COVID-19 cases and deaths in the United States, Taylor's law of fluctuation scaling, and heavy tails Joint work with Richard A. Davis & Gennady Samorodnitsky

Joel E. Cohen, cohen@rockefeller.edu Rockefeller University & Columbia University 2021-09-17, Ecodep Conference (Paul Doukhan), Paris Seine University, Cergy-Pontoise, France

Ashokan Reservoir, Ulster County, NY, JEC 20151015

Outline

 COVID-19 U.S. data analysis: Taylor's law & heavy upper tails
 Simulations of an idealization
 Mathematics

A global pandemic of COVID-19

By 12 September 2021, coronavirus SARS-CoV-2 caused >225 million reported cases of COVID-19 disease and >4.6 million deaths.

U.S. reported more cases (41.8 million) and more deaths (678,000) than any other country. https://www.worldometers.info/coronavirus/countries-

where-coronavirus/countries/

Administrative structure of U.S. ~56 first-level divisions := "states": states, territories, possessions, Washington DC

~3100 second-level subdivisions := "counties":

"... 3,006 counties; 14 boroughs and 11 census areas in Alaska; ... 64 parishes in Louisiana; Baltimore city, Maryland; St. Louis city, Missouri; that part of Yellowstone National Park in Montana; Carson City, Nevada; and 41 independent cities in Virginia."

U.S. Census, *Geographic Areas Reference Manual*, 1994 ~55 counties/state ≈ ~number of states

COVID-19 cases & deaths

New York Times historical data base has final counts of COVID-19 cumulative cases & cumulative deaths at end of each day, 2020-01-21 to 2021-06-19 by "state" & "county" for days & counties with >0 cases or >0 deaths.

1,436,628 counts by day & county in data downloaded 2021-06-20

On each date, cumulative cases & deaths within each state by county

State number \rightarrow	<i>j</i> =1	<i>j</i> =2	<i>j</i> =3	<i>j</i> =
County 1	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i>
County 2	<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	
County 3	<i>x</i> ₃₁	<i>x</i> ₃₂	<i>x</i> ₃₃	
County 4		<i>x</i> ₄₂	<i>x</i> ₄₃	
:		<i>x</i> ₅₂		
Mean = average	m ₁	m ₂	m ₃	m
Variance	V ₁	V ₂	V ₃	V

Cumulative U.S. cases/county by "state" as of June 1, 2021 (from lowest to highest mean)

state	number of cases	mean cases per county	variance cases per county
Virgin Islands	3465	1155	6.7595e+05
Vermont	24224	1614.9	3.1139e+06
South Dakota	1.2419e+05	1881.7	1.8494e+07
:	:	:	:
Massachusetts	7.0713e+05	47142	1.7181e+09
Arizona	8.8145e+05	58764	1.9367e+10
California	3.791e+06	65363	3.03e+10

Major findings: counties' cumulative counts of cases or deaths

After first few months, log variance (over counties) increases, state by state, linearly as a function of log mean (over counties), and slope is close to (not significantly different from) 2.

Why?

TL data structure: multiple samples,						
each with multiple observations						
	Sample number \rightarrow	<i>j</i> =1	<i>j</i> =2	<i>j</i> =3	<i>j</i> =	
	Counts or nonnegative	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i>	
		<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃		
quantities	<i>x</i> ₃₁	<i>x</i> ₃₂	<i>x</i> ₃₃			
			<i>x</i> ₄₂	<i>x</i> ₄₃		
			<i>x</i> ₅₂			
	Mean = average	m ₁	m ₂	m ₃	m	
	Variance	V ₁	V ₂	V ₃	V	

Taylor's law Nature 1961 In multiple samples, the variance is proportional to a power of the mean. variance $\approx a (\text{mean})^b$, a > 0. $\log(variance) \approx \log(a) + b \cdot \log(mean).$ variance/(mean)^b $\approx a$, a > 0. **Taylor measured population** density. The pattern applies more widely, but not universally. Taylor stated no model of deviations from exact equality.

> Lionel Roy Taylor (1924–2007)

2021-09-15

Heavy tails

Sample mean, sample variance are always finite. But some distributions have infinite mean or infinite variance.

"Wonder / Fear / Astonishment"

Then sample mean (or sample variance) does not converge to a finite value, but instead moves to infinity, with increasing sample size.

Upper tail of survival curve reveals which moments (if any) are finite.

Cases and deaths by county are not Pareto-distributed over their entire range.

We zoom in to the counties with the highest 1% of numbers of cases or deaths.

Highest 1% of cumulative COVID-19 deaths/county by date

Major findings: highest 1% of counties' cumulative counts of cases or deaths

After first few months, in the highest 1% of counts of cases or deaths by county,
log Pr{count > x} decreases linearly as log x increases, and
-1 > slope > -2.

Empirical survival curves suggest variance is infinite. The slope of the upper tail on log-log coordinates is statistically significantly greater than -2 in all 15 months for cases & deaths. Variance is infinite in all cases. The slope is statistically significantly less than -1 in 14 most recent months for cases & 11 most recent months for deaths. Except at beginning of epidemic, mean is finite.

So what?

If the variances of cases & deaths per county are infinite, facility & resource planning should prepare for unboundedly high counts.

No single county (or state, or other jurisdiction) can prepare for unboundedly high counts.

Cooperative exchanges of support should be planned cooperatively.

Wanted: theory of TL for multiple samples of heavy-tailed data

How do sample mean & sample variance behave in multiple samples with fixed or similar sample size, when: data come from distributions with infinite variance or infinite mean, and number of samples ≈ each sample size?

Outline

 COVID-19 U.S. data analysis: Taylor's law & heavy upper tails
 Simulations of an idealization
 Mathematics

Probability distribution with regularly varying tail Pr(X > x)X is a regularly varying (RV) rv with index $\alpha > 0$ iff $\forall t > 0, \lim_{x \to \infty} \frac{\Pr(X > tx)}{\Pr(X > x)} = \frac{1}{t^{\alpha}}.$ We write: $X \in RV(\alpha)$. Then $\Pr(X > x) = \frac{L(x)}{x^{\alpha}}, \lim_{t \to \infty} \frac{L(tx)}{L(t)} = 1, \forall x > 0.$

Probability distribution with regularly varying tail Pr(X > x)

Suppose $X \in RV(\alpha)$.

If $\alpha \in (0,1)$, then mean & all higher moments of X are infinite.

If $\alpha \in (1,2)$, then mean is finite, but variance & all higher moments of X are infinite.

If $\alpha \ge 2$, then X has finite mean & variance.

Simulations of idealized cases

We create $r \times c$ matrices, $r = c = 10, 100, 1000, 10^4, 10^5, 10^6$, with $RV(\alpha)$ elements (iid or asymptotically independent within columns, rows, or both), $\alpha \in (0,1) \cup (1,2)$.

For each matrix, we plot log variance of each column as a function of log mean of the same column.

For larger means of large samples, slopes are close to 2.

Lévy law: $\alpha = \frac{1}{2}, X = |N(0,1)|^{-2}$: straight line fitted to upper 0.25% of sampled means has slope ≈ 2 .

10⁴ samples, each sample size 10⁴, for $\alpha \in (0,1)$

10³ samples, each sample size 10³, for $\alpha \in (1,2)$

10⁴ samples, each sample size 10⁴, for $\alpha \in (1,2)$

10⁵ samples, each sample size 10⁵, for $\alpha \in (1,2)$

10⁶ samples, each sample size 10⁶, for $\alpha \in (1,2)$

Estimated slope *b* of log variance as a function of log mean for 5 largest values of log mean in *c* samples, each of size r = c

	Tail index			
r = c	$\alpha = 1.25$	$\alpha = 1.5$	$\alpha = 1.75$	
10^{3}	2.2353	2.5797	4.2446	
10^{4}	2.0186	2.3340	3.4629	
10^{5}	2.0100	2.2190	2.6676	
10^{6}	2.0040	2.0278	2.7800	

Outline

 COVID-19 U.S. data analysis: Taylor's law & heavy upper tails
 Simulations of an idealization
 Mathematics

Upper tail of multiple samples obeys Taylor's law with slope 2.

Richard A. Davis

Gennady Samorodnitsky

TL holds when $0 < \alpha < 1$: w.h.p., $\log var(X_{:j}) \approx \log r + 2 \log \overline{X}_{:j}$

Theorem 4.1. Let $\varepsilon > 0$. Let every element X_{ij} , $i = 1, \ldots, r$; $j = 1, \ldots, c$ of the array X have the same distribution in $RV(\alpha)$, $0 < \alpha < 1$, and assume that all columns are equally distributed. Assume also that the entries within each column are, conditionally on a σ -field \mathcal{G} , independent. Let x(r) satisfy

$$\lim_{r \to \infty} x(r) = \infty \quad and \quad \lim_{r \to \infty} r \Pr(X_{11} > x(r)) = 0.$$
(4.1)

Let the number c of columns depend on the number r of rows in such a way that the function c = c(r) satisfies

$$\lim_{r \to \infty} c(r) r^2 \max_{i=1,\dots,r} E\left(\left[\frac{1}{x(r)} \int_0^{x(r)} \Pr(X_{i,1} > x \mid \mathcal{G}) \, dx \right]^2 \right) = 0.$$
(4.2)

Then

$$\lim_{r \to \infty} \Pr\left(\left| \log \frac{var(X_{:j})}{r(\bar{X}_{:j})^2} \right| > \varepsilon \text{ for some } j = 1, \dots, c(r) \text{ such that } r|\bar{X}_{:j}| > x(r) \right) = 0.$$
(4.3)

Assumptions that all *X_{ij}* are iid, & that different columns are mutually independent, can be relaxed, & same TL holds.

Theorem 4.4. Let $\{Z_{ij}\}$ be an iid space-time process with a regularly varying distribution with index $\alpha \in (0,1)$. Let $\{G_{ij}\}$ be a stationary space-time Gaussian process with mean 0 and covariance function $\gamma(\cdot, \cdot)$, i.e., $Cov(G_{ij}, G_{i'j'}) = \gamma(i - i', j - j')$. Given $\mathcal{G} = \sigma(G_{ij}, i = 1, \ldots, r; j = 1, \ldots, c)$, the process $X_{ij} := Z_{ij}|G_{ij}|$ is conditionally independent, but not identically distributed. Under the assumptions (4.1) and (4.2), (4.3) holds.

TL holds when $1 < \alpha < 2$: w.h.p., $\log var(X_{:j}) \approx \log r + 2 \log \overline{X}_{:j}$

Theorem 4.2. Let $\varepsilon > 0$. Suppose the elements of the matrix are iid, with the right tail in $RV(\alpha)$, $1 < \alpha < 2$, and the left tail with a finite second moment. Let x(r) satisfy

$$\lim_{r \to \infty} x(r) = \infty \quad and \quad \lim_{r \to \infty} r \Pr(X_{11} > x(r)) = 0.$$
(4.9)

Let the number c of columns depend on the number r of rows in such a way that the function c = c(r) satisfies

$$\lim_{r \to \infty} c(r) \left(r \Pr(X_{11} > x(r)) \right)^2 = 0.$$
(4.10)

Then

$$\lim_{r \to \infty} \Pr\left(\left| \log \frac{var(X_{:j})}{r(\bar{X}_{:j})^2} \right| > \varepsilon \text{ for some } j = 1, \dots, c(r) \text{ such that } r(\bar{X}_{:j} - EX_{11}) > x(r) \right) = 0.$$

$$(4.11)$$

Relevant prior papers Brown, M., Cohen, J. E. & de la Peña, V. 2017 Taylor's law, via ratios, for some distributions with infinite mean. Journal of Applied Probability 54(3):1-13. doi:10.1017/jpr.2017.25

Cohen, J. E., Davis, R.A. & Samorodnitsky, G. 2020 Heavy-tailed distributions, correlations, kurtosis, and Taylor's law of fluctuation scaling. Proceedings of the Royal Society A 476:20200610. https://doi.org/10.1098/rspa.2020.0610.

2021-09-15

Joel E. Cohen

Thank you! Questions? cohen@rockefeller.edu

20190906 La Fage To Florac Cévennes "Cham des Bondons Chabusse"

2021-09-15