	92.2 32.4 7.8 67.6	96.2 03.8	98. 01.
DGP II	True 2	27.8 80.8	92.0 30.6	88.4	96.6 31.0	89.1	97.5 33.3	95.2	99.9
	Wrong 2	72.2 19.2	08.0 69.7	11.6	03.4 69.0	10.9	02.5 66.7	04.8	00.1
DGP III	True 0	00.4 10.8	14.8 01.4	32.2	55.8 01.0	54.8	82.0 02.0	75.8	93.
	Wrong 9	99.6 89.2	85.2 98.6	67.8	44.2 99.0	45.2	18.0 98.0	24.2	06.

Table – Percentage of "true" selected models for DGP I-III.

n	AIC	200 BIC	KC' AIC	500 BIC	KC' AIC	1000 BIC	KC AIC	2000 BIC	KC
DGP	4.91	2.59	5.35 3.46	1.11	1.18 3.08	0.98	0.75 3.05	0.38	0.29
DGP	3.66	0.87	0.54 3.37	0.42	0.11 2.62	0.15	0.05 2.5	0.10	0.04
DGP	2.39	4.63	13.16 2.53	4.08	9.54 2.69	2.96	2.52 3.21	2.06	0.76

$$\mathsf{Table} - \widehat{\mathit{ME}} = n\left(\overline{\widetilde{\mathit{R}}(\widehat{\theta}_{\widehat{m}})} - \overline{\widetilde{\mathit{R}}(\widehat{\theta}_{m^*})}\right) \text{ for DGP I-III.}$$

Simulation results (3)

n	AIC	500 BIC	KC AIC	1000 BIC	KC' AIC	2000 BIC	KC' AIC	5000 BIC	кс
DGP IV True	81.8	88.4	63.0 86.8	98.2	87.8 87.2	98.4	94.4 88.8	100	10
Wrong	18.2	11.6	37.0 13.2	1.8	12.2 12.8	1.6	5.6 11.2	0	
DGP V True	29.8	9.6	24.0 51.2	22.6	54.6 76.4	49.8	84.2 83.8	95.8	97.
Wrong	70.2	90.4	76.0 48.8	77.4	45.4 23.6	50.2	15.8 16.2	4.2	2.
DGP VI True	25.4	3.4	22.0 44.8	8.6	48.8 68.8	24.4	75.0 84.8	71.2	94.
Wrong	74.6	96.6	78.0 55.2	91.4	51.2 31.2	75.6	25.0 15.2	28.8	6.

Table – Percentage of "true" selected models for DGP IV-VI.

n	AIC	500 B∣C	KC' AIC	1000 BIC	KC' AIC	2000 BIC	KC AIC	5000 BIC	кс
DGP IV	0.52	4.23	12.17 0.95	0.13	1.71 0.67	0.08	0.24 0.43	0	0
DGP V	3.58	8.23	15.12 2.16	4.3	4.45 1.43	4.45	1.05 0.65	0.84	0.15
DGP VI	2.42	10.63	21.16 2.30	5.27	2.65 1.26	5.14	1.24 0.90	3.08	0.46

$$\mathsf{Table} - \widehat{\mathit{ME}} = n\left(\overline{\widetilde{\mathit{R}}(\widehat{\theta}_{\widehat{m}})} - \overline{\widetilde{\mathit{R}}(\widehat{\theta}_{m^*})}\right) \, \mathsf{for} \, \, \mathsf{DGP} \, \, \mathsf{IV-VI} \, .$$

< 口 > < 同 >

э

Example

For the daily observations of PM10 at Marseille 01/2018 to 12/2019 :

 \implies ARMA(1,2)

References

- Bardet, Kare and Kengne (2020). Consistent model selection criteria and goodness-of-fit test for common time series models. *Elec. Journ. Statist.*
- Bardet and Wintenberger (2009). Asymptotic normality of the Quasi-Maximum Likelihood Estimator for multidimensional causal processes. *Ann. Statist.*
- Doukhan and Wintenberger (2008). Weakly dependent chains with infinite memory. Stoch. Proc. and their Appli.
- Francq and Zakoïan (2010). GARCH Models. Wiley.
- Hannan (1980). The Estimation of the Order of an ARMA Process. Ann. Statist.
- Hsu, Ing and Tong (2019). On model selection from a finite family of possibly misspecified time series models. *Ann. of Statist.*
- Kashyap (1982). Optimal choice of AR and MA parts in autoregressive moving average models. *IEEE Trans Pattern Anal. Machine Intel.*