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Persistence: preliminaries



The mathematical problem of stochastic coexistence

A simple stochastic LV system of prey-predator type with intraspeci�c
competition driven by Brownian motion (here the �ow of biomass is
1 −→ 2).
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Initial conditions for the process X = (X (1),X (2)) in Rn
+ = positive orthant

(Rn
++ = strictly positive orthant).



Biological interpretation:

1 bi 's: per-capita per-unit time birth-death rates.

2 aij 's: if i 6= j , interaction strength (increase-decrease of �tting per unit
time per prey-predator encounter). If i = j : intraspeci�c competition
(due e.g. to competition for space, soil, light, etc.)

3 σi 's: amount of the random perturbation due to environmental noise.

4 W = (W (1),W (2)): standard 2d Wiener process, carrying the
environmental noise.

Modeling issue: it is assumed that the stochastic perturbations of the
�tting occur in characteristic times much shorter than the time horizon
relevant to our observations
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In our work we consider communities of n populations indexed by I
engaged in LV dynamics driven by continuous and jump-type noise.



We ask: what are the conditions on the parameters such that the whole
community X = (X (i) : i = 1, 2, . . . , n) persists.

• It can be proved that for initial condition on the strictly positive cone,

for every t > 0, X
(1)
t > 0,X

(2)
t > 0 a.s. ⇒ there is no extinction on �nite

time. ⇒ any notion of stochastic persistence involves a claim on the
asymptotic behavior of the laws.
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Some di�erent notions of stochastic persistence

De�nition

A set of species indexed by J ⊂ I is said to be stochastically persistent

in probability if for every ε > 0 there exists a compact set Kε ⊂ R|J|++ such
that:

lim inf
t→∞

Px
(

(X
(i1)
t ,X

(i2)
s , . . . ,X

(il )
t ) ∈ Kε, (i1, i2, . . . , il) ∈ J

)
> 1− ε,

uniformly on the initial condition x ∈ RI
++.

• Previous work has provided condition for these weak form of
persistence for Lévy-driven ecological models: [BY11], [Mao11], [BMYY12].
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Strong Stochastic Persistence

• In a system like (1), the intraspeci�c competition terms translate into
a drift to the origin. This fact, together to the unidirectional sense of the
energy �ow, provides enough conditions for tightness of the laws.
• We ask: when started from x ∈ Rn

++,

1 when do the laws of X converges (in an appropriate sense) to a unique
invariant probability measure, π?

2 What is the nature of this invariant measure? Namely: does it support
the whole community or just a strict subset of the community?

• If π does not change the boundary of the positive cone, then we say
that the community is strongly stochastic persistent.
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De�nition

(see [HN18a]) We say that a Rn
++-valued, right-continuous Markov process

(Xt : t ≥ 0) is strongly stochastically persistent (SSP) if there exists a
unique invariant probability measure π supported on Rn

++ such that for
every x ∈ Rn

++:

dTV (Px(Xt ∈ ·), π(·))→ 0,

as t →∞.



We observe:

1 X is not empty (because δ0 is trivially ergodic).

2 For every J ⊆ {1, 2}, the sets:

RJ
++ := {x ∈ Rn

+ : xi > 0, i ∈ J, xi = 0, i /∈ J},

are positively invariant for the dynamics. In general, thus, we can
expect to have a lot of invariant probability measures on Rn

+, many
concentrated on ∂Rn

+ (the boundary of the orthant, where at least one
of the species is extinct).



Crucial insight

• Pick an invariant probability measure µ such that at least one of the
species is extinct under µ (and thus, µ charges ∂Rn

+). Suppose that the
process X , when started from strictly positive abundances, gets close to the
part of the extinction boundary that is changed by µ. To guarantee SSP
we will need that, in this situation, at least one of the endangered species
tend to grow rapidly, avoiding thus the extinction fate.
• Under some regularity assumption, this will amount to ask that, under
any invariant probability measure µ that charges the boundary, at least one
of the absent species has positive µ-averaged Lyapunov exponent.
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Back to �rst example

How to ensure SSP for this community?



We have many invariant (indeed, ergodic) p.m. for this system.

δ0,0.

An ergodic p.m. µ under which species 1 persists and species 2 is
extinct (thus, concentrated on {x1 > 0, x2 = 0}).

This p.m. is unique,
and corresponds to the product measure m⊗ δ0, where m is the law of
a Gamma-distributed random variable (the law of the stochastic
logistic equation).
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Apply (formally!) Ito's formula to x 7→ log(x1) and x 7→ log(x2) to obtain:
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where M1 and M2 are local martingales. Put:

Ξ1(x) := b1 − a11x1 − a12x2 −
1

2
σ2
1

Ξ2(x) := −b2 + a21x1 − a22x2 −
1

2
σ2
2



Intuitively...

1 If X expends a lot of time close to, for example, the support of µ,
then for large times the �rst integrals should be close to µΞ1 and µΞ2.

2 Since under µ the �rst species persists, µΞ1 = 0. (resident, stable
species do not die or grow exponentially fast.)



So, we require:

1 maxi=1,2δ0,0Ξi > 0 (when both are rare, at least one of the species
tends to grow exponentially fast).

2 µΞ2 > 0 (when rare, the predator tends to grow exponentially fast).



From the �rst condition we obtain:

b1 −
1

2
σ2
1 > 0

and from the second one we get:

−b2 + a21EZ∼m(Z )− 1

2
σ2
2 > 0

Since µΞ1 = 0, we have:

EZ∼m(Z ) =
b1 −

1

2
σ2
1

a11



Thus, still intuitively, a su�cient condition for SSP is:
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a21

• In the simple example of the prey-predator community, the above
intuition is just right ([Ben18], [HN18b]).
• The aim of this work is to show how these results can be extended to
communities such as (2).
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Our framework, assumption and results



Our SDE framework

dXt = Xt ◦

(
(B + AXt)dt + ΣdWt +

∫
Rn\{0}

L(X, z)Ñ(dt, dz)

)
. (2)

(Σ: constant; Ñ: a compensated Poisson random measure of intensity
measure dtν(dz) for ν a Lévy measure on Rn).
• Biological interpretation of the jump part: Other sources of
randomness on the biotic or abiotic factors of the ecosystems whose
natural time-scale are much longer than those of the perturbation modeled
by the Brownian part: sudden migration of resident species or incoming
�ow of biomass through ecosystem boundaries (see e.g. the excellent
compendium on the topic of animal migration [MG11], specially chapter 9)
or ENSO e�ects on habitat compression and deepening of nutricline (see
[OMK+17]).
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(Σ: constant; Ñ: a compensated Poisson random measure of intensity
measure dtν(dz) for ν a Lévy measure on Rn).

• Biological interpretation of the jump part: Other sources of
randomness on the biotic or abiotic factors of the ecosystems whose
natural time-scale are much longer than those of the perturbation modeled
by the Brownian part: sudden migration of resident species or incoming
�ow of biomass through ecosystem boundaries (see e.g. the excellent
compendium on the topic of animal migration [MG11], specially chapter 9)
or ENSO e�ects on habitat compression and deepening of nutricline (see
[OMK+17]).



Our SDE framework

dXt = Xt ◦

(
(B + AXt)dt + ΣdWt +

∫
Rn\{0}

L(X, z)Ñ(dt, dz)
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• We consider layered communities: food-webs with intraspeci�c

competition with no autocalytic cycles.
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Assumptions

1 The community is layered.

2 (Assumption 1):
∫
Rn\{0} ‖z‖

2ν(dz) <∞.

3 (Assumption 2): For every i = 1, 2, . . . , n ,x, z ∈ Rn:

|Li (x, z)| ≤ |zi |1zi>−1.

4 (Assumption 3): There exists a constant C such that:

‖x ◦ L(x, z)‖ ≤ C‖z‖

5 (Assumption 4): For x, y in K compact, z ∈ Rn, there exists a
constant Mk such that:

‖x ◦ L(x, z)− y ◦ L(y, z)‖ ≤ Mk‖x− y‖‖z‖,

holds.



Invasibility rates

Just like in our example, de�ne:

Ξi (x) := (Bi + (Ax)i )−
1

2
σ2
i −

∫
Rn
+

Li (x, z)− ln(1 + Li (x, z))ν(dz).



More technical assumptions

1 Observe that any layered community has the following property: there
exists c ∈ Rn

++ such that whenever i → j :

ciaij ≥ cjaji .

2 It is proved that the conditions:

For every µ ∈ Perg (∂Rn
+) : max

i
µΞi > 0

and

There exists p := (p1, . . . , pn) ∈ Rn
++ such that:

inf
µ∈Perg (∂Rn

+)

∑
i

piµΞi := ρ > 0, (3)

are equivalent ([SBA11]).



Crucial assumption

(Assumption 5): The condition (3) holds.



log-Lyapunov functions

De�ne for x ∈ Rn
++

V̂ (x) =
1 + cTx∏n

i=1 x
pj
j

,

and for α > 0 de�ne:

W̃ (x) := V̂ α(x).

(the ci 's are those ensured by the layered hypothesis; the pi 's are small and
satisfy the condition (3); ; α > 0 will be �xed appropriately).



Observe that for pi small (namely,
∑

i pi < 1), the function V̂ satisfy:

lim
‖x‖→∞

V̂ (x) = lim inf
x:mini xi→0

V̂ (x) = +∞
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Further assumption

For x ∈ Rn
++, set:

I (x) :=

∫
Rn

{
W̃ ((xi (1 + Li (x, z))i )− W̃ (x)

−αW̃ (x)
n∑

i=1

(
Li (x, z)(

cixi
1 + cTx

− pi )

)}
ν(dz).



Two further technical assumptions

Assumption 6:

I (x) ≤ CW̃ (x)

for some positive constant C . Furthermore, for some small positive α0, the
function z 7→ exp(α0‖z‖) is ν-integrable.



Main theorem

Theorem

Suppose Assumptions 1 through 6 hold. Then (Xt : t ≥ 0) is a Rn
+-valued,

right-continuous, Cb-Feller Markov process with the SSP property.



Remark

De�ne:

Safe(ε,R) := {x ∈ Rn
++ : min xi > ε, ‖x‖ ≤ R},

and let I(x) be a positive Lipschitz function, bounded by 1, that
approximates 1Safe(ε,R)(x) from below.
Assume that the community is layered and ν(dz) = λµ(dz), with µ the
law of a Rn-valued random variable with compact support contained in
{zi > −γ, i = 1, . . . , n}, where γ ∈ (0, 1). Assume also that
Li (x, z) = βI(x)zi , where 0 < β < 1, ε > 0 and R > 0.
On this setting, the hypotheses 1, 2, 3, 4 and 6 required by Theorem 3 are
satis�ed.



Example: Lévy-driven, Lotka-Volterra food-chains



.





Parameters

For i = 1, . . . , n, let (N
(i)
t : t ≥ 0) be a family of independent compound

Poisson processes on R with intensity λ̃i > 0 and jump increment
distributed according to a law mi with support contained in {z > −1}. As
before, let Ñi be the compensated process. Let β ∈ (0, 1) and
0 < εi < Mi , i = 1, . . . , n be some constants. Let `i : R+ → [0, 1] be a
Lipschitz function that equals 1 on [εi ,Mi ] and vanishing outside the
interval [εi/2, 2Mi ]. Set Li (x, z) = `i (xi )βzi .



The food-chain equations

dX
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t = X
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SSP for Lévy-driven LV food-chains

For n ≥ 2, set:

d1 = b1 −
1

2
σ2
1, di = bi +

1

2
σ2
i ; i = 2 . . . , n

∆i = EZ∼mi
(βZ − ln(1 + βZ )) ≥ 0; λi = λ̃i∆i

r1 : = d1 − λ1, ri := di + λi , i = 2, . . . , n;

rm = (−r1, , r2, . . . , rm), 1 ≤ m ≤ n.



SSP for Lévy-driven LV food-chains

Theorem

For 2 ≤ m ≤ n, let Am be the leading m-dimensional submatrix of A.

Consider the linear systems:

Ams = rm, 2 ≤ m ≤ n

and let s(∗,m) ∈ Rm be the unique solution of the m-th system . Assume

that:

an,n−1s
(∗,n−1)
n−1 > rn. (5)

holds. Then the SDE (4) is SSP.



Remarks:

1 The above result extends a Theorem of Hening and Nguyen
([HN18c]), which in turn extends a result of Gard ([GH79]) on
deterministic LV food-chains.
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Appendix: sketch of the proof



Steps toward the proof

• To prove that there exists an embedded chain with tight laws in Rn
++

(uniformly for initial conditions on compact sets). A su�cient condition is:

Proposition

For some continuous log-Lyapunov function Ṽ , for some T ∗ > 0,
m ∈ (0, 1) and C > 0, the inequality:

Ex(Ṽ (XT∗)) ≤ mṼ (x) + C ,

holds for every x ∈ Rn
++

• This is the hard part.
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m ∈ (0, 1) and C > 0, the inequality:
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Steps toward the proof

We prove:

Lemma

For every T > 0 and X0 ∈ Rn
++, under PX0

the Markov chain

XT := (XmT : m ≥ 0) is irreducible and aperiodic. Furthermore, every

compact set is a petite set for the chain.



By Lemma 5 and Theorem 6.3 of [MT92], there exists a probability
measure π such that:

lim
n→∞

‖Px(XnT∗ ∈ ·)− π(·))‖TV = 0,

and the convergence is geometric.

Then, XT∗ is positive Harris recurrent,
and thus this chain has hitting times (of open sets) with �nite expectation;
this in turn also implies that X is positive Harris recurrent (see theorem 1
of [KM94]), and thus has a unique invariant probability measure in Rn

++.
Of course, this probability measure is just π.
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