
Taylor,s Power Law and the
Squared Coefficient of Variation

The (squared) coefficient of variation (CV) is defined as the sample
variance over the square of the sample mean. The CV provides a measure
of dispersion which is invariant under scale change. As such it is a useful
complement to the variance. Given a set of temperature measurements
on the Celsius scale the CV will be the same as the CV on the Fahrenheit
scale. On the other hand, the sample variance will be different on the
celsius scale than the variance on the Fahrenheit scale. This makes it
difficult to interpret the results.
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Taylor’s Power Law provides a generalization of the CV. It is an
important criterion used to describe the dynamic of populations. It was
first observed as an empirical pattern in ecology where it was noticed
that the variance of each sample was aproximately proportional to a
power of its sample mean. An important property that Taylor,s Law
it is invariant under scale change. Taylor’s law has been widely used
as an explanation of numerous phenomena, including population growth
in which samples at multiple locations at a point in time replicated at
several points in time.
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It has been used as a tool in studies in Demography, Biology and
Physics, among others. Thousands of papers have been dedicated to
the study of Taylor,s Law. Important surveys on the topic are Kendal
(2004), Eisler et al (2008) and Meng (2015). This talk is partly based
partly in joint work with Mark Brown and Joel Cohen (2017).
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Let {Xi,j}, i = 1, ..., nj ; nj ≥ 2, j = 1, ...,m be a double ar-
ray of non-negative random variables with P (Xi,j = 0) = 0 . Let

the sample mean and variance be denoted by X̄n,j =

∑nj

i=1
Xi,j

nj
S2
n,j =∑n,j

i=1
(Xi,j−X̄j)2

nj−1 . Taylor’s law is said to hold with exponent α > 0 if

logS2
n,j ≈ c + α log X̄n,j , nj ≥ 2, j = 1, ...,m, for a fixed (finite)

constant c. Rather than working with logarithms we study directly the

behavior of the self-normalized random variable
S2
n,j

X̄α
n,j

.
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Our main results are explicit formulas for E
S2
n,j

X̄α
n,j

, and V ar(
S2
n,j

X̄α
n,j

) for

all j = 1, ...,m involving integrals of Laplace transforms of the distribu-
tion of the original variables. As an applications we obtain a measure of
dispersion of the double array around the sample means. An illustrative
example is given for the exponential distributions for which a simula-

tion study shows that small sample sizes nj ≤ 10, V ar(log(
S2
n,j

X̄α
n,j

)) ≥

V ar(
S2
n,j

X̄α
n,j

), further justifying the use of our approach to the study of

Taylor’s law.
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We treat Taylor’s Law as an inverse problem. That is, we say that
Taylor’s law holds with parameter α for all distributions Fj , j = 1, ...,m
for which

E(S2
n,j/X̄

α
n,j) := K(F, α, n, j),

for all j. where K(F, α, n, j) is approximately a constant as n, j change.
We present an example when the Fj ’s are exponential and more generally
Gamma distributed. For this example Taylor’s law holds for α = 2.
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A Reduction.

Without loss of generality we can drop the subscript j. Let {Xi, i =
1, ...n} be a sequence of positive i.i.d. random variables with P (Xi =
0) = 0 and distribution function F. More precisely, by calculating

(2) E
S2
n

X̄α
n

:= K(F, α, n),

in terms of the Laplace distribution of F . We then say that Taylor’s
Law holds with parameter α > 0 for for all distributions for which
K(F, α, n) ≈ (a positive finite constant).
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Back to the CV. Let µ 6= 0 and σ2 <∞, be the mean and variance of

X1. It is common for σ2

µ2 to be called the square coefficient of variation

since it is variance of the random variable X1

µ and it is unit-less. The

natural estimator of this quantity (when X̄n 6= 0) is
S2
n

X̄2
n

. It is easy

to see that when the X’s are non-negative the expectation is given by
K(F, 2, n), therefore connecting our results to the square coefficient of
variation. However our results require that the X’s be non-negative.
A remarkable fact is that (because of cancellations) K(F, 2, n) may be
finite even when σ2 =∞.
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Let X,X1, ..., Xn be a sequence of i.i.d. non-negative random vari-
ables. Let α > 0 be a constant. in what follows, we provide a closed
form expression for

E
S2
n

X̄α
n

,

(when it is finite) in terms of functional of the Laplace transform, φ(λ),
of distribution FX . That is, φ(λ) = Ee−λX for all λ > 0.
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Theorem.

E
S2
n

X̄α
n

=
nα

Γ(α)

∫ ∞
0

λα−1φ(λ)n−2{φ′′(λ)φ(λ)− (φ′(λ))2}dλ

for all fixed α > 0.

10



Let us first recall that the properties of the Gamma density with
fixed scale parameter α, shape parameter β > 0 implies that.

1 = βα
1

Γ(α)

∫ ∞
λ=0

λα−1 exp{−λβ}dλ.
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Remark 1.
Mean = µ = α

β

Variance σ2 = α
β2

Coefficient of Variation CV 2 = σ2

µ2 = 1
α .

Special cases: Chi-square, exponential.
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Lemma 1. Using the above, and letting β = (
∑n
i=1Xi)

α

1

(
∑n
i=1Xi)α

=
1

Γ(α)

∫ ∞
λ=0

λα−1 exp{−λ
n∑
i=1

Xi}dλ.

Multiplying by X2
1 on both sides and taking expectations we get,

E
X2

1

(
∑n
i=1Xi)α

= EX2
1

1

Γ(α)

∫ ∞
λ=0

λα−1 exp{−λ
n∑
i=1

Xi}dλ =

∫ ∞
λ=0

λα−1

Γ(α)
EX2

1 exp{−λX1}E exp{−λ
n∑
i=2

Xi}dλ =

(since the X’s are i.i.d.)∫ ∞
λ=0

λα−1

Γ(α)
EX2

1 exp{−λX1}φ(λ)n−1dλ =

∫ ∞
λ=0

λα−1

Γ(α)
φ”(λ)φ(λ)n−1dλ

(SinceEX2
1 exp{−λX1} = φ(λ) (byTonellis)

)
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Lemma 2. Using the above, we have that

E
X1X2

(
∑n
i=1Xi)α

= EX1X2
1

Γ(α)

∫ ∞
λ=0

λα−1 exp{−λ
n∑
i=1

Xi}dλ =

∫ ∞
λ=0

λα−1

Γ(α)
EX1 exp{−λX1}X2 exp{−λX2}E exp{−λ

n∑
i=3

Xi}dλ =

(by independence)∫ ∞
λ=0

λα−1

Γ(α)
(φ
′
(λ))2φ(λ)n−2dλ

(since EX1 exp{−λX1} = φ′(λ) by Tonelli’s)
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Proof of Theorem 1: Since S2
n =

∑
1≤i<j≤n

(Xi−Xj)
2

2

(n2)

E
S2
n

X̄α
n

=
nα(
n
2

) ∑
1≤i<j≤n

E
(Xi−Xj)2

2

(
∑n
i=1Xi)α

=

nα

2
E

(X1 −X2)2

(
∑n
i=1Xi)α

=

(by linearity of expectations and using the fact that the variables are i.i.d.)

nα(E
X2

1

(
∑n
i=1Xi)α

− E X1X2

(
∑n
i=1Xi)α

) =

nα

Γ(α)

∫ ∞
0

λα−1φ(λ)n−2{φ′′(λ)φ(λ)− (φ′(λ))2}dλ,

by Lemma 1 and Lemma 2.
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Examples.
In what follows we provide two examples using the exponential dis-

tribution and its relation to Taylor’s law.

Example 1. For β > 0, let Xi be i.i.d. exponential, with EX1 = 1
β

then,

(3) E
S2
n

X̄n
=

1

β

n

(n+ 1)
.

Since the right-hand side of (3) changes as β changes, Taylor’s law
does not hold for α = 1.

In this case, φ(λ) = β
λ+β , φ′(λ) = − β

(λ+β)2 , φ′′(λ) = 2β
(λ+β)3 , for all

λ > 0. Therefore, by Theorem 1,

E
S2
n

X̄n
=

n

Γ(1)

∫ ∞
0

(
β

λ+ β
)n−2[

2β

(β + λ)3

β

β + λ
− β2

(β + λ)4
]dλ =

nβn[0− (− 1

(n+ 1)βn+1
] =

1

β

n

(n+ 1)
.

In conclusion, Taylor’s law does not hold in our context when α = 1.
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In what follows we show that for Exponential random variables Tay-
lor’s law holds for α = 2.

Example 2.

Let X be Gamma distributed with shape parameter 1 and scale

parameter β (exponential wit µ = 1
β . In this case, we have that σ2

µ2 = 1 so
the CV =1 and the traditional Taylor’s law applies. A similar argument
to the one given in (3) can be used to show that

E
S2
n

X̄2
n

=
n

n+ 1
,

independent of β showing that Taylor’s law holds in our context when
X1 is exponential for all β > 0. In this case,

Bias (CV 2) = n
n+1 − 1 = − 1

n+1

Furtheremore, one also gets that

V ar(
S2
n

X̄2
n

) =
4n4

(n− 1)(n+ 1)2(n+ 2)(n+ 3)
=

4

n
− 24

n2
+O(

1

n2
)
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Using Markov’s inequality we obtain The following a concentration
of measure result for Taylor’s Law.

Proposition 1.

Let {Xi,j , i = 1, ...nj , j = 1, ...,m} be a double array of non-
negative random variables (m possible related sub-populations). As-
sume that for each j, Xi,j i = 1, ..., nj , is a sequence of identically
distributed random variables with distribution Fj and that P (Xi,j =

0) = 0 for all i, j. Let X̄n,j =

∑nj

i=1
Xi,j

nj
be the sample mean and

S2
n,j =

∑n,j

i=1
(Xi,j−X̄j)2

nj−1 . the sample variance of these nj variables. Let

Wn,j =
S2
n,j

X̄α
n,j

) Then, for all ε > 0,

P (

∑m
j=1(Wn,j − EWn,j)

2

m
≥ ε) ≤ 1

ε2m2

m∑
j=1

V ar(Wn,j)
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Example 3.

Assume that there is a group of (possibly related)m sub-populations
and that each sub-population is comprised ofXi,j i = 1, ..., nj , identically
distributed exponential (βj) random variables.

Assume that n = n1 = n2 = ... = nm we have that the average
squared deviation from of Wn,j from its average satisfies

P (

∑m
j=1(Wn,j − n/(n+ 1))2

m
≥ ε) ≤ 1

ε2m
(

4

n
− 24

n2
+O(

1

n2
)).
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Remark.

Note that the upper-bound decreases linearly in both m and n. A
simulation study gives the following results for exponential (β) random
variables. (V ar(Wn,j), V ar(log(Wn,j)), for

nj = 2, (0.08, 3.973161)
nj = 5, (0.310019, 0.973161)
nj = 10, (0.2, .257)
nj = 20, (0.15, 1.449)

Therefore, for small sample sizes our approach yields better approx-
imations than the usual approach to Taylor’s law.
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On Taylor’s Power Law of Fluctuation Scaling for Weakly De-
pendent Processes

In a forthcoming paper with Paul and Yahia we show that Taylor,s
Law with exponent 2 holds for a class of weakly dependent variables with
an appropriately defined variance. In addition, we introduce a Central
Limit Theorem of the self-normalized empirical version of Taylor’s power
Law in which the sample variance is divided by a power of the sample
mean. Our frameworks is of interest in the context of ergodic Markov
chains, infinite moving averages, ARCH and GARCH models where the
family of distributions is in a parametric family. This self-normalised
statistic is proved to be consistent. This consistency result is reinforced
by the CLT. Both results together provide us with an asymptotic test of
goodness-of-fit to check whether the corresponding dynamical Taylor’s
law indeed holds. Our work is mainly developed in the context of dy-
namical Taylor’s law with exponent 2 but other powers less than 2 are
also considered.
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