
Comparing copulas

Denys Pommeret

ISFA, Lab. SAF

joint work with Yves Ngounou (Aix-Marseille University, lab. I2M)

����������

ECODEP 2021

1/53



Outline

I ↪→ Copulas in ecology

I ↪→ Copula coe�cients

I ↪→ Two-sample case

I ↪→ K-sample case

I ↪→ Illustration

2/53



Why copulas?

Let X = (X1, · · · , Xp) be a p-dimensional continuous random
variable with joint probability distribution function FX. We have

FX(x1, · · · , xp) = C(F1(x1), · · · , Fp(xp)),

where Fj denote the marginal probability distribution functions of

Xj , and C denotes the copula associated to FX.
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Why copulas?

Writing

Uj = Fj(Xj), for j = 1, · · · , p,

we have for all uj ∈ (0, 1),

C(u1, · · · , up) = FU(u1, · · · , up),

with U = (U1, · · · , Up), and deriving this expression p times with

respect to u1, · · · , up, we get an expression of the density copula

c(u1, · · · , up) = fU(u1, · · · , up),

where fU denotes the joint density of the vector U.
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Copulas in ecology

Very few works:

I de Valpine et al. (2014) Ecology Letters

I Anderson et al. (2018) Ecology and Evolution

I Popovic et al. (2019) Methods in Ecology Evolution

I Ghosh et al. (2020) Advances in Ecological Research
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Copulas in ecology

But many applications:

I Environmental, ecological and evolutionary processes may

commonly generate complex dependence structures, including

asymmetric tail associations (not only correlation).

I In Ghosh et al. "We believe copula approaches are among the

tools all ecologists should be considering for analysis of their

data in the 21st century."
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Copulas in ecology

I Liebig's law. Liebig's law is the idea that growth is controlled

not by total resources but by the resource which is scarcest

relative to organism needs. If, for instance, the growth of a

plant depends on soil nitrogen, say N, and other factors, a plot

of growth rates vs soil N may look like the next Figure: the

two variables may show left-tail association: N controls plant

growth, producing a clear relationship, only when it is limiting.
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Copulas in ecology

Figure � Liebig's law illustration
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Copulas in ecology

I The Moran e�ect. If asymmetric tail associations, or other

complex dependence structure, is transmitted from

environmental to ecological variables, then we would expect

complex dependence structure and tail associations to be a

common feature of the spatial synchrony of population,

community, biogeochemical and other environmentally

in�uenced ecological variables. Synchrony attracts major

interest in ecology.
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Copulas in ecology

I Understanding of tail associations and complex dependence

structures is useful for ecology. For instance, if populations of

a pest species in di�erent locations are all positively associated

and are also more strongly related to each other in their right

tails, then local outbreaks will tend to occur together, creating

regional epidemics. Stronger left-tail associations in a pest

species, even if overall correlation were the same, would have

more benign e�ects.

I Causal mechanisms between variables. Conversely if two

species, Sp1 and Sp2, are strong competitors, abundances of

the two species can have complex relation as illustrated in the

next Figure.
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Copulas in ecology

Figure � Sp1 is the dominant competitor: when Sp1 is abundant, Sp2 is
necessarily rare because it is suppressed
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Example: phytoplankton

Figure � Phytoplankton can produce 80% of the oxygen
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Example: the phytoplankton paradox

Phytoplankton do not satisfy the classical laws of ecology and it is

extensively studied to try to understand climatic and environmental

evolution.

I For instance Automated Flow Cytometry (FCM) with hourly

sampling strategies generates signi�cant phytoplankton

datasets.

I To this will be added the new altimetric satellite SWOT

(Surface Water Ocean Topography) launched in 2023.
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Context

Data ↗ & Dimension ↗

↪→ How to analysis simultaneously such data (from di�erent

captors, with di�erent scales, with di�erent shapes)?

↪→ How can we compare the comportment of various phenomena,

possibly paired?

↪→ How can we classify groups with similar dependance (but not

necessary with the same distribution)?

↪→ How can we compare various copulas simultaneously?

↪→ We propose a K-sample test of comparison
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A very short review

I One-sample case: many testing methods have been proposed

within the frame of parametric families of copulas (see Can et

al. 2020, Bernoulli).

I Two-sample case: the important reference is the work of

Remillard and Scaillet (2009, JMVA). It is adapted to the case

of paired populations and a package is available

I K-sample case (K > 2): there is a theoretical work of

Bouzebda et al. (2011, Math. Meth. Stat.) who tried to

extend Remillard and Scaillet in the independent case. But the

limit distribution of their statistic seems intractable for K > 2.
More recently Derumigny et al. (2021, Arxiv) tackled the

testing problem for conditional copulas.
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Hypotheses testing

Assume that we observe K iid samples, possibly paired, with

associated copulas denoted by C1, · · · , CK . We consider the

problem of testing the equality

H0 : C1 = · · · = CK

against H1 : there exists 1 ≤ k 6= k′ ≤ K such that Ck 6= Ck′ .

16/53



Copulas coe�cients

We have the following L2 Legendre decomposition

fU(u1, · · · , up) =
∑

j1,··· ,jp∈N
ρj1,··· ,jpLj1(u1) · · ·Ljp(up),

where

ρj1,··· ,jp = E(Lj1(U1) · · ·Ljd(Up)),

as soon as∫ 1

0
· · ·
∫ 1

0
fU(u1, · · · , up)2du1 · · · dup < ∞.
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Copulas coe�cients

Write j = (j1, · · · , jp) and 0 = (0, · · · , 0). From the previous

equalities we get, for all u1, · · · , up ∈ (0, 1):

c(u1, · · · , up) = 1 +
∑
j∈Np∗

ρjLj1(u1) · · ·Ljp(up),

C(u1, · · · , up) = u1 u2 · · ·up +
∑
j∈Np∗

ρjIj1(u1) · · · Ijp(up),

where

Ij(u) =

∫ u

0
Lj(x)dx.

Clearly the sequence (ρj)j∈Np∗ characterizes the copula and we call

it the copula coe�cients. Then the comparison of copulas consists

in the comparison of these coe�cients.
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Copulas coe�cients

By the previous expansions, testing the null hypothesis H0 remains

to test the equality of all copulas coe�cients, that is

H0 : ρ
(1)
j = · · · = ρ

(K)
j , ∀j ∈ Np

∗,

where ρ(k) stands for the copula coe�cients associated to Ck. We

propose a test statistic based on the estimation of these quantities.
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Estimation procedure
We consider K random vectors, namely

X(1) = (X
(1)
1 , · · · , X(1)

p ), · · · ,X(K) = (X
(K)
1 , · · · , X(K)

p ),

with joint cdf F(1), · · · ,F(K), and with associated copulas

C1, · · · , CK , respectively. Assume that we observe K iid samples

from X(1), · · · ,X(K), possibly paired, denoted by

(X
(1)
i,1 , · · · , X

(1)
i,p )i=1,··· ,n1 , · · · , (X

(K)
i,1 , · · · , X(K)

i,p )i=1,··· ,nK .

We assume that

for all 1 ≤ k < ` ≤ K, nk/(nk + n`)→ ak` > 0.

We denote by F
(k)
j the marginal cdf of the jth component of X(k)

and we write

U
(k)
i,j = F

(k)
j (X

(k)
i,j ).
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Estimation procedure

For testing H0 we �rst estimate the copula coe�cients by

ρ̂
(k)
j1···jp =

1

nk

nk∑
i=1

Lj1(Û
(k)
i,1 ) · · ·Ljp(Û

(k)
i,p )),

where

Û
(k)
i,j = F̂

(k)
j (X

(k)
i,j ),

and F̂ denotes the empirical distribution functions associated to F .
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Estimation procedure

Our test procedure is based on the sequences of di�erences

r
(`,m)
j := ρ̂

(`)
j − ρ̂

(m)
j , for 1 ≤ ` ≤ m ≤ K, and j ∈ Np

∗.
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Estimation procedure

In order to select automatically the number of copula coe�cients

we introduce the notion of total order de�ned for any vector

j = (j1, · · · , jp) by
|j| = j1 + · · ·+ jp,

and for any integer d > 1 we write

S(d) = {j ∈ Np; |j| = d

and there exists k 6= k′ such that jk > 0 and jk′ > 0}.
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Estimation procedure

The set S(d) contains all non null integers j = (j1, · · · , jp) with
total order d and such that jk < d for k = 1, · · · , p. We denote by

c(d) =
(

d
d+p−1

)
− p the cardinal of S(d) and we de�ne the order

ord(j, d) of j ∈ S(d) as follows:

j = (d− 1, 1, 0, · · · , 0) ⇒ ord(j, d) = 1

j = (d− 1, 0, 1, · · · , 0) ⇒ ord(j, d) = 2

· · ·
j = (0, · · · , 0, 2, d− 2) ⇒ ord(j, d) = c(d)− 1

j = (0, · · · , 0, 1, d− 1) ⇒ ord(j, d) = c(d).
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Estimation procedure

For instance, in the bivariate case, that is p = 2, we have

I if d = 2 there is only one possibility: j = (j1, j2) = (1, 1) with
ord(j, 2) = 1. The cases (2, 0) or (0, 2) are excluded.

I if d = 3 there are two possibilities: j = (2, 1) with
ord(j, 3) = 1 and j = (1, 2) with ord(j, 3) = 2. The cases
j = (0, 3) and j = (3, 0) are excluded.
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Two-sample test

We �rst propose to test H0 : C1 = C2.

We restrict our attention to the paired case and we write

n1 = n2 = n.
For 1 ≤ k ≤ c(2) we de�ne

T
(1,2)
2,k = n

∑
j∈S(2);ord(j,2)≤k

(r
(1,2)
j )2,

and for d > 2 and 1 ≤ k ≤ c(d),

T
(1,2)
d,k = T

(1,2
d−1,c(d−1) + n

∑
j∈S(d);ord(j,d)≤k

(r
(1,2)
j )2.
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Two-sample test

To simplify notation we write such a sequence of statistics as

V
(1,2)
1 = T

(1,2)
2,1 ; V

(1,2)
2 = T

(1,2)
2,2 ; · · · V (1,2)

k = · · ·

How to choose k?
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Two-sample test: data driven procedure

We set

D(n) := min
{
argmax
1≤k≤d(n)

(V
(1,2)
k − k log(n))

}
,

where d(n)→ +∞ as n→ +∞.

Our test statistic is V
(1,2)
D(n) .

We assume that

(A) d(n)(5p−3) = o(log(n))
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Two-sample test: results

Theorem
Let assumption (A) holds. Then, under H0, D(n) converges in
Probability towards 1 as n→ +∞.

⇒ The asymptotic distribution of V
(1,2)
D(n) is that of

V
(1,2)
1 = T

(1,2)
2,1 = n(r

(1,2)
j )2, with j = (1, 1, 0, · · · , 0).
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Two-sample test: results

Theorem
Let assumption (A) holds and assume that j = (1, 1, 0, · · · , 0).
Then, under H0,

√
nr

(1,2)
j converges in law towards a central

normal distribution with variance

σ
2
(1, 2) = V

(
L1(U

(1)
1 )L1(U

(1)
2 )− L1(U

(2)
1 )L1(U

(2)
2 )

+2
√
3

∫ ∫ (
I(X(1)

1 ≤ x)− F (1)
1 (x)

)
L1(F

(1)
2 (y))dF

(1)
(x, y)

−2
√
3

∫ ∫ (
I(X(2)

1 ≤ x)− F (2)
1 (x)

)
L1(F

(2)
2 (y))dF

(2)
(x, y)

+2
√
3

∫ ∫ (
I(X(1)

2 ≤ y)− F (1)
2 (y)

)
L1(F

(1)
1 (x))dF

(1)
(x, y)

−2
√
3

∫ ∫ (
I(X(2)

2 ≤ y)− F (2)
2 (y)

)
L1(F

(2)
1 (x))dF

(2)
(x, y)

)
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Two-sample test: results

In order to normalize the test, write

σ̂
2
(1, 2) =

1

n

n∑
i=1

(
Mi,1 −Mi,2 −M1 +M2

)2
,

with

Ms =
1

n

n∑
i=1

Mi,s, for s = 1, 2

where

Mi,s = L1(Û
(s)
i,1 )L1(Û

(s)
i,2 ) +

2
√

3

n

n∑
k=1

(
I
(
X

(s)
i,1 ≤ X

(s)
k,1

)
− Û(s)

k,1

)
L1(Û

(s)
k,2

)

+
2
√
3

n

n∑
k=1

(
I
(
X

(s)
i,2 ≤ X

(s)
k,2

)
− Û(s)

k,2

)
L1(Û

(s)
k,1

)
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Two-sample test: results

Proposition

Under H0,

σ̂2(1, 2))
P−→ σ2(1, 2).

We then deduce the limit distribution under the null.

Corollary

Let assumption (A) holds. Then under H0, V
(1,2)
D(n)/σ̂

2(1, 2)

converges in law towards a chi-squared distribution χ2
1 as n→ +∞.
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K-sample test

Write n = (n1, · · · , nK). We restrict our attention to the paired

case here, �xing then n1 = n2 = · · · = nK := n. Write

V(K) = {(`,m) ∈ N2; 1 ≤ ` < m ≤ K}.

Clearly V(K) contains v(K) = K(K − 1)/2 elements which

represent the pairs of populations that we want to compare and

that can be ordered as follows: we write (`,m) <V (`′,m′) if ` < `′,
or ` = `′ and m < m′, and we denote by ordV(`,m) the rank of

(`,m) in V(K).
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K-sample test

This can be seen as a natural order of the elements of the upper

triangle of a (K − 1)× (K − 1) matrix as represented below:

(1, 2) (1, 3) · · · · · · (1,K)
(2, 3) · · · · · · (2,K)

. . .

(K − 1,K)

We see at once that ordV(1, 2) = 1, ordV(1, 3) = 2 and more

generally, for `,m ∈ V(K) we have

ordV(`,m) = K(l − 1)− l(l + 1)

2
+m.
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K-sample test

Using the previous two-sample statistics we construct an embedded

series of statistics as

V1 = V
(1,2)
D(n)

V2 = V
(1,2)
D(n) + V

(1,3)
D(n)

· · ·
Vv(K) = V

(1,2)
D(n) + · · ·+ V

(K−1,K)
D(n) .
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K-sample test

How to select the convenient statistic?

To choose automatically the appropriate number k we introduce a

second penalization procedure, mimicking the Schwarz criteria

procedure

s(n) = min
{

argmax
1≤k≤v(K)

(
Vk − k log(n)

)}
.
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K-sample test: results

Theorem
Assume that (A) holds. Then under H0, s(n) converges in
probability towards 1 as n→ +∞.

Corollary

Assume that (A) holds. Then under H0, Vs(n)/σ̂
2(1, 2)) converges

in law towards a χ2
1 distribution.

Then our �nal data driven test statistic is given by

V = Vs(n)/σ̂
2(1, 2)).
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Alternatives

We consider the following series of alternative hypothesis:

H1(1) : C1 6= C2,

and for k > 1:

H1(k) : Ci = Cj for ordV(i, j) < k and Ci 6= Cj for ordV(i, j) = k,

with 1 < k ≤ v(K). The hypothesis H1(k) means that the ith and

jth populations such that ordV(i, j) = k are the �rst (in the sense

of the order in V(K)) with di�erent unknown components.

Theorem
Assume that (A) holds. Then under H1(k), s(n) converges in
probability towards k, as n→ +∞, and V tends to +∞, that is,

P(V < ε)→ 0 for all ε > 0.
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Sketch of the proof

I We want to show that P(D(n) > 1)→ 0 as n tends to in�nity.

I We obtain

P0

(
D(n) > 1

)
≤ P0

(
n

∑
j∈H∗(d(n))

(r
(1,2)
j )2 ≥ log (n)

)
,

I We decompose r2j as follows:

(r
(1,2)
j )2 = ((ρ̂

(1)
j − ρ

(1)
j )− (ρ̂

(2)
j − ρ

(2)
j ))2
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Sketch of the proof

We decompose

ρ̂
(1)
j − ρ

(1)
j = (ρ̂

(1)
j − ρ̃

(1)
j ) + (ρ̃

(1)
j − ρ

(1)
j )

and we use Legendre polynomials properties and the

Glivenko-Cantelli Theorem to conclude.
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Sketch of the proof

To show the asymptotic normality we adapt a proof of

Bhuchongkul (1964, Ann. Math. Stat.).
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Sketch of the proof

We generalize the result to the K-sample easily since the number

of samples is �xed.

↪→ we could extend the result with K = K(n)→∞.

The proof of the convergence under alternatives mimics the �rst

main result.

↪→ �nally, we could consider contiguous alternatives.
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Illustration: Iris data

Fifty observations of four measures (X1, · · · , X4): SepalLength,
SepalWidth, PetalLength, and PetalWidth, for each of three

Species = three populations: Setosa, Versicolor, and Virginica.

↪→ dimension p = 4 and K = 3
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Illustration: Iris data

Figure � Setosa population
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Illustration: Iris data

Figure � Versicolor population

45/53



Illustration: Iris data

Figure � Virginica population
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Illustration: Iris data

Dhar et al. (2014, Bernoulli) shown that multivariate normal

distributions seem to �t the data well for all three Iris species.

Looking at their mean parameters the 4-dimensional joint

distributions seem di�erent but that does not tell us about their

dependence structures.

↪→ We test the equality of the dependence between the four

variables SepalLength, SepalWidth, PetalLength, and PetalWidth in

the three-sample case:

H0 : C1 = C2 = C3
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Illustration: Iris data

Results for the global test:

I pvalue ≈ 0 (10−12)

I StatisticsRank : D(n) = 2

I Statisticvalue : V = 49.9

↪→ we clearly reject the equality of the three dependence structures.
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Illustration: Iris data

In case of reject we can process to an "2× 2 ANOVA" type

procedure as follows:

I The pvalues:

Setosa Versicolor Virginica

Setosa 1 10−9 0.0016

Versicolor 10−9 1 0.70

Virginica 0.0016 0.70 1
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Illustration: Iris data

I The statistics values:

Setosa Versicolor Vriginica

Setosa 1 34.85 10

Versicolor 34.85 1 0.18

Virginica 10 0.18 1
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Clustering application

We can use the K-sample procedure to make clustering. Assume

we observe K populations.

I We �rst compare the two closest population (say A and B).

I If CA = CB we have a �rst group: (A,B)

I We then search the closest new population from A and B (say

C)

I If CA = CB = CC we have a new group: (A,B,C)

I Until the test is rejected. In this case the group is formed. The

procedure continues with the other populations.

If we apply this clustering algorithm on the iris dataset we obtain

two groups: {V ersicolor, V irginica} and {Setosa}.
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Conclusion

I The �rst simulation study shows a very good power and a very

easy of use of the method (as good or better for the two

sample case, no competitor for the K-sample case...).

I A package is in progress.

I Copulas coe�cients are related to Kendall's tau and

Spearman's Rho. It opens a way to multivariate extensions,

estimations and testing procedure.

I The method can be easily adapted to obtain a test for

independence. This is a work in progress.
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Thank you for your attention !
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