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Example

Observe the daily observations of PM10 at Marseille 01/2018 to 12/2019 :

=⇒ Aims : Chosing an "optimal" model for these data from a familyM
of models. For instance,

M =
{
ARMA(p, q) or GARCH(p′, q′),

with 0 ≤ p, p′ ≤ pmax, 0 ≤ q, q′ ≤ qmax

}
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Two intuitive de�nitions

Let (Xt)t∈Z be a time series (sequence of r.v. on (Ω,A, IP))

(Xt)t∈Z is a stationary process if ∀k ∈ IN∗, ∀(t1, . . . , tk) ∈ Zk ,

(
Xt1 , . . . ,Xtk

) L∼ (Xt1+h, . . . ,Xtk+h

)
for all h ∈ Z.

Assume that (ξt)t∈Z is a white noise (centered i.i.d.r.v.)

(Xt)t∈Z causal process if ∃H : IRIN → IR such as Xt = H
(
(ξt−k)k≥0

)
.
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Causal AR[∞] and ARCH(∞) models

With (ξt)t∈Z a white noise,

AR(∞) processes Xt =
∞∑
i=1

θiXt−i + ξt

=⇒ Causal ARMA(p, q) processes Xt +

p∑
i=1

aiXt−i = ξt +

q∑
i=1

biξt−i .

ARCH(∞) processes, (Robinson, 1991), with b0 > 0 and bj ≥ 0{
Xt = σtξt ,
σ2t = φ0 +

∑∞
j=1 φjX

2
t−j .

=⇒ GARCH(p, q) processes, with c0 > 0, cj , dj ≥ 0, cp, dq > 0{
Xt = σtξt ,
σ2t = c0 +

∑p
j=1 cjX

2
t−j +

∑q
j=1 djσ

2
t−j
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A common frame for studying time series

A common class of models for AR, ARMA, ARCH and GARCH processes :

Causal a�ne models : class CA(M , f )

Xt = M(Xt−1,Xt−2, . . .) ξt + f (Xt−1,Xt−2, . . .), ∀ t ∈ Z, a.s..

M(·) and f (·) are real valued function on IRIN ;

(ξt)t∈Z a white noise with IE[ξ0] = 0 and IE
[
|ξ0|r

]
<∞, r ≥ 1.
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Extensions of univariate ARCH models

TGARCH(∞) processes, (Zakoïan, 1994), with b0, b
+
j , b

−
j ≥ 0

Xt = σt ξt ,

σt = b0 +
∞∑
j=1

[
b+
j max(Xt−j , 0)− b−j min(Xt−j , 0)

] .

APARCH(δ, p, q) processes, (Ding et al., 1993)
Xt = σt ζt ,

σδt = ω +
p∑

j=1

αi (|Xt−i | − γiXt−i )
δ +

∑q
j=1 βjσ

δ
t−j ,

with δ ≥ 1, ω > 0, −1 < γi < 1 and αi , βj ≥ 0.
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Combinations of models

ARMA-GARCH processes, (Ding et al., 1993, Ling and McAleer, 2003)
Xt =

p∑
i=1

aiXt−i + εt +
q∑

j=1

bjεt−j ,

εt = σt ζt , with σ2t = c0 +
p′∑
i=1

ciε
2
t−i +

q′∑
j=1

djσ
2
t−j

ARMA-APARCH processes, (Ding et al., 1993)
Xt =

p∑
i=1

aiXt−i + εt +
q∑

j=1

bjεt−j ,

εt = σt ζt , with σδt = ω +
p′∑
j=1

αi (|Xt−i | − γiXt−i )
δ +

q′∑
j=1

βjσ
δ
t−j
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Existence and stationarity of causal a�ne models

Xt = M(Xt−1,Xt−2, . . .) ξt + f (Xt−1,Xt−2, . . .), ∀ t ∈ Z,

Our main tool for studying those models :

Assume that


∂

∂xi
f
(
(xk)k≥1

)
∂

∂xi
M
(
(xk)k≥1

) exist on IR∞ for any i ≥ 1.

Proposition (from Doukhan and Wintenberger, 2007)

If IE
[
|ξ0|r

]
<∞ with r ≥ 1, there exists a unique causal solution (Xt)t∈Z

which is stationary, ergodic, such as IE(|X0|r ) <∞, when

∞∑
j=1

sup
x∈IR∞

∣∣∣ ∂
∂xj

f
(
(xk)k≥1

)∣∣∣+
(
IE
[
|ξ0|r

])1/r ∞∑
j=1

sup
x∈IR∞

∣∣∣ ∂
∂xj

M
(
(xk)k≥1

)∣∣∣ < 1
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Examples

Conditions on stationarity become :

Causal AR[∞] :
Xt =

∑∞
j=0 ajξt−j =⇒

∑∞
j=0 |aj | < 1 ;

Causal ARCH[∞] :

Xt = ξt
√

c0 +
∑∞

j=1 cjX
2
t−j =⇒

(
IE
[
|ξ0|r

])1/r ∑∞
j=1

√
cj < 1 ;

Causal TARCH[∞] :
Xt = ξt

(
b0 +

∑∞
j=1

[
b+
j max(Xt−j , 0)− b−j min(Xt−j , 0)

])
=⇒

(
IE
[
|ξ0|r

])1/r ∑∞
j=1 max

(
b−j , b

+
j

)
< 1 ;
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Additivity of causal a�ne models

Proposition

Let Θ1 ⊂ Rd1 , Θ2 ⊂ Rd1 , M
(1)
θ1
, f

(1)
θ1
,M

(2)
θ2
, f

(2)
θ2

for θ1 ∈ Θ1, θ2 ∈ Θ2.

There exist max(d1, d2) ≤ d ≤ d1 + d2, Θ ⊂ IRd , and Mθ, fθ with θ ∈ Θ,

such as for any θ1 ∈ Θ1 ⊂ Rd1 and θ2 ∈ Θ2 ⊂ Rd2 ,{
CA
(
M

(1)
θ1
, f

(1)
θ1

)⋃
CA
(
M

(2)
θ2
, f

(2)
θ2

)}
⊂
{
CA
(
Mθ, fθ

)}
.

Consequence :

For any familyM =
⋃

i∈I CA
(
M

(i)
θi
, f

(i)
θi

)
,

=⇒ ∃d ∈ IN∗, Mθ and fθ such asM =
⋃
i∈I

{
CA
(
Mθ, fθ

)}
θ∈Θi⊂IRd
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Finite family of causal a�ne models

IfM is a �nite family of CA models :

M∼
{
m, with m ⊂ {1, . . . , d}

}
;

for a model m ∈ {1, . . . , d}, ∃Θ(m) ⊂ IRd such as

X ∈ CA
(
Mθ, fθ

)
with θ ∈ Θ(m) ⊂

{
(x1, . . . , xd) ∈ IRd , xi = 0 if i /∈ m

}
.

Now assume :

Θ(m) ⊂ Θ ⊂
{
θ ∈ IRd ,

∞∑
j=1

sup
x∈IR∞

∣∣∣∂xj fθ(x)
∣∣∣+
(
IE
[
|ξ0|r

])1/r ∞∑
j=1

sup
x∈IR∞

∣∣∣∂xjMθ(x)
∣∣∣ < 1

}

=⇒ Semi-parametric model selection...
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Gaussian QMLE of causal a�ne model

Denote m∗ ∈M so-called the true model :

(X1, . . . ,Xn) observed trajectory of CA(Mθ∗ , fθ∗) with θ∗ ∈ Θ(m∗)

=⇒ Xt = Mθ∗(Xt−1,Xt−2, . . .) ξt + fθ∗(Xt−1,Xt−2, . . .), ∀ t ∈ Z.

With f tθ = fθ(Xt−1,Xt−2, . . .), M
t
θ = Mθ(Xt−1,Xt−2, . . .),

Gaussian conditional log-density : qt(θ) = −1

2

[ (Xt − f tθ )2

(M t
θ)2

+ log
(
(M t

θ)2
)]

Let f̂ tθ = fθ(Xt−1, . . . ,X1, 0, · · · ) and M̂t
θ = Mθ(Xt−1, . . . ,X1, 0, · · · ),

Quasi conditional log-density : q̂t(θ) = −1

2

[ (Xt − f̂ tθ )2

(M̂ t
θ)2

+ log
(
(M̂ t

θ)2
)]
.

=⇒ Gaussian QMLE : θ̂n = argmax
θ∈Θ

L̂n(θ) with L̂n(θ) =
n∑

t=1

q̂t(θ).
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A risk for a family of causal a�ne models

Let X ∈ CA
(
Mθ, fθ

)
and θ ∈ Θ ⊂ IRd , de�ne its risk by :

R(θ) = −2× IE[q1(θ)] = IE[γ(θ,X1)], γ(θ,Xt) =
(Xt − f tθ )2

(Mt
θ)2

+ log
(
(Mt

θ)2
)

where f tθ = fθ(Xt−1,Xt−2, . . .), M
t
θ = Mθ(Xt−1,Xt−2, . . .).

Assumption A1 : for θ, θ′ ∈ Θ, (f 0θ = f 0θ′ and M0
θ = M0

θ′) a.s. =⇒ θ = θ′.

From Assumption A1, for m ∈M, θ∗m exists and is unique with

θ∗m = argmin
θ∈Θ(m)

R(θ)

=⇒ θ∗m∗ = θ∗ and if m∗ ⊂ m, θ∗m = θ∗.
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Empirical risk and computable empirical risk

De�ne the empirical risk :

Rn(θ) =
1

n

n∑
t=1

γ(θ,Xt).

Not computable ! De�ne the computable empirical risk :

R̂n(θ) =
1

n

n∑
t=1

γ̂(θ,Xt) with γ̂(θ,Xt) :=
(Xt − f̂ tθ )2

(M̂t
θ)2

+ log
(
(M̂t

θ)2
)

where f̂ tθ = fθ(Xt−1, . . . ,X1, 0, · · · ) and M̂t
θ = Mθ(Xt−1, . . . ,X1, 0, · · · ).

Finally, for m ∈M, the QMLE θ̂m is

θ̂m = argmin
θ∈Θ(m)

R̂n(θ).
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Model selection procedure

De�ne a penalty function m ∈M 7→ pen(m) ∈ IR+, possibly
data-dependent, such as pen(m1) ≤ pen(m2) when m1 ⊂ m2.

Then de�ne the penalized contrast and the model selected by it :

m̂pen = argmin
m∈M

{
Ĉpen(m)

}
with Ĉpen(m) := R̂n

(
θ̂m
)

+ pen(m).

Natural aim : �nd m̂id = argmin
m∈M

R
(
θ̂m
)
.

=⇒ Let the ideal penalty be de�ned by

penid(m) = R
(
θ̂m
)
− R̂n

(
θ̂m
)
.
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Assumptions

A0 : Θ for r > 8, where IE[ξ20 ] = 1 ;

A1 : for θ, θ′ ∈ Θ, (f 0θ = f 0θ′ and M0
θ = M0

θ′) a.s. =⇒ θ = θ′.

A2 : ∃M > 0 such that Mθ(x) ≥ M for all θ ∈ Θ, x ∈ IRIN.

A3 : For any m ∈M, θ∗m belongs to the interior of Θ(m).

A4 : For any θ ∈ Θ, x ∈ IR∞, ∂xk∂
2
θ2fθ(x) and ∂xk∂

2
θ2Mθ(x) exist and

a/ sup
θ∈Θ

(
sup

x∈IR∞

∣∣∂xk fθ(x)
∣∣+ sup

x∈IR∞

∣∣∂xkMθ(x)
∣∣+ sup

x∈IR∞

∥∥∂xk∂θfθ(x)
∥∥

+ sup
x∈IR∞

∥∥∂xk∂θMθ(x)
∥∥) = O(k−δ) with δ > 7/2

b/ sup
θ∈Θ

( ∞∑
k=1

sup
x∈IR∞

∥∥∂xk∂2θ2fθ(x)
∥∥+ sup

x∈IR∞

∥∥∂xk∂2θ2Mθ(x)
∥∥) <∞
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Asymptotic normality of the estimator

Théorème

Under Assumptions A0-A4, for any m ∈M,

√
n
(
(θ̂m)i − (θ∗m)i

)
i∈m

L−→
n→∞

N
(
0 ,
(
Fm(θ∗m)

)−1
Gm(θ∗m)

(
Fm(θ∗m)

)−1)
,

with Gm and Fm de�ned by

• Gm(θ) =
1

4

(∑
t∈Z

cov
(
∂θiγ(θ,X0) , ∂θjγ(θ,Xt)

))
i ,j∈m

=⇒ Gm(θ∗) =
1

4

(
cov
(
∂θiγ(θ∗,X0) , ∂θjγ(θ∗,X0)

))
i ,j∈m

if m∗ ⊂ m

• Fm(θ) =−1
2

(
IE
[
∂2θi θjγ(θ,X0)

])
i ,j∈m

.

Could be applied to all cited processes ARMA, ARCH, APARCH,...
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Consequences of asymptotic normality

Proposition

Under Assumptions A0-A4, there exists N0 ∈ IN such as for any n ≥ N0,

argmin
m∈M

IE
[
R
(
θ̂m
)]

= m∗.

Proposition

Under Assumptions A0-A4 and for any m ∈M, ∃ a bounded sequence

(v∗n )n∈IN∗ , not depending on m when m∗ ⊂ m, satisfying

IE
[
penid(m)

]
∼

n→∞
− 2

n
Trace

((
Fm(θ∗m)

)−1
Gm(θ∗m)

))
+

v∗n
n
.

Rem : −2Trace
((
Fm(θ∗m)

)−1
Gm(θ∗m)

)
=
{ 2 |m| Gaussian process

2 |m| ARMA process
(µ4 − 1) |m| GARCH process
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E�ciency

Théorème

Under Assumptions A0-A4, and if for any ε > 0, ∃Kε > 0 such as

lim sup
n→∞

max
m∈M

IP
(
n pen(m) ≥ Kε

)
≤ ε.

Then for any ε > 0, ∃Mε > 0 and ∃Nε ∈ IN∗ such as for any n ≥ Nε,

IP
(
R
(
θ̂m̂pen

)
≤ min

m∈M

{
R
(
θ̂m
)}

+
Mε

n

)
≥ 1− ε.

Example : Satis�ed for pen(m) = IE
[
penid(m)

]
, not for pen(m) = log n

n .
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E�ciency (2)

Théorème

Assume that there exists g :M→ [0,∞[ such as pen(m) =
g(m)

n
for any

m ∈M. Then, under Assumptions A0-A4,

lim inf
n→∞

IP
(
m̂pen over�ts

)
> 0.

and there exists M > 0 such as for n large enough,

IE
[
R(θ̂m̂pen

)
]
≥ min

m∈M
IE
[
R(θ̂m)

]
+

M

n
.

Example : Satis�ed for pen(m) = IE
[
penid(m)

]
, not for pen(m) = log n

n .
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E�ciency and consistency

Théorème

Under Assumptions A0-A4 and if for any ε > 0,

n IP
(
pen(m) ≥ ε

)
−→

n→+∞
0 for any m ∈M.

Then,

n IP
(
m∗ 6⊂ m̂pen

)
−→

n→+∞
0.

=⇒ if the penalty decreases to 0 (in proba), Ĉpen does not select a
misspeci�ed model asymptotically.
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E�ciency and consistency (2)

Théorème

Under Assumptions A0-A4, if the penalty pen satis�es (25), and if for

m∗ ⊂ m, en(m) = pen(m)− pen(m∗) > 0 satis�es

n IE[en(m)] −→
n→+∞

∞ and n IE
[∣∣en(m)− IE[en(m)]

∣∣] −→
n→+∞

0,

then IP
(
m̂pen = m∗

)
−→

n→+∞
1.

For any ε > 0 and η > 0, ∃Nε,η ∈ IN∗ such as for any n ≥ Nε,η,{
IP
(
R
(
θ̂m̂pen

)
≤ R

(
θ̂m∗)

)
+ η

n

)
≥ 1− ε

IE
[
R
(
θ̂m̂pen

)]
≤ minm∈M IE

[
R
(
θ̂m
)]

+ η
n .

=⇒ Results valid for instance for BIC penalty pen(m) = log n
n .
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A new consistent criterion

Théorème (Laplace approximation)

Under Assumptions A0-A4, and for any x ∈ R∞, the functions θ → Mθ and

θ → fθ are C6(Θ), then

−2×log
(
IP
(
(X1, . . . ,Xn) |m

))
= −2×L̂n(θ̂m)+log(n) |m|−2 log

(
bm(θ̂m)

)
− log(2π) |m|+ log

(
det
(
− F̂n(m)

))
+ 2 log(|M|) + O(n−1) a.s.

where F̂n(m) :=
(
∂2θiθj R̂n

(
θ̂m
))

i ,j∈m and bm a bounded function on Θ.

Consequences : Using this approximation :

m̂BIC = argmin
m∈M

{
− 2 L̂n(θ̂m) + log(n) |m|

}
, (Schwarz, 1978)

m̂KC = argmin
m∈M

{
− 2 L̂n(θ̂m) + log(n) |m|+ log

(
det
(
− F̂n(m)

))}
,

(Kashyap, 1982).
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A new consistent criterion (2)

=⇒ By taking more terms in the Laplace approximation, de�ne :

K̂C ′(m) = BIC (m)− log(2π) |m|+ log
(

det
(
− F̂n(m)

))
+ 2 log

(
|m|
)

and m̂KC ′ = argmin
m∈M

{
K̂C
′
(m)

}

Corollary

The criteria BIC, KC and KC' are consistent model selection criteria and

satisfy o(1/n) e�ciency.
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Simulation results for classical models

Consider the following test bench :

DGP I AR(2) Xt = 0.4Xt−1 + 0.4Xt−2 + ξt ,
DGP II ARMA(1,1) Xt − 0.5Xt−1 = ξt + 0.6 ξt−1,
DGP III GARCH(1,1) Xt = σt ξt with σ2t = 1 + 0.35X 2

t−1 + 0.4σ2t−1,
DGP IV GARCH(1,1) Xt = σt ξt with σ2t = 0.01 + 0.15X 2

t−1 + 0.75σ2t−1,
DGP V GARCH(1,2) Xt = σt ξt with σ2t = 0.01 + 0.2X 2

t−1 + 0.2σ2t−1 + 0.5σ2t−2,
DGP VI GARCH(2,2) Xt = σt ξt with σ2t = 0.01 + 0.05X 2

t−1 + 0.2X 2
t−2 + 0.3σ2t−1 + 0.4σ2t−2,

where (ξt)t is a Gaussian white noise with variance unity.
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Simulation results (2)

n 200 500 1000 2000
AIC BIC KC' AIC BIC KC' AIC BIC KC' AIC BIC KC'

DGP I True 17.2 36.2 35.6 30.4 73.2 78.2 36.4 87.4 92.2 32.4 96.2 98.4
Wrong 82.8 63.8 64.4 69.6 26.8 21.8 63.6 13.6 7.8 67.6 03.8 01.6

DGP II True 27.8 80.8 92.0 30.6 88.4 96.6 31.0 89.1 97.5 33.3 95.2 99.9
Wrong 72.2 19.2 08.0 69.7 11.6 03.4 69.0 10.9 02.5 66.7 04.8 00.1

DGP III True 00.4 10.8 14.8 01.4 32.2 55.8 01.0 54.8 82.0 02.0 75.8 93.8
Wrong 99.6 89.2 85.2 98.6 67.8 44.2 99.0 45.2 18.0 98.0 24.2 06.2

Table � Percentage of "true" selected models for DGP I-III.

n 200 500 1000 2000
AIC BIC KC' AIC BIC KC' AIC BIC KC' AIC BIC KC'

DGP I 4.91 2.59 5.35 3.46 1.11 1.18 3.08 0.98 0.75 3.05 0.38 0.29

DGP II 3.66 0.87 0.54 3.37 0.42 0.11 2.62 0.15 0.05 2.5 0.10 0.04

DGP III 2.39 4.63 13.16 2.53 4.08 9.54 2.69 2.96 2.52 3.21 2.06 0.76

Table � M̂E = n
(
R̃(θ̂m̂)− R̃(θ̂m∗)

)
for DGP I-III.
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Simulation results (3)

n 500 1000 2000 5000
AIC BIC KC' AIC BIC KC' AIC BIC KC' AIC BIC KC'

DGP IV True 81.8 88.4 63.0 86.8 98.2 87.8 87.2 98.4 94.4 88.8 100 100
Wrong 18.2 11.6 37.0 13.2 1.8 12.2 12.8 1.6 5.6 11.2 0 0

DGP V True 29.8 9.6 24.0 51.2 22.6 54.6 76.4 49.8 84.2 83.8 95.8 97.6
Wrong 70.2 90.4 76.0 48.8 77.4 45.4 23.6 50.2 15.8 16.2 4.2 2.4

DGP VI True 25.4 3.4 22.0 44.8 8.6 48.8 68.8 24.4 75.0 84.8 71.2 94.0
Wrong 74.6 96.6 78.0 55.2 91.4 51.2 31.2 75.6 25.0 15.2 28.8 6.0

Table � Percentage of "true" selected models for DGP IV-VI.

n 500 1000 2000 5000
AIC BIC KC' AIC BIC KC' AIC BIC KC' AIC BIC KC'

DGP IV 0.52 4.23 12.17 0.95 0.13 1.71 0.67 0.08 0.24 0.43 0 0

DGP V 3.58 8.23 15.12 2.16 4.3 4.45 1.43 4.45 1.05 0.65 0.84 0.15

DGP VI 2.42 10.63 21.16 2.30 5.27 2.65 1.26 5.14 1.24 0.90 3.08 0.46

Table � M̂E = n
(
R̃(θ̂m̂)− R̃(θ̂m∗)

)
for DGP IV-VI.
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Example

For the daily observations of PM10 at Marseille 01/2018 to 12/2019 :

=⇒ ARMA(1, 2)
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