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@ In ecology, the study of absence-presence of species in an ecosystem is an
important problem widely considered in the literature.

@ Such studies require to explain or to forecast some binary vectors with
coordinates 0 or 1, depending if a given species is present or absent in a
specific area.

@ How to model the presence/absence data across the time and to identify
possible patterns (attraction hypothesis between the species, influence of the
environment, time dependencies...)?

o Time series analysis of binary vectors is far from being well documented
if we target complex modeling (study of autoregressive processes, modeling the
influence of exogenous regressors, spatio-temporal analysis if data are sampled
at different sites).



Motivation through an example

@ In Sebastian-Gonzdlez et al. [Proc. R. Soc. B, 2010], waterbird surveys are
considered in a set of irrigation ponds.

@ At each pond, the absence/presence data of 7 waterbirds were recorded during
several years.

@ Many covariates are available:

o Fixed environmental and spatial covariates (pond area, presence or absence of
shore/submerged/reed vegetation...).

o Absence/presence of the same species at time ¢ — 1.

o Absence/presence of other species at time .

@ The various covariates (time-varying and non time-varying) seem to have an
impact on the dynamic.



@ How to develop an autoregressive time-series model for binary data in which
various type of covariates can be included ?

@ How to get statistical guarantees for inference when a longitudinal analysis is
necessary ?

@ The model used in a aforementioned reference is a multivariate logistic
model. At a given pond, let Y; € {0, 1}* the absence/presence vector of k
species at time t.

Yie = Lx, 4iogit(@(ei0)) >0, At = X
o & is the Gaussian cdf.

o ¢; is a Gaussian vector with mean 0 and correlation matrix R.
o X, available covariates at time ¢.

@ This multivariate extension of the logistic model is a standard choice in the
static case. See O'Brien and Dunson [Biometrics, 2004].

@ An alternative (with logit <> ®~!) is the multivariate probit model widely used
in econometrics (Chib and Greenberg [Biometrica, 1998]).



A dynamic version of multivariate probit models

@ We present a time series analogue of the multivariate probit model.
@ We investigate a frequentist approach for parameters inference.

o We derive stationarity properties for such models (useful at least for deriving
short-term interactions).

@ We adapt the single path framework to a longitudinal type approach, taking
in account of the information available at different observation sites.

@ We focus on the multivariate probit case but the multivariate logistic model
can be studied in the same way.



@ Single-path analysis



@ Single-path analysis
@ Existence of stationary paths



Dynamic multivariate probit model

@ The models writes as

P
Yie = Iate>0, Ae=d+ Y AV, j+BX, 1.
j=1
e X; € R? denotes the (random) covariates available at time ¢.
o d € RF, Ay, ..., A, are k X k matrices and B is a matrix of size k x d
@ The noise components ; are i.i.d. N (0, R).

@ The process (X;,¢e¢),.; is assumed to be stationary and ¢; is independent of
(ES’XS)sgtfl'

@ The process (X;) is not required to be ergodic (i.e. partial sums will not
necessarily converge to a non-random limit). For instance, X; = (Z,W,), Z
being the non time-varying random covariates and W, the time-varying
random covariates.



Existence of a stationary solution

@ Without covariates, the model is an irreducible finite-state Markov chain.
There then exists a unique invariant probability measure, without any other
condition.

o With covariates, (Y;)tcz is no more a Markov chain and the stationarity
conditions are less clear.

@ Intuitively, the result should remain the same: €; has a full support and from
any set of past binary vectors, the probability of reaching any arbitrary
subsequent binary vector is positive.

@ We use a random mapping approach. For instance if p =1,
Y, = Fx, . (Y;—1) and a meaningful approach for deriving a stationary
solution is to study the backward iterations of the random maps:
Y; := lim FXt71-,6t ©--0 FXt—sfl-,Stfs(y)'

§—00

@ One can show that such almost sure limit always exists and does not depend
on the initial binary vector y.



A proof with a picture (p = 1, k = 2 in the ergodic case)

Set C; = Nk, {gi,t + 50 B(i, 0 Xy + h > o} with

k
h= 1rSni1£k y/Gn{léﬁ}k {dz " =1 A1(27£)yé} .

Then P(Cy) =P (Cp) >0 and T'(w) =inf{h >1:we Ci_p} <0 as.
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Figure: Coalescence of the paths for backward iterations




Formal result

p
Yig =15 4ei>0, Ae=d+ ZAth—j + BX:.

j=1

Let
ft :J((Xsfl,ES) .S S t)

The previous convergence can also be obtained (with more tedious arguments)
under the non-ergodic scenario.

Theorem

There exists a unique stationary and (F;),-adapted process (Y;):cz solutions of the
previous recursions.

@ There exists a representation Y; = H (¢4, X¢—1,6¢—1, X¢—2, . ..) where
H = (RF x Rd)Z — {0,1}* is a measurable function.

© If the process (Xi,€¢),c4 is ergodic, so is the process (Y;)iez.




@ Single-path analysis

@ Inference of parameters



Drawbacks of (conditional) likelihood inference

o Setting Iy = (0,00) and Iy = (—00,0],
P (ﬂi'c:1{yi,t = 5i}|-7:t—1)
= P (ﬂi;l {/\iﬂg +éeit € Is,i} |]:t—1)

= / / QbR(l'l,...,.Tk)dl'l"'dfﬂk,
Isy =1 Is), =Xkt

where ¢ denotes the Gaussian density in R* with mean 0 and correlation
matrix R.

@ The log-likelihood function for (6, R), 0 = (d, A1, ..., Ap, B), is defined by

s L1ps
T
Lo(0,R)= > log V / dp(z)dxy - -dxy| . (1)
t=p+1 Is; —X1,6(0) Is; =X, (0)

o For multivariate probit models, numerical evaluation of the likelihood is
difficult.



Alternative: Pseudo-likelihood inference for 6 (step 1)

P
Yig=1x 4e,500 M=d+ Y AYi;j+BX, 1.
i=1

@ Set

= > D [Virlog® (Mis(0) + (1= Yis)log ® (=Ai4(6))]

t=p+1 i=1

and 0 = arg maxgee L(6).

o Estimation is done as if €14, ...,k were independent: Pseudo-likelihood
approach.

@ Maximization can be obtained "equation by equation” since for 1 <1 < k and
teZ,
d

Pk
ZZZA}L th+ZBZ€Xu1

h=1/{¢=1 £=1



Pairwise composite likelihood estimation for R (step 2)

1 T4t

° For1§i<i’§k,setR”/:<
’ rig 1

). 0 pseudo-likelihood estimator.
o Set

n
4,4 = argmax Z log/

/ - ¢Ti,i’ (xiaxi’)dl'idl'i/
Iy, =X 0 (0)

t=p+1 Iyz‘,t_AN«(é)
S Air 4(0) = 1 0
argmax Z log D 2V — 1) ———— | &(x)da;
t=p+1 IYi7t—>\i,t(‘9) 1-— 7"1‘2’1-/
e For s;,s; €{0,1},
Airt(0) — 1o,
) roivti) o yar,

/ [ (250 — 1)
Is,i*Ai,t(GO) m

is simply equal to Py r (Y : = s;, Yirt = si|Fi—1), which explains the
terminology pairwise (conditional) likelihood.

@ See Varin et al. [Stat. Sinica, 2011] for an overview of composite likelihood
methods.



Asymptotic results for ergodic paths

Assume that (0, R) are in a compact set and E|X1|?> < co. Then, up to an
identifiability constraint on the covariates X;:

Q (0, R) is strongly consistent and /T (é - 9) converges in distribution towards
a Gaussian distribution with mean 0.

@ If additionally, E [exp (k] X1 |%)] < oo for some > 0, VT (1~ R) is also
asymptotically Gaussian with mean 0.




© Multiple paths analysis



Two scenarios

@ The model is now fitted using data coming from different observations sites
j=1...,n.

p
)/iajvt = ]]')‘i,j,t,"!‘si,j,t,>07 /\]ﬁ =d+ Z AZYj,t—h + BXJ#’ 1<t<T.
=1

@ The model is simplistic. No heterogeneity or individual effects for the different
sites (e.g. d does not depend on i) as in the classical framework of panel data.

@ We want to get an asymptotic for parameters inference when both n and T
grows to infinity (not necessarily T'=T,, and n — 00).

e Scenario 1: X = (Z;,W;). In this case, (Xj+,€;),o; are i.i.d. across the
index j. Z;, (Wj,), and (g;,), are mutually independent. Moreover, (W),
is an ergodic process.

@ Scenario 2: we assume existence of common factors X ; = (Z;, Wy). In this
case (Z;);, (Wi)r and (g;);, are assumed to be independent, the Zis are
i.i.d. and (W})iez is an ergodic process.



Law of large numbers over two indices

In each scenario, we have the following law of large numbers,

n T
%ZZH ¢ = E(Hy,)

j=1t=1

Hjy=H(gj, Xj1-1,8j0-1, Xjt—2,...)

satisfies E|H; 1| log™ Hy 1 < 0o and min(n, T) — occ.

The random field (H} ), is stationary and the problem is related to ergodic
properties for the two Z2—actions, 01H;=Hji1and 0H; ¢ = Hj 111

@ In the first scenario, 6; is ergodic (i.i.d assumption).

@ In the second scenario, none of the transformation 61,65 are ergodic. However,
the intersection of their respective invariant sigma-fields is trivial.

This is sufficient to get parameter consistency in the longitudinal case.



Martingale central limite theorem for two indices

@ The second problem for asymptotic normality of parameter estimates concerns
limit theorems for sum of square integrable martingale differences

n T
SnT = \/% Zj:l Zt:l Hj,tv

Hje=H (e, Wjit—1,65t-1, Wjt—2,...).

Here, Fj 1 =0 (Wis,ei5) 11 < j,s <t) and

E[Hj+| Vicicn Fii—1] = E[Hj¢| Vici<r Fj-14] = 0.

In the first scenario, S, r has a Gaussian limit.

@ In the second scenario with common factors across the sites, S, 7 is
asymptotically distributed as a mixture of Gaussian distributions.

o A general result of Volny [SPA, 2019] applies to the second scenario.



@ It is possible to develop a theory for time series analogues of multivariate
binary models (probit, logistic,...) that take in account both endogenous and
€X0genous regressors.

@ Some numerically tractable inference procedures are possible.

@ One can also fit the model to panel type data (at least under some stringent
assumptions for the asymptotic guarantees).

@ Finite-sample accuracy of the proposed inference procedure remains to
evaluate in the time series context (in progress).

@ It could be interesting to get a more realistic modeling for longitudinal analysis

(heterogeneous intercepts d = d;, spatial correlation of the errors (g;,)).
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