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Motivation

In ecology, the study of absence-presence of species in an ecosystem is an
important problem widely considered in the literature.

Such studies require to explain or to forecast some binary vectors with
coordinates 0 or 1, depending if a given species is present or absent in a
specific area.

How to model the presence/absence data across the time and to identify
possible patterns (attraction hypothesis between the species, influence of the
environment, time dependencies...)?

Time series analysis of binary vectors is far from being well documented
if we target complex modeling (study of autoregressive processes, modeling the
influence of exogenous regressors, spatio-temporal analysis if data are sampled
at different sites).



Motivation through an example

In Sebastián-González et al. [Proc. R. Soc. B, 2010], waterbird surveys are
considered in a set of irrigation ponds.

At each pond, the absence/presence data of 7 waterbirds were recorded during
several years.

Many covariates are available:

Fixed environmental and spatial covariates (pond area, presence or absence of
shore/submerged/reed vegetation...).
Absence/presence of the same species at time t− 1.
Absence/presence of other species at time t.

The various covariates (time-varying and non time-varying) seem to have an
impact on the dynamic.



Main questions

How to develop an autoregressive time-series model for binary data in which
various type of covariates can be included ?

How to get statistical guarantees for inference when a longitudinal analysis is
necessary ?

The model used in a aforementioned reference is a multivariate logistic
model. At a given pond, let Yt ∈ {0, 1}k the absence/presence vector of k
species at time t.

Yit = 1λit+logit(Φ(εit))>0, λt = Xtβ.

Φ is the Gaussian cdf.
εt is a Gaussian vector with mean 0 and correlation matrix R.
Xt available covariates at time t.

This multivariate extension of the logistic model is a standard choice in the
static case. See O’Brien and Dunson [Biometrics, 2004].

An alternative (with logit↔ Φ−1) is the multivariate probit model widely used
in econometrics (Chib and Greenberg [Biometrica, 1998]).



A dynamic version of multivariate probit models

We present a time series analogue of the multivariate probit model.

We investigate a frequentist approach for parameters inference.

We derive stationarity properties for such models (useful at least for deriving
short-term interactions).

We adapt the single path framework to a longitudinal type approach, taking
in account of the information available at different observation sites.

We focus on the multivariate probit case but the multivariate logistic model
can be studied in the same way.
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Dynamic multivariate probit model

The models writes as

Yit = 1λit+εit>0, λt = d+

p∑
j=1

AjYt−j +BXt−1.

Xt ∈ Rd denotes the (random) covariates available at time t.

d ∈ Rk, A1, . . . , Ap are k × k matrices and B is a matrix of size k × d

The noise components εt are i.i.d. Nk (0, R).

The process (Xt, εt)t∈Z is assumed to be stationary and εt is independent of
(εs, Xs)s≤t−1.

The process (Xt) is not required to be ergodic (i.e. partial sums will not
necessarily converge to a non-random limit). For instance, Xt = (Z,Wt), Z
being the non time-varying random covariates and Wt the time-varying
random covariates.



Existence of a stationary solution

Without covariates, the model is an irreducible finite-state Markov chain.
There then exists a unique invariant probability measure, without any other
condition.

With covariates, (Yt)t∈Z is no more a Markov chain and the stationarity
conditions are less clear.

Intuitively, the result should remain the same: εt has a full support and from
any set of past binary vectors, the probability of reaching any arbitrary
subsequent binary vector is positive.

We use a random mapping approach. For instance if p = 1,
Yt = FXt−1,εt (Yt−1) and a meaningful approach for deriving a stationary
solution is to study the backward iterations of the random maps:

Yt := lim
s→∞

FXt−1,εt ◦ · · · ◦ FXt−s−1,εt−s(y).

One can show that such almost sure limit always exists and does not depend
on the initial binary vector y.



A proof with a picture (p = 1, k = 2 in the ergodic case)

Set Ct = ∩ki=1

{
εi,t +

∑d
`=1B(i, `)X`,t + h > 0

}
with

h = min
1≤i≤k

min
y′∈{0,1}k

{
di +

k∑
`=1

A1(i, `)y′`

}
.

Then P (Ct) = P (C0) > 0 and T (ω) = inf {h ≥ 1 : ω ∈ Ct−h} <∞ a.s.

State y = (1, 1)

State y = (1, 0)

State y = (0, 1)

State y = (0, 0)

Time t− 3 t− T (ω) = t− 2 t− 1 t

Figure: Coalescence of the paths for backward iterations



Formal result

Yi,t = 1λi,t+εi,t>0, λt = d+

p∑
j=1

AjYt−j +BXt.

Let
Ft = σ ((Xs−1, εs) : s ≤ t) .

The previous convergence can also be obtained (with more tedious arguments)
under the non-ergodic scenario.

Theorem

There exists a unique stationary and (Ft)t-adapted process (Yt)t∈Z solutions of the
previous recursions.

1 There exists a representation Yt = H (εt, Xt−1, εt−1, Xt−2, . . .) where

H =
(
Rk × Rd

)Z → {0, 1}k is a measurable function.

2 If the process (Xt, εt)t∈Z is ergodic, so is the process (Yt)t∈Z.
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Drawbacks of (conditional) likelihood inference

Setting I1 = (0,∞) and I0 = (−∞, 0],

P
(
∩ki=1{Yi,t = si}|Ft−1

)
= P

(
∩ki=1 {λi,t + εi,t ∈ Isi} |Ft−1

)
=

∫
Is1−λ1,t

· · ·
∫
Isk−λk,t

φR(x1, . . . , xk)dx1 · · · dxk,

where φR denotes the Gaussian density in Rk with mean 0 and correlation
matrix R.

The log-likelihood function for (θ,R), θ = (d,A1, . . . , Ap, B), is defined by

Ln(θ,R) =

T∑
t=p+1

log

[∫
Is1−λ1,t(θ)

· · ·
∫
Isk−λk,t(θ)

φR(x)dx1 · · · dxk

]
. (1)

For multivariate probit models, numerical evaluation of the likelihood is
difficult.



Alternative: Pseudo-likelihood inference for θ (step 1)

Yi,t = 1λi,t+εi,t>0, λt = d+

p∑
j=1

AjYt−j +BXt−1.

Set

L(θ) =

n∑
t=p+1

k∑
i=1

[Yi,t log Φ (λi,t(θ)) + (1− Yi,t) log Φ (−λi,t(θ))]

and θ̂ = arg maxθ∈Θ L(θ).

Estimation is done as if ε1,t, . . . , εk,t were independent: Pseudo-likelihood
approach.

Maximization can be obtained ”equation by equation” since for 1 ≤ i ≤ k and
t ∈ Z,

λi,t(θ) =

p∑
h=1

k∑
`=1

Ah(i, `)Yj,t−h +

d∑
`=1

B(i, `)X`,t−1



Pairwise composite likelihood estimation for R (step 2)

For 1 ≤ i < i′ ≤ k, set Ri,i′ =

(
1 ri,i′

ri,i′ 1

)
. θ̂ pseudo-likelihood estimator.

Set

r̂i,i′ = argmax
n∑

t=p+1

log

∫
IYi,t

−λi,t(θ̂)

∫
IY

i′,t
−λi′,t(θ̂)

φri,i′ (xi, xi′)dxidxi′

argmax
n∑

t=p+1

log


∫
IYi,t

−λi,t(θ̂)

Φ

(2Yi′,t − 1)
λi′,t(θ̂)− ri,i′xi√

1− r2
i,i′

φ(xi)dxi

 .

For si, sj ∈ {0, 1},∫
Isi−λi,t(θ0)

Φ

(2si′ − 1)
λi′,t(θ)− r0,i,i′xi√

1− r2
i,i′

φ(xi)dxi

is simply equal to Pθ,R (Yi,t = si, Yi′,t = si′ |Ft−1), which explains the
terminology pairwise (conditional) likelihood.
See Varin et al. [Stat. Sinica, 2011] for an overview of composite likelihood
methods.



Asymptotic results for ergodic paths

Theorem

Assume that (θ,R) are in a compact set and E|X1|2 <∞. Then, up to an
identifiability constraint on the covariates Xt:

1 (θ̂, R̂) is strongly consistent and
√
T
(
θ̂ − θ

)
converges in distribution towards

a Gaussian distribution with mean 0.

2 If additionally, E
[
exp

(
κ|X1|2

)]
<∞ for some κ > 0,

√
T
(
R̂−R

)
is also

asymptotically Gaussian with mean 0.
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Two scenarios

The model is now fitted using data coming from different observations sites
j = 1, . . . , n.

Yi,j,t = 1λi,j,t+εi,j,t>0, λj,t = d+

p∑
`=1

A`Yj,t−h +BXj,t, 1 ≤ t ≤ T.

The model is simplistic. No heterogeneity or individual effects for the different
sites (e.g. d does not depend on i) as in the classical framework of panel data.

We want to get an asymptotic for parameters inference when both n and T
grows to infinity (not necessarily T = Tn and n→∞).

Scenario 1: Xj,t = (Zj ,Wj,t). In this case, (Xj,t, εj,t)t∈Z are i.i.d. across the
index j. Zj , (Wj,t)t and (εj,t)t are mutually independent. Moreover, (Wj,t)t
is an ergodic process.

Scenario 2: we assume existence of common factors Xj,t = (Zj ,Wt). In this
case (Zj)j , (Wt)t and (εj,t)j,t are assumed to be independent, the Z ′js are
i.i.d. and (Wt)t∈Z is an ergodic process.



Law of large numbers over two indices

In each scenario, we have the following law of large numbers,

1

nT

n∑
j=1

T∑
t=1

Hj,t → E (H1,1)

if
Hj,t = H (εj,t, Xj,t−1, εj,t−1, Xj,t−2, . . .)

satisfies E|H1,1| log+H1,1 <∞ and min(n, T )→∞.

The random field (Hj,t)j,t is stationary and the problem is related to ergodic
properties for the two Z2−actions, θ1Hj,t = Hj+1,t and θ2Hj,t = Hj,t+1

1 In the first scenario, θ1 is ergodic (i.i.d assumption).

2 In the second scenario, none of the transformation θ1, θ2 are ergodic. However,
the intersection of their respective invariant sigma-fields is trivial.

This is sufficient to get parameter consistency in the longitudinal case.



Martingale central limite theorem for two indices

The second problem for asymptotic normality of parameter estimates concerns
limit theorems for sum of square integrable martingale differences
SnT := 1√

nT

∑n
j=1

∑T
t=1Hj,t,

Hj,t = H (εj,t,Wj,t−1, εj,t−1,Wj,t−2, . . .) .

Here, Fj,t = σ ((Wi,s, εi,s) : i ≤ j, s ≤ t) and

E [Hj,t| ∨1≤i≤n Fi,t−1] = E [Hj,t| ∨1≤t≤T Fj−1,t] = 0.

In the first scenario, Sn,T has a Gaussian limit.

In the second scenario with common factors across the sites, Sn,T is
asymptotically distributed as a mixture of Gaussian distributions.

A general result of Volný [SPA, 2019] applies to the second scenario.



To take away...

It is possible to develop a theory for time series analogues of multivariate
binary models (probit, logistic,...) that take in account both endogenous and
exogenous regressors.

Some numerically tractable inference procedures are possible.

One can also fit the model to panel type data (at least under some stringent
assumptions for the asymptotic guarantees).

Finite-sample accuracy of the proposed inference procedure remains to
evaluate in the time series context (in progress).

It could be interesting to get a more realistic modeling for longitudinal analysis
(heterogeneous intercepts d = dj , spatial correlation of the errors (εj,t)j).
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