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Abstract

In this study, we prove the strong consistency of the least
squares estimator in a random sampled linear regression
model with long-memory noise and an independent set of
random times given by renewal process sampling. Addi-
tionally, we illustrate how to work with a random number of
observations up to time T = 1. A simulation study is pro-
vided to illustrate the behavior of the different terms, as well
as the performance of the estimator under various values
of the Hurst parameter H.

1. Introduction

In many applications, data are observed at random times.
This situation arises from a variety of causes, such as ma-
chinery faults or the inability to observe data in certain pe-
riods. For the random modeling of observations, the re-
newal case represents progressive randomness and dis-
tance from periodic sampling.
This study offers an alternative approach to construct-
ing trend regression models by taking into account long-
memory behavior in the noise term. The interest in the
long-memory noise model lies in the behavior of its covari-
ance structure, which can cover a general class of noise.
Parameter estimation problems in time series, represented
as a trend plus long-memory noise, are well studied. In
contrast, in time series models with long-memory, parame-
ter estimation in models sampled at random times is more
rare.
The concept of long-memory is very well characterized in
terms of the spectral density function. However, the ex-
istence of this function is limited to stationary processes.
When jointly considering a model with trend and long-
memory properties, there is no stationarity property essen-
tial to defining the spectral density function in which the
spectral estimate rests. In contrast, for spectral estimations,
wavelet methods have been proposed for irregularly sam-
pled real-valued data, including regression problems and
long-memory estimation.

2. The least squares estimator in a simple
regression model

In this study, we examine the least squares estimator (LSE)
in a simple regression model, nonstationary in trend, with
long-memory noise and observation measurements at ran-
dom times. We also show how to deal with the number
of observations needed to reach a fixed time T assuming,
without loss of generality (w.l.o.g.), T = 1. To explain the
long-memory or long-range dependence phenomenon in a
model, it is common to represent it using the Hurst expo-
nent H, which takes values in (0, 1). In particular, long-
range dependence can be seen when H ∈ (1/2, 1). One
of the most popular Gaussian stochastic processes with
long-memory is fractional Brownian motion. We consider
the following simple regression model:

Yτi+1 = aτi + ∆BHτi+1
, i = 0, . . . , N(1), (2.1)

where a ∈ R is the unknown drift parameter of the model.
Long-memory is represented by the noise, defined as
∆BHτi+1

= BHτi+1
− BHτi . Here, τ := {τi, 0 ≤ i} is a random

increasing sequence of positive random times depending
on N . However, this dependence is expressed through the
distribution function, and the initial value, τ0, is also a pos-
itive random variable; see the next section for a detailed
definition. Note that N(1) =

∑
j≥1 1{τj≤1} determines the

number of events in [0, 1]. From the definition of τ , N(1)
is a discrete random variable, and N represents the ex-
pected number of observations within [0, 1]. The process
Y := {Yτi+1, 0 ≤ i}, defined in equation (2.1), is nonstation-
ary. The long-memory or long-range dependence refers to
the type of noise used. However, note that the long-memory
property does not necessarily hold when working with ran-
dom times.
The LSE estimator for a, the drift parameter of the random
sampled regression model with long-memory noise in (2.1),
is determined by âN(1) =

∑N(1)
i=0 τiYτi+1/

∑N(1)
i=0 τ2

i . Working
with random times that are not upper bounded is a chal-
lenge, because both, the observation times and the num-
ber of observations within the interval, are random. Our
way of dealing with this task is to divide the problem into

three stages.

1. we study the almost sure convergence of N(1)/N to 1

2. we define an auxiliary least squares type estimator, âN =∑N−1
i=0 τiYτi+1/

∑N−1
i=0 τ2

i , considering a fixed number N ∈
N, corresponding to the sampling frequency or sampling
rate and, study the convergence of âN → a.

3. we ensure the convergence of |âN − âN(1)| to zero.
In practice, our estimator is based on N(1) observations,
because if N(1) < N , then âN cannot be computed from
the data.

Let τ = {τi; i ≥ 0} be a strictly increasing sequence of ran-
dom points over time, the distribution function of which de-
pends on N (to avoid superscript, the dependence on N is
through the distribution function), where N represents the
sampling frequency or sampling rate, that is, the average
number of samples obtained in [0, 1].
The sequence τ , defined by the renewal process (RP), is
given as follows:

τi =

i∑
j=0

tj i ≥ 0, (2.2)

where {tj, j ≥ 0} is a sequence of independent and iden-
tically distributed random variables (i.i.d.), with a common
distribution function GN (·), that depend on N with support
in [0,∞), and are absolutely continuous with density gN ,
such that GN (0) = 0, satisfying the following hypothesis:
H1 E [ti] = 1

N for all i ≥ 0.
H2 E

[
t2i
]

= κ1
Nα, 0 < α ≤ 2.

H3 E
[
t4i
]

= κ2
Nβ , 0 < β ≤ 2α.

Here κ1 and κ2 are constants not depending on N . Note
that the conditions α ≤ 2 and β ≤ 2α come from the Cauchy
inequality.

Henceforth, GN,i denotes the probability distribution func-
tion associated with τi and its density functions gN,i, and
N(1) is the number of observations needed to sample up to
one. Examples of distributions satisfying H1 to H3 are: the
beta prime distribution, with parameters (1, N + 1), and the
exponential distribution with parameter λ = N . This distri-
bution is a limit case for α = 2.
Because we proved the a.s. convergence of τN to one, we
can similarly get the a.s. convergence of τN+Nε − τN to ε,
for α > 3/2 and β > 2, as shown below. Using this fact and
recalling that the random variables τN and τN+Nε − τN are
independent.

3. Convergence results

In this section, we provide our main result.
We give the main properties of the process BH = {BHt , t ≥
0} with zero mean, the increments of which are considered
as the noise in model (2.1).
N1 Covariance structure: RH(t, s) = E(BHt B

H
s ) =

1
2

(
t2H + s2H − |t− s|2H

)
.

N2 We consider a finite-variance process that is self-similar
with stationary increments.
N3 The random time sequence τ , which depends onN , and
the long-memory noise BH are independent.
We prove that the LSE is an unbiased and strongly con-
sistent estimator for a, the drift parameter of the random
sampled regression model with long-memory noise. To es-
timate the parameter of interest in the model (2.1), the LSE
is computed and is determined by

âN(1) =

∑N(1)
i=0 τiYτi+1∑N(1)
i=0 τ2

i

. (3.1)

Recall that, from (2.1) and (3.1), we have

âN(1) − a =

∑N(1)
i=0 τi∆B

H
τi+1∑N(1)

i=0 τ2
i

. (3.2)

Let âN be the LS estimator obtained by replacing N(1) with
N − 1 in (3.1); that is,

âN =

∑N−1
i=0 τiYτi+1∑N−1
i=0 τ2

i

. (3.3)

We consider the following decomposition from (3.1) and
(3.3): âN(1) − a = âN(1) − âN + âN − a. Then, the proof
of the main Theorem 1 is given in two steps

• 1st, we prove in Prop. 1 that âN converges a.s. to a.

• 2nd, we control the difference âN(1) − âN a.s. in Prop. 2.

Theorem 1. Let τ be the random time defined in (2.2), and
let the process BH = {BHt , t ≥ 0} with a zero mean, and
with increments that are considered as the noise. These
satisfy hypotheses H1 to H3 and N1 to N3, respectively.
Then, for α > max{3/2, 1/H} and β > 2, the LS estimator
âN(1) given in (3.1) of the drift parameter a in model (2.1) is
strongly consistent,

âN(1)
a.s.−−−−→

N→∞
a.

For α > 1 and β > 1, convergence in probability is ensured.

Proposition 1. Let τ be the random time defined in (2.2),
and let the process BH = {BHt , t ≥ 0} with a zero mean,
and with increments that are considered as the noise.
These satisfy hypotheses H1 to H3 and N1 to N3, respec-
tively, for α > max{3/2, 1/H} and β > 2. Then, the LS
estimator âN given in (3.3) of the drift parameter a in model
(2.1) is strongly consistent,

âN
a.s.−−−−→

N→∞
a.

For α > 1 and β > 1, the convergence in probability is en-
sured.

Proposition 2. Let τ be the random time defined in (2.2),
and let the process BH = {BHt , t ≥ 0} with a zero mean,
and with increments that are considered as the noise.
These satisfy hypotheses H1 to H3 and N1 to N3, respec-
tively, for α > max{3/2, 1/H} and β > 2. Consider the LS
estimators âN and âN(1) of the drift parameter a given in
(3.3) and (3.1), respectively, for the model (2.1). Then,

|âN(1) − âN |
a.s.−−−−→

N→∞
0. (3.4)

For α > 1 and β > 1, the convergence in probability is en-
sured.

4. Simulation Study

We develop a Monte Carlo simulation study to assess the
finite-sample properties for the LS estimator in the linear re-
gression model (2.1). The long-memory noise driven is by a
fractional Brownian motion evaluated at deterministic times
and two different random times defined by Equation (2.2).
The deterministic case: We consider the model defined
by equation (2.1) observed at equally spaced times, that is,
τi = i/N , for i = 1, . . . , N . We consider N = 200.
The exponential and beta prime case: The most stud-
ied renewal process is the Poisson process, which appears
when ti has an exponential distribution (λ). We consider
λ = 200. For the beta prime distribution, we consider a dis-
tribution with parameters (1, 201).
For all the simulations shown, we consider M = 1000
replicates of the model with the parameters a = 0.2 and
a = 2. For the exponential and beta prime cases, the
number of observations is a random variable N(1), repre-
senting how many observations are within the interval [0, 1].
We also consider different values of the Hurst parameter:
H = 0.05, H = 0.25 and H = 0.45 (anti-persistent cases);
and H = 0.55, H = 0.75, and 0.95 (long-memory cases).

• From the results of equation (??) and the result of sim-
ulation, we obtain an upper bound on the convergence
rate of |aN(1) − a|.

• When an exponential distribution of parameter λ = N is
considered (α = 2 and β = 4), the upper bound is given by
C/N for the convergence in probability. For a.s. conver-
gence, the upper bound is C/N2H−1. The latter bound
coincides when the times are considered to be equally
spaced.

• As H increases, the slope fit improves.

• The values of the mean show that the estimator is un-
biased. Note that the SD decreases as the value of H
approaches one, which is expected, because the condi-
tional variance of the noise decreases as H approaches
one.

Reference: Statistica Sinica Preprint No: SS-2020-0457
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