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This is a work in progress
joint with Paul Doukhan

But first a bit of “self”-promotion
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News from the Bernoulli Society

• On September 9th, 2021,in EPF Lausanne,...

• Now you can call me: President.
• It is a matter of tradition that the BS Officers promote their Society.



PHDFT

Adam Jakubowski

Classics and the
single sequence
method

Phantom
distribution
functions for
sequences

Phantom
distribution
functions for
random fields

Phantom
distribution
functions on trees

3

News from the Bernoulli Society

• On September 9th, 2021,in EPF Lausanne,...

• Now you can call me: President.
• It is a matter of tradition that the BS Officers promote their Society.



PHDFT

Adam Jakubowski

Classics and the
single sequence
method

Phantom
distribution
functions for
sequences

Phantom
distribution
functions for
random fields

Phantom
distribution
functions on trees

3

News from the Bernoulli Society

• On September 9th, 2021,in EPF Lausanne,...

• Now you can call me: President.
• It is a matter of tradition that the BS Officers promote their Society.



PHDFT

Adam Jakubowski

Classics and the
single sequence
method

Phantom
distribution
functions for
sequences

Phantom
distribution
functions for
random fields

Phantom
distribution
functions on trees

3

News from the Bernoulli Society

• On September 9th, 2021,in EPF Lausanne,...

• Now you can call me: President.

• It is a matter of tradition that the BS Officers promote their Society.



PHDFT

Adam Jakubowski

Classics and the
single sequence
method

Phantom
distribution
functions for
sequences

Phantom
distribution
functions for
random fields

Phantom
distribution
functions on trees

3

News from the Bernoulli Society

• On September 9th, 2021,in EPF Lausanne,...

• Now you can call me: President.
• It is a matter of tradition that the BS Officers promote their Society.



PHDFT

Adam Jakubowski

Classics and the
single sequence
method

Phantom
distribution
functions for
sequences

Phantom
distribution
functions for
random fields

Phantom
distribution
functions on trees

4

We publish journals ...

• Official publications:

• Bernoulli (since 1995);
• Stochastic Processes and their Applications (since

1973).

• Co-sponsored (with IMS) True Open Access journals:

• Electronic Journal of Probability;
• Electronic Communications in Probability;
• Probability Surveys;
• Statistics Surveys;
• Electronic Journal of Statistics.
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Other publications

• For members:

• Bernoulli News;
• BS Bulletin eBriefs;
• BS Twitter Page.

• Book series and other sponsored journals:

• SpringerBriefs in Probability and Mathematical
Statistics, Springer;
• Semstat books, CRC/Taylor&Francis.
• Latin American Journal of Probability

and Mathematical Statistics;
• SemStat Elements.
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We organize conferences...

• Every four years: Bernoulli - IMS World Congress
on Probability and Statistics.

• First: 1986, Tashkent, Uzbekistan, Soviet Union.
• Recent: 10th World Congress, planned on August

17-22, 2020, Seoul, postponed due to pandemic,
held online on July 19-23, 2021.
• WC in 2020 replaced with Bernoulli-IMS One World

Symposium 2020, August 24-28, 2020 (Virtual).
• Next: 11th World Congress, August 12-16, 2024,

Bochum (Germany).
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We organize conferences...

• Between the congresses:

Conference on Stochastic Processes and their
Applications.

• First: 1971 SPA Conference, Rochester, UK.
• Recent: 41st SPA Conference, July 8-12, 2019,

Evanston, Illinois, USA.
• Next: 42nd SPA Conference, Wuhan (China),

planned for 2021, postponed due to pandemic to
June 27-July 1, 2022.
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We organize conferences...

• Between the congresses:
European Meeting of Statisticians.

• First: 1962, Dublin, Ireland.
• Recent: 32nd EMS, July 22-26, 2019,

Palermo, Sicily, Italy.
• Next: 33rd EMS, July 18-22, 2022, Moscow,

Russia.

• Many other sponsored and co-sponsored meetings,
including successful Bernoulli - IMS Young
Researchers Meetings.
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We give prizes/awards...

• 2020 Doeblin Prize (Nike Sun)
• 2020 BS New Researcher Award (Li-Cheng Tsai, Nina

Holden, Xin Sun)
• 2020 IMS/BS Doob Lecture (Nicolas Curien)
• 2020 IMS/BS Schramm Lecture (Omer Angel)
• 2021 Ethel Newbold Award (Marloes Maathuis).
• 2021 BS New Researcher Award (Fang Han, Aaditya

Ramdas, Anru Zhang).
• 2021 Bernoulli Presidential Invited Lecture (Markus

Reiss).
• 2021 Bernoulli Journal Lecture (Johannes

Schmidt-Hieber).
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Newly created awards (2021)

• Bernoulli Society-Royal Statistical Society David G.
Kendall Award for Young Researchers (Ewain
Gwynne).
• Willem van Zwet Medal for special service to the

Bernoulli Society (Maria Eulália Vares).
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Back to the topic: Classics

• Let X1,X2, . . . be an iid sequence of random variables with marginal
distribution function F (x) = P

(
X1 ¬ x

)
. Let Mn = max1¬j¬n Xj .

• The traditional approach (Fisher & Tippet, Gnedenko, de Haan, . . . ):

lim
n→∞

P
(
(Mn−bn)/an ¬ x

)
= lim

n→∞
P
(
Mn ¬ anx +bn

)
= H(x), x ∈ R1. (∗)

• There are 3 classes of nondegenerate limits (Frèchet, Gumbell,
Weibull).
• For each limit distribution H one can give necessary and sufficient

conditions for F and define an and bn in such a way that (∗) holds for H.
• A complete analogy to the theory for sums of random variables!
• L. de Haan, A. Ferreira, Extreme Value Theory. An Introduction,

Springer 2006. M.R. Leadbetter, G. Lindberg, H. Rootzén, Extremes
and related properties of random sequences and processes,
Springer 1986.
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Back to the topic: Classics

• Let X1,X2, . . . be an iid sequence of random variables with marginal
distribution function F (x) = P

(
X1 ¬ x

)
. Let Mn = max1¬j¬n Xj .

• The traditional approach (Fisher & Tippet, Gnedenko, de Haan, . . . ):

lim
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P
(
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)
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P
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• There are 3 classes of nondegenerate limits (Frèchet, Gumbell,
Weibull).

• For each limit distribution H one can give necessary and sufficient
conditions for F and define an and bn in such a way that (∗) holds for H.
• A complete analogy to the theory for sums of random variables!
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A blemish on a perfect image

• Let us consider F with a super-heavy tail: 1− F (x) = x−1/
√

ln x , x > 1.
• F does not belong to domain of attraction of any extremal distribution.
• Nevertheless, if vn = nln n, then P

(
Mn ¬ vn

)
→ e−1.

• Moreover, for each γ ∈ (0,1) there exists a sequence {vn(γ)} such that

P
(
Mn ¬ vn(γ)

)
→ γ.

It follows from the existence of {vn}!
• In fact the asymptotics of maxima of iid sequences is completely

determined by a single sequence of levels {vn}!
• In particular, the classic convergence

lim
n→∞

P
(
Mn ¬ anx + bn

)
= H(x),

which holds for a family of levels vn(x) = anx + bn, x ∈ R1, is
determined by the convergence for a single sequence vn = anx0 + b0! (if
H(x0) ∈ (0,1)).
• The classic theory is too similar to the theory for sums!
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Equivalence of asymptotics of maxima for iid sequences

• The right end of distribution function G is defined as
G∗ = sup{x ; G(x) < 1}.
• We say that G is regular (in the sense of O’Brien), if

G(G∗−) = 1 and lim
x→G∗−

1−G(x−)

1−G(x)
= 1.

• Regularity is equivalent to the existence of a number γ ∈ (0,1) and a
sequence {vn = vn(γ)} such that

Gn(vn)→ γ.

• DF of the Poisson distribution and the geometric distribution are not
regular.
• Every continuous distribution function is regular.
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Equivalence of asymptotics of maxima for iid sequences - cont.

An observation (Doukhan, J. & Lang (Extremes, 2015))

Let G be a regular distribution function and H be an arbitrary distribution
function.
The following conditions are equivalent:

•
sup
x∈R

∣∣Gn(x)− Hn(x)
∣∣→ 0, if n→∞.

• One can find a number γ ∈ (0,1) and a nondecreasing sequence {vn}
such that

Gn(vn)→ γ, Hn(vn)→ γ.

• H is regular and its tail is equivalent to the tail of G, i.e.

G∗ = H∗ and
1− H(x)

1−G(x)
→ 1, gdy x → G∗−.
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Phantom distribution functions

• The notion of a phantom distribution function for a sequence was
introduced by O’Brien (1987) in the context of Markov chains.
• Let {Xj} be a stationary process with partial maxima

Mn = max
1¬j¬n

Xj

and the marginal distribution function F (x) = P(X1 ¬ x).
• We say that {Xj} admits a phantom distribution function G, if

sup
u∈R

∣∣P(Mn ¬ u)−Gn(u)
∣∣→ 0, gdy n→∞.

• It is obvious that G is not uniquely determined. Any other H such that

sup
u∈R

∣∣Gn(u)− Hn(u)
∣∣→ 0, if n→∞, (∗)

can also serve as a phantom distribution function for {Xj}.
• It follows that the phantom distribution function is determined uniquely

modulo the equivalence of right tails.
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• We say that {Xj} admits a phantom distribution function G, if

sup
u∈R

∣∣P(Mn ¬ u)−Gn(u)
∣∣→ 0, gdy n→∞.

• It is obvious that G is not uniquely determined. Any other H such that

sup
u∈R

∣∣Gn(u)− Hn(u)
∣∣→ 0, if n→∞, (∗)

can also serve as a phantom distribution function for {Xj}.
• It follows that the phantom distribution function is determined uniquely

modulo the equivalence of right tails.
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Why to deal with PhDFs?

• Let us recall the definition of a PhDF G for a stationary sequence {Xj}
with partial maxima {Mn}.

sup
u∈R

∣∣P(Mn ¬ u)−Gn(u)
∣∣→ 0, gdy n→∞.

• We know that the asymptotics of Gn(x) is completely determined by a
single sequence of levels {vn} such that Gn(vn)→ γ ∈ (0,1).

Basic statement

If a stationary process {Xj} admits a regular PhDF, then the asymptotics of
maxima {Mn} is completely determined by a single sequence of levels {vn}
satisfying for some γ ∈ (0,1)

P
(
Mn ¬ vn

)
→ γ.

(For example, if γ = 1/2 then as vn we can take the median of Mn).
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Existence of PhDFs

Theorem (J. (AoP,1993), Doukhan, J. & Lang (Extremes, 2015))

Let {Xj} be a stationary process. The following conditions are equivalent:

• {Xj} admits a continuous PhDF.
• One can find a number γ ∈ (0,1) and a non-decreasing sequence {vn}

such that
P(Mn ¬ vn)→ γ,

and for each T > 0 the following condition BT ({vn}) holds:

sup
p,q∈N,
p+q¬T ·n

∣∣P(Mp+q ¬ vn
)
− P

(
Mp ¬ vn

)
P
(
Mq ¬ vn

)∣∣→ 0.

• One can find a number γ ∈ (0,1) and a non-decreasing sequence {vn}
such that on some dense subset Q ⊂ R+

P
(
Mbntc ¬ vn

)
→ γt , t ∈ Q.
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Many stationary sequences admit a PhDF!

• An α-mixing stationary sequence with a continuous marginal distribution
F admits a PhDF.
• There exist non-ergodic stationary sequences admitting PhDFs.
• There are stationary sequences admitting a PhDF G with the following

property: if F n(xn)→ γ > 0, then Gn(xn)→ 1 (extremal index zero).
• If the covariance function rn of a standard stationary Gaussian

sequence satisfies the Berman condition rn ln n→ 0, then Φ(x) is a
PhDF.
• If the covariance function rn of a standard stationary Gaussian

sequence satisfies rn ln n→ ρ > 0, then this sequence does not admit
any PhDF.
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Partial maxima for stationary random fields

• Let Zd be the d-dimensional lattice over the integers, with a standard
partial order ¬ (by coordinates).
• Let {Xn : n ∈ Zd} be a d-dimensional stationary random field, with the

marginal distribution function F .
• We define partial maxima of {Xn : n ∈ Zd} as the maxima over

rectangles:

Mj,n := max{Xk : j ¬ k ¬ n}, jeśli j ¬ n, Mj,n := −∞, jeśli j 6¬ n.

• For simplicity we define also

Mn := M1,n, n ∈ Nd .
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PhDF for random fields (J.& Soja-Kukieła (Extremes, 2019))

• We say that a random field {Xn : n ∈ Zd} admits a PhDF G if

sup
x∈R

∣∣∣P (Mn ¬ x)−G(x)n∗
∣∣∣→ 0, if n→∞∞∞ (by coordinates),

where for n = (n1,n2, . . . ,nd ) we define n∗ = n1 · n2 · . . . · nd .
• Theorem 4.3 ibid. shows that PhDFs in this strong sense exist for many

random fields with local dependencies, e.g.

1 m-dependent random fields;
2 multidimensional moving averages of iid random variables with heavy

tails;
3 multidimensional moving maxima of iid random variables with heavy tails;
4 Gaussian fields satisfying the corresponding Berman condition.

• Wu & Samorodnitsky (SPA, 2020) give examples of calculation of the
extremal index (G = F θ) for random fields with so-called “tail field".
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• We say that a random field {Xn : n ∈ Zd} admits a PhDF G if

sup
x∈R

∣∣∣P (Mn ¬ x)−G(x)n∗
∣∣∣→ 0, if n→∞∞∞ (by coordinates),

where for n = (n1,n2, . . . ,nd ) we define n∗ = n1 · n2 · . . . · nd .
• Theorem 4.3 ibid. shows that PhDFs in this strong sense exist for many

random fields with local dependencies, e.g.
1 m-dependent random fields;
2 multidimensional moving averages of iid random variables with heavy

tails;
3 multidimensional moving maxima of iid random variables with heavy tails;

4 Gaussian fields satisfying the corresponding Berman condition.
• Wu & Samorodnitsky (SPA, 2020) give examples of calculation of the

extremal index (G = F θ) for random fields with so-called “tail field".
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An auxillary notion - a monotone curve

• We define a monotone curve as a mapping ψψψ : N→ Nd such that
- ψψψ(n)→∞∞∞ (by coordintaes);
- for n = 1,2, . . . ψψψ(n) ¬ ψψψ(n + 1) and ψψψ(n) 6= ψψψ(n + 1) (hence the
sequence {ψψψ(n)∗} is strictly increasing);
-if n→∞, ψψψ(n)∗/ψψψ(n + 1)∗ → 1.
• We will say that G is a PhDF for {Xn} along ψψψ (symbolically: G = Gψψψ), if

sup
x∈R

∣∣∣P(Mψψψ(n) ¬ x)−G(x)ψψψ(n)∗
∣∣∣→ 0, if n→∞.

Observation

Let G be a continuous DF. Then G is a PhDF for {Xn} if, and only if, G is a
PhDF for {Xn} along every monotone curve.
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Existence of PhDFs for random fields

Theorem (J., Rodionov & Soja-Kukieła, Bernoulli, 2021)

A stationary random field {Xn : n ∈ Zd} admits a continuous PhDF if, and
only if, the following two conditions are satisfied.

• One can find a number γ ∈ (0,1) and a strongly monotone field of levels
{vn ; n ∈ Nd} (i.e. vm ¬ vn if m∗ ¬ n∗) such that

P(Mn ¬ vn)→ γ, gdy n→∞∞∞.

• For every monotone curve ψψψ and every T > 0 the following condition

BψψψT ({vψψψ(n)}) holds:

βψ
ψψ
T (n) := max

p(1)+p(2)¬Tψψψ(n)

∣∣∣P (Mp(1)+p(2)¬vψψψ(n)

)
−

∏
i∈{1,2}d

P
(
M(p1(i1),p2(i2),...,pd (id ))¬vψψψ(n)

) ∣∣∣ −−−→
n→∞

0.
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Condition BψψψT ({vψψψ(n)}) and strong monotonicity

A comment

Suppose that F is continuous, choose γ ∈ (0,1) and consider the
corresponding quantiles:

vn = inf{x : P (Mn ¬ x) = γ}.

Then we have P(Mn ¬ vn)→ γ and the field of levels {vn} is monotone, but
there is no reason to expect it is strongly monotone.



PHDFT

Adam Jakubowski

Classics and the
single sequence
method

Phantom
distribution
functions for
sequences

Phantom
distribution
functions for
random fields

Phantom
distribution
functions on trees

23

Condition BψψψT ({vψψψ(n)}) and strong monotonicity

A comment

Suppose that F is continuous, choose γ ∈ (0,1) and consider the
corresponding quantiles:

vn = inf{x : P (Mn ¬ x) = γ}.

Then we have P(Mn ¬ vn)→ γ and the field of levels {vn} is monotone, but
there is no reason to expect it is strongly monotone.



PHDFT

Adam Jakubowski

Classics and the
single sequence
method

Phantom
distribution
functions for
sequences

Phantom
distribution
functions for
random fields

Phantom
distribution
functions on trees

24

An example (J., Rodionov & Soja-Kukieła, Bernoulli, 2021)

• Let X = {X(i,j), (i , j) ∈ Z2} be a Gaussian stationary random field, with
zero expectations and unit variance and the covariance function

EX(i,j)X(0,0) = rij = η1(i)η2(j)

where η1(θ) and η2(θ) are characteristic functions.
• We assume that η1 and η2 are symmetric around 0 and convex on R+

(Polya’s recipe).
• Moreover, we assume that for i and j large enough we have

rij = γ1γ2
ln ln |i |
ln |i |

1
ln |j |

.

• Then Φ is a PhDF for {X(i,j)} along ∆(n) = (n,n).
• But there is no PhDF for {X(i,j)} along

ψψψ(n) =
(
bn/ ln nc, bln nc

)
,n ∈ N.

• It follows that there is no (global) PhDF for {X(i,j)}.
• Remark: rψψψ(n) · ln n→ γ1γ2.
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The neighborhood of a monotone curve

• In fact, the existence of a PhDF along a monotone curve implies much
more than expected.
• Let {ψψψ(n)} be a monotne curve. We define the “neighborhood” of the

curve {ψψψ(n)} as a class Uψψψ of monotone curves ϕϕϕ, for which there is a
constant C ­ 1 such that for almost all n ∈ N

ϕϕϕ(n) ∈ U(ψψψ,C) :=
⋃
j∈N

d∏
i=1

[C−1ψi(j),Cψi(j)].

• For example, if d = 2 and {φφφ(n)} belongs to a cone (“sector") around
the diagonal ∆(n) = (n,n), i.e. there is C > 1 such that for almost every
n ∈ N

C−1n ¬ φ1(n) ¬ C n, C−1n ¬ φ2(n) ¬ C n,

then φφφ ∈ U∆.
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The neighborhood of a monotone curve
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A graphical illustration for U(ψψψ,C)
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Directional PhDF

Theorem (J., Rodionov & Soja-Kukieła

Let {Xn : n ∈ Zd} be a stationary random field and let ψψψ be a monotone
curve. The following conditions are equivalent.

• {Xn} admits a continuous PhDF along ψψψ.
• {Xn} admits the same continuous PhDF along every curve φφφ ∈ Uψψψ.
• One can find a number γ ∈ (0,1) and a non-decreasing sequence
{vψψψ(n)}, n ∈ N, such that

P(Mψψψ(n) ¬ vψψψ(n))→ γ, gdy n→∞,

and for every T > 0 condition BψψψT ({vψψψ(n)}) is satisfied.

Definition

If {Xn} admits the same continuous PhDF along every curve φφφ ∈ Uψψψ, then
we say that {Xn} admits a ψψψ-directional PhDF.
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Some comments

• ∆-directional PhDF is called the sectorial PhDF.
• The random field {X(i,j)} in our main example admits a sectorial PhDF

(Φ), but does not admit any global PhDF.
• The sectorial convergence (or limit theorem) is not new in the theory of

random fields. For example Gut (1983) (see also Klesov (2014))
considers strong law of large numbers for partial sums indexed by a
sector. A similar formalism for U-statistics one can find in Gadidov
(2005).
• Because it is (relatively) easy to obtain the condition

P(Mψψψ(n) ¬ vψψψ(n))→ γ, gdy n→∞,

the sectorial (directional) PhDF is a useful tool in analysis of the
asymptotics of maxima of random fields.
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Why the so nice one-dimensional theory cannot be transferred to higher
dimensions without changes?

• Existence of a PhDF for sequences is, in fact, equivalent to the
convergence

P
(
Mbntc ¬ vn

)
→ γt , t ∈ Q.

on some dense subset Q ⊂ R+.
• This convergence implies the uniform convergence, what is crucial in

the reasoning.
• This is not so in the case of random fields.
• The convergence

P
(
M(bnsc,bntc) ¬ vn

)
→ γs·t , s, t ∈ R+,

does not imply the uniform convergence on (R+)2.
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Phantom distribution functions on trees

• Zd is a lattice, a very regular structure.
• Can we build a corresponding theory for stochastic processes indexed

by other structures, e.g. by trees?
• Let V be a rooted tree. If v ∈ V, then |v| will denote the number of

generation of v with respect to the root r (the length of the unique path
connecting v and r).
• Let {Xv}v∈V be a stochastic process indexed by V. Define the partial

maxima over branches:

Mv = max{Xu ; r ¬ u ¬ v}.

• Let G be a continuous distribution function. It is natural (motivated by the
iid case) to say that G is a phantom distribution function for {Xv}v∈V, if

sup
x∈R1

∣∣P(Mv ¬ x
)
−G(x)|v|

∣∣→ 0,

when |v| → +∞.
• Notice that |v| → ∞ implies that V is infinite.
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Phantom distribution functions on trees

Theorem

Suppose that V is an infinite rooted tree.
Then {Xv}v∈V admits a continuous distribution function G if, and only if,
there exist a number γ ∈ (0,1) and a non-decreasing sequence of levels
{un} such that

P
(
Mv ¬ un

)
− γ|v|/n → 0,

uniformly in v ∈ V.
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Phantom distribution functions along a branch

• Now let us assume that every branch B ⊂ V is infinite.
• Let B = {r,v1,v2, . . .} ⊂ V be a branch. It is natural to call G a phantom

distribution function for {Xv}v∈V along B, if

sup
x∈R1

∣∣P(Mvn ¬ x
)
−G(x)n∣∣→ 0,

as n→∞.
• Suppose that a continuous distribution function G is a PhDF along every

branch B ⊂ V.
• Is it a (global) PhDF for {Xv}v∈V?

In general not.

• The additional property we need is a kind of compactness of branches.
For every sequence |vn| → ∞ there exists a branch B containing
an infinite number of elements of {vn}
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For every sequence |vn| → ∞ there exists a branch B containing
an infinite number of elements of {vn}
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PhDF on trees and PhDF along branches

Theorem

Suppose that all branches of a rooted tree V are infinite and the
compactness property holds.
Then {Xv}v∈V admits a continuous distribution function G if, and only if,
there exist a number γ ∈ (0,1) and a non-decreasing sequence of levels
{un} such that along every branch B

sup
v∈B

∣∣P(Mv ¬ un
)
− γ|v|/n∣∣→ 0.
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